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Abstract: In this paper, we propose an efficient algorithm to solve the averaging problem on the
Lorentz group O(n, k). Firstly, we introduce the geometric structures of O(n, k) endowed with a
Riemannian metric where geodesic could be written in closed form. Then, the algorithm is presented
based on the Riemannian-steepest-descent approach. Finally, we compare the above algorithm with
the Euclidean gradient algorithm and the extended Hamiltonian algorithm. Numerical experiments
show that the geodesic-based Riemannian-steepest-descent algorithm performs the best in terms of
the convergence rate.
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1. Introduction

Averaging measured data on matrix manifolds is one of the most frequently arising problems in
many fields. For example, one may need to determine an average eye of a set of optical systems [1].
In [2], the authors concern the statistics of covariance matrices for biomedical engineering applications.
The current research mainly focuses on the compact Lie groups, such as the special orthogonal group
SO(n) [3] and the unitary group U(n) [4], or other matrix manifolds, such as the special Euclidean
group SE(n,R) [5], Grassmann manifold Gr(n, k) [6,7], the Stiefel manifold St(n, k) [8,9] and the
symmetry positive-definite matrix manifold SPD(n) [10,11]. However, there is little research on
averaging over the Lorentz group O(n, k).

In [12], Clifford algebra, as a generalization of quaternions, is applied to approximate the average
on the special Lorentz group SO(1, 2). In engineering, the Lorentz group plays a fundamental role, e.g.,
in the analysis of motion of charged particles in electromagnetism [13]. In physics, the Lorentz group
forms a basis for the transformation of parabolic catadioptric image features [14]. According to [15],
the Lorentz group O(3, 1) is equal to the linear transformations of the projective plane and used to
characterize the catadioptric fundamental matrices that are applied to study the catadioptric cameras.

This paper aims at investigating the averaging on the Lorentz group with a left-invariant
metric that plays the role of Riemannian metric so that the geodesic is given in closed form.
The considered averaging optimization problem could be solved numerically via a geodesic-based
Riemannian-steepest-descent algorithm (RSDA). Furthermore, the devised method RSDA is compared
with the line-search algorithm, Euclidean gradient algorithm (EGA) and the second-order learning
algorithm, extended Hamiltonian algorithm (EHA), proposed in [16,17].

The remainder of the paper is organized as follows. In Section 2, we summarize the
geometric structures of the Lorentz group. The averaging optimization problem, the geodesic-based
Riemannian-steepest-descent algorithm and the extended Hamiltonian algorithm on the Lorentz group
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are presented in Section 3. In Section 4, we show the numerical results of the RSDA and compare the
convergence rate of the RSDA with the other two algorithms. Section 5 presents the conclusions of
the paper.

2. Geometry of the Lorentz Group

In this section, we review the foundations of Lorentz group and describe a Riemannian metrization
in which the geodesic could be written in closed forms.

Let M(n,R) be the set of n×n real matrices and GL(n,R) be its subset containing only nonsingular
matrices. It is well-known that GL(n,R) is a Lie group, i.e., a group which is also a differentiable
manifold and for which the operations of group multiplication and inverse are smooth.

Definition 1. The Lorentz group O(n, k) as a Lie subgroup of GL(n + k,R) is defined by

O(n, k) := {A ∈ GL(n + k,R) | A> In,k A = In,k}, In,k :=

(
In 0n×k

0k×n −Ik

)
,

where I is identity matrix, and 0 is n× k zero matrix.

For anyA ∈ O(n, k), the following identities hold:

det(A) = ±1, I2
n,k = In+k, I>n,k = I−1

n,k = In,k, A> = In,k A−1 In,k, A−> = In,k AIn,k.

The tangent space TAO(n, k), the Lie algebra o(n, k) and the normal space NAO(n, k) associated
with the Lorentz group O(n, k) can be characterized as follows:

TAO(n, k) = {AIn,kΩ | Ω ∈ R(n+k)×(n+k), Ω> = −Ω},
o(n, k) = {In,kΩ | Ω ∈ R(n+k)×(n+k), Ω> = −Ω},

NAO(n, k) = {In,k AS | S ∈ R(n+k)×(n+k), S> = S}.

We employ the left-invariant metric as the Riemannian metric on TAO(n, k) at A ∈ O(n, k)

〈X, Y〉A := 〈A−1X, A−1Y〉In+k = tr((A−1X)>(A−1Y)), X, Y ∈ TAO(n, k). (1)

Let γ : [0, 1]→ O(n, k) be a smooth curve in O(n, k), and its length associated with the Riemannian
metric (1) is defined as

L(γ) =
∫ 1

0

√
〈γ̇(t), γ̇(t)〉γ(t) d t. (2)

The geodesic distance between two points A1 and A2 in O(n, k) is the infimum of lengths of
curves connecting them, namely,

d(A1, A2) := inf{L(γ)|γ : [0, 1]→ O(n, k), γ(0) = A1, γ(1) = A2}.

Applying the variational method from Equation (2), we can find that the geodesic equation satisfies

γ̈ + Γγ(γ̇, γ̇) = 0,

where Γ denotes the Christoffel symbol, the over-dot and the double over-dot denote first-order and
second-order derivation with respect to parameter t, respectively. When the values γ(0) = A ∈ O(n, k)
and γ̇(0) = X ∈ TAO(n, k) are specified, we shall denote the solution as γA,X(t), which is associated
with the Riemannian exponential map expA : TAO(n, k)→ O(n, k) defined as

expA(X) = γA,X(1).
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Let f : O(n, k) → R be a differentiable function and ∇A f ∈ TAO(n, k) denotes the Riemannian
gradient of function f with respect to the metric (1), which is defined by the compatibility condition

〈∇A f , X〉A = 〈∂A f , X〉E, ∀X ∈ TAO(n, k), (3)

where ∂A f denotes the Euclidean gradient of function f and 〈·, ·〉E denotes the Euclidean metric.
The exponential of a matrix A in M(n,R) is defined by

eA =
∞

∑
k=0

1
k!

Ak.

We remark that eA+B = eA eB when AB = BA for A and B in M(n,R).
For the Frobenius norm ‖ · ‖, when ‖A− In‖ < 1, the logarithm of A is given by

log A =
∞

∑
k=1

(−1)k+1 (A− In)k

k
.

In general, log(AB) 6= log A + log B. We here recall the important fact that

log(B−1 AB) = B−1 log(A)B, B ∈ GL(n,R).

Lemma 1. Suppose that f (A) is a scalar function of n× n matrix A in M(n,R) [18]. If

d f (A) = tr(W d A)

holds, then
∂A f = W>,

where W> denotes the derivative of f (A).

The structure of the Riemannian gradient associated with the Riemannian metric (1) is given by
the following result.

Theorem 1. The Riemannian gradient of a sufficiently regular function f : O(n, k)→ R associated with the
Riemannian metric (1) satisfies

∇A f =
1
2

AIn,k(In,k A>∂A f − ∂>A f AIn,k). (4)

Proof of Theorem 1. According to equality (3), the gradient ∇A f is computed as

〈∂A f − A−>A−1∇A f , X〉E = 0, ∀X ∈ TAO(n, k),

as X is arbitrary, the condition above implies that ∂A f − A−>A−1∇A f ∈ NAO(n, k), hence ∂A f −
A−>A−1∇A f = In,k AS, with S> = S, and thus we have

∇A f = AA>∂A f − AIn,kS.

Since ∇A f ∈ TAO(n, k), we have

(∇A f )> In,k A + A> In,k∇A f = 0.
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Inserting the expression ∇A f into the equation above, we have

S =
1
2
(In,k A>∂A f + ∂>A f AIn,k).

Substituting S into the expression of ∇A f , we finish the proof.

In the text, we would like to give credit to [19] for the explicit expression of geodesic over the
general linear group endowed with the natural left-invariant Riemannian metric (1). Under the same
Riemannian metric, it is clear that the geodesic on the Lorentz group can be written in closed form
(cf. Theorem 2.14 in [19]).

Proposition 1. The geodesic γA,X : [0, 1] → O(n, k), with A ∈ O(n, k), X ∈ TAO(n, k) corresponding to
the Riemannian metric (1) has expression

γA,X(t) = A et(A−1X)> et[A−1X−(A−1X)> ] . (5)

Proof of Proposition 1. In fact, by the variational formula δ
∫ 1

0 〈γ̇, γ̇〉γ d t = 0, the geodesic equation
in Christoffel form reads

γ̈ + γ̇γ̇>γ−> − γγ̇>γ−>γ−1γ̇− γ̇γ−1γ̇ = 0.

By the definition that H(t) := γ−1(t)γ̇(t), we see that the geodesic satisfies the
Euler–Lagrange equation

Ḣ(t) = H>(t)H(t)− H(t)H>(t).

We can verify that the curve γ(t) = A et(A−1X)> et[A−1X−(A−1X)> ] emanating from A with a velocity
X is the solution of the Euler–Lagrange equation above.

Remark 1. From the proof of Proposition 1 and the fact A−> = In,k AIn,k, ∀X ∈ TAO(n, k), we conclude that

ΓA(X, X) = XX>A−> − AX>A−>A−1X− XA−1X

= XX> In,k AIn,k − AX> In,k AIn,k A−1X− XA−1X.

3. Optimization on the Lorentz Group

This section aims at investigating the averaging optimization problem on the Lorentz group, and
finding the average value out of a set of Lorentz matrices. Sections 3.1 and 3.2 recall the geodesic-based
Riemannian-steepest-descent algorithm and the extended Hamiltonian algorithm on the Lorentz
group, respectively.

3.1. Riemannian-Steepest-Descent Algorithm on the Lorentz Group

According to the expression of geodesic (5) with A = γ(0), B = γ(1) ∈ O(n, k) and
X = γ̇(0) ∈ TAO(n, k), we have

A−1B = e(A−1X)> eA−1X−(A−1X)> , (6)

and, furthermore, we have

log(A−1B) = log[e(A−1X)> eA−1X−(A−1X)> ]. (7)
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Note that the geodesic distance d(A, B) =
√
〈X, X〉A = ‖A−1X‖. From Equation (6), it is difficult

to give an explicit expression of X in A and B. In [20], the authors show that the geodesic distance
connecting A and B could be obtained by solving the following problem

min
U∈o(n,k)

‖ eU> eU−U> −A−1B‖2. (8)

Then, the geodesic distance between A and B, d(A, B) = ‖U∗‖, where U∗ is a minimizer of
Equation (8). In order to compute U∗, a descent procedure can be applied so we need to find the
gradient first. The differential with respect to U of the function J(U) = ‖ eU> eU−U> −A−1B‖2 is
given by

d J(U) = 2 d(tr((eU> eU−U> −A−1B)>(eU> eU−U> −A−1B)))

= 2 tr((eU> eU−U> −A−1B)> eU> d U eU−U>)

= 2 tr(eU−U>(eU> eU−U> −A−1B)> eU> d U),

and thus, according to Lemma 1, we can get the Euclidean gradient of J(U)

∂U J = 2 eU(eU> eU−U> −A−1B) eU>−U . (9)

On the other hand, recall the Goldberg exponential formula in [21]

log(eX eY) = X + Y +
∞

∑
n=2

∑
|ω|=n

gωω, (10)

where ω denotes a word in the letters X and Y, and the inner sum is over all words ω with length
|ω| = n. The symbol gω denotes Goldberg coefficient on the word ω, a rational number. If the word ω

begins with X, say
ω = ωX,Y = Xr1Yr2 Xr3 · · · (X

∨
Y)rm ,

where r1, · · · , rm are positive integers satisfying r1 + · · ·+ rm = n , and (X
∨

Y)rm denotes Xrm if m is
odd and Yrm if m is even. ωY,X is similarly defined.

The Goldberg coefficient gω is

gω =
∫ 1

0
tm′(t− 1)m′′Gr1(t) · · ·Grm(t)d t,

in which m′ = [m/2] and m′′ = [(m− 1)/2], [ ] denotes the greatest integer of the enclosed number, and
the polynomials Gr(t) are defined recursively by G1(t) = 1 and Gr(t) = r−1(d / d t){r(r− 1)Gr−1(t)}
for r = 2, 3, . . ..

According to Theorem 1 in [22], we can obtain the following result.

Proposition 2. If ‖U‖ < 1
2 , then

‖ log(A−1B)−U‖ ≤ 4‖U‖2

1− 2‖U‖ . (11)

Proof of Proposition 2. According to the Goldberg exponential formula (10), Equation (7) can be
recast as

log(A−1B) = log(eU> eU−U>) = U +
∞

∑
n=2

∑
|ω|=n

gωω, (12)

in which ω denotes a word in the letters U> and U −U>.
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By using properties of the Goldberg coefficient gω (see [23]), we get

|gω | ≤ 2−(n−m)(mCm′
m−1),

where Cm
n = n!/m!(n − m)! is the usual binomial coefficient. Furthermore, the number of words

ωU> ,U−U> of length |ω| = n is just Cm−1
n−1 . Thus, the sum of |gω | extended over all words ω of length n

and involved m parts is
2× Cm−1

n−1 × 2−(n−m)(mCm′
m−1)

−1.

Therefore, due to ‖U −U>‖ ≤ 2‖U‖, and for n ≥ 2, ‖ω‖ ≤ 2n−1‖U‖n, we have

‖ log(A−1B)−U‖ ≤
∞

∑
n=2

∑
|ω|=n

|gω |‖ω‖

≤
∞

∑
n=2

n

∑
m=1

2× Cm−1
n−1 × 2−(n−m)(mCm′

m−1)
−1 × 2n−1‖U‖n

≤
∞

∑
n=2

n

∑
m=1

2mCm−1
n−1 (2

m−1)−1‖U‖n

= 2
∞

∑
n=2

n

∑
m=1

Cm−1
n−1 ‖U‖

n

=
∞

∑
n=2

2n‖U‖n

=
4‖U‖2

1− 2‖U‖ .

Here, in the last step, the equality holds if and only if ‖U‖ < 1
2 .

Remark 2. If the condition ‖U −U>‖ ≤ ε‖U‖, 0 < ε ≤ 1 is added, then, when ‖U‖ < 1,

‖ log(A−1B)−U‖ ≤ 2ε‖U‖2

1− ‖U‖ .

Remark 3. Proposition 2 implies that we can replace the geodesic distance d(A, B) = ‖U‖ by ‖ log(A−1B)‖
where the latter one is much easier to handle.

In order to compare different Lorentz matrices, the following discrepancy D : O(n, k)×O(n, k)→
R is defined

D(A, B) := ‖ log(A−1B)‖ =
√

tr
(

log>(A−1B) log(A−1B)
)

, A, B ∈ O(n, k). (13)

For the Lorentz group, the criterion function f : O(n, k) → R to measure a collection
{B1, B2, . . . , BN} of samples randomly generated is defined by

f (A) :=
1
N ∑

q
‖ log(B−1

q A)‖2, A, Bq ∈ O(n, k), q = 1, 2, · · · , N, (14)

which appears as a specialization, to the Lorentz group, of the Karcher criterion [24].

Definition 2. The average value of {B1, B2, . . . , BN} is defined as

Ā := arg min
A∈O(n,k)

f (A). (15)
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Based on the case in the Euclidean space of the line search method with the negative Euclidean
gradient, in order to achieve the average value, a geodesic-based Riemannian-steepest-descent
algorithm can be expressed as [25]

Ap+1 = γAp ,−∇Ap f (tp), (16)

where p ≥ 0 is an iteration step-counter, the initial guess A0 ∈ O(n, k) is arbitrarily chosen, and tp

denotes a (possibly variable) stepsize schedule.
Note that the Riemannian gradient of the criterion function is crucial to solving the optimization

problem by the geodesic-based Riemannian-steepest-descent algorithm (16).

Theorem 2. The Riemannian gradient of the criterion function (14) is

∇A f =
2
N ∑

q
A log(B−1

q A). (17)

Proof of Theorem 2. The differential with respect to A of the criterion function (14) is

d f (A) =
1
N ∑

q
d(tr(log>(B−1

q A) log(B−1
q A))

=
2
N ∑

q
tr(log>(B−1

q A)d log(B−1
q A))

=
2
N ∑

q
tr(log>(B−1

q A)A−1 d A)

=

〈( 2
N ∑

q
(log>(B−1

q A)A−1
)>

, d A
〉E

,

and, furthermore, according to Lemma 1, we get the Euclidean gradient

∂A f =
2
N ∑

q
A−> log(B−1

q A). (18)

Substituting the Euclidean gradient (18) into the expression of the Riemannian gradient (4),
we have

∇A f =
1
N ∑

q
(A log(B−1

q A)− AIn,k log>(B−1
q A)In,k)

=
1
N ∑

q
(A log(B−1

q A)− A log(In,k(B−1
q A)> In,k))

=
1
N ∑

q
(A log(B−1

q A)− A log(B−1
q A)−1)

=
2
N ∑

q
A log(B−1

q A).

Associated with the expressions of the geodesic (5) and the Riemannian gradient (17) of the
criterion function, the geodesic-based Riemannian-steepest-descent algorithm (16) is recast as

Ap+1 = Ap etpU>p etp(Up−U>p ), (19)

where Up := −A−1
p ∇Ap f = − 2

N ∑q log(B−1
q Ap).
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In order to compute a nearly-optimal stepsize, the function f (Ap+1) considered as a function of
the stepsize tp can be expanded in Taylor series at the point tp = 0 as

f (Ap+1) =
1
2

f2,pt2
p + f1,ptp + f (Ap) + o(t2

p),

where the f1,p and f2,p as the coefficients of the Taylor expansion are computed by

f1,p =
d f (Ap+1)

d tp

∣∣∣
tp=0

, f2,p =
d2 f (Ap+1)

d t2
p

∣∣∣
tp=0

.

Furthermore, the nearly-optimal stepsize value that minimizes the f (Ap+1) is t̂p := − f1,p
f2,p

,

provided that f1,p ≤ 0, f2,p > 0, hence t̂p ≥ 0.
Thus, to obtain the f1,p and f2,p , the function f (Ap+1) is recast as

f (Ap+1) =
1
N ∑

q
tr(log>(B−1

q Ap etpU>p etp(Up−U>p )) log(B−1
q Ap etpU>p etp(Up−U>p ))).

Calculation leads to the first-order derivative of the function f (Ap+1)

d f (Ap+1)

d tp
=

2
N ∑

q
tr(log>(B−1

q Ap etpU>p etp(Up−U>p )) etp(U>p −Up) Up etp(Up−U>p )),

and setting tp = 0 yields the f1,p

f1,p =
2
N ∑

q
tr(log>(B−1

q Ap)Up) = − tr(U>p Up) ≤ 0.

Under the first-order derivative of the function f (Ap+1) above, direct calculations lead to the
second-order derivative of the function f (Ap+1)

d2 f (Ap+1)

d t2
p

=
2
N ∑

q
tr
(

etp(U>p −Up) U>p Up etp(Up−U>p ) + log>(B−1
q Ap etpU>p etp(Up−U>p ))

etp(U>p −Up)(U>p Up −UpU>p ) etp(Up−U>p )
)

,

and, setting tp = 0, we get

f2,p =
2
N ∑

q
tr
(

U>p Up + log>(B−1
q Ap)(U>p Up −UpU>p )

)
= 2 tr(U>p Up)− tr(U>p (U>p Up −UpU>p ))

= 2 tr(U>p Up) ≥ 0.

Hence, the nearly-optimal stepsize of the geodesic-based Riemannian-steepest-descent
algorithm (19) is

t̂p = −
f1,p

f2,p
=

1
2

. (20)

Therefore, the iteration algorithm (19) with the stepsize (20) may be recast explicitly as

Ap+1 = Ap e
1
N ∑

q
log>(A−1

p Bq)
e

1
N ∑

q
(log(A−1

p Bq)−log>(A−1
p Bq))

. (21)
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3.2. Extended Hamiltonian Algorithm on the Lorentz Group

References [16,17] introduced a general theory of extended Hamiltonian (second order) learning
on Riemannian manifold, especially, as an instance of learning by constrained criterion function
optimization on the matrix manifolds. For the Lorentz group, the extended Hamiltonian algorithm
can be expressed by {

Ȧ = X,
Ẋ = −ΓA(X, X)−∇A f − µX,

(22)

where A ∈ O(n, k), X ∈ TAO(n, k) denotes the instantaneous learning velocity, f : O(n, k) → R
denotes a criterion function, and the constant µ > 0 denotes a viscosity parameter.

Inserting the the expressions of the Christoffel matrix function ΓA in Remark 1 and the Riemannian
gradient ∇A f (4) into the general extended Hamiltonian system (22), calculations lead to the
following expressions:{

Ȧ = AH,
Ḣ = H>H − HH> + 1

2 In,k(∂
>
A f AIn,k − In,k A>∂A f )− µH.

Hence, the second equation may be integrated numerically by a Euler stepping method, while the
first one may be integrated via the geodesic. Namely, system (22) may be implemented by{

Ap+1 = Ap eηH>p eηHp−ηH>p ,
Hp+1 = η(H>p Hp − HpH>p ) + (1− ηµ)Hp +

1
2 η In,k(∂

>
Ap

f Ap In,k − In,k A>p ∂Ap f ),
(23)

where η > 0 denotes the learning rate. The effectiveness of the algorithm is ensured if and only if√
2λmax < µ < 1/η,

where λmax denotes the largest eigenvalue of the Hessian matrix of the criterion function f (A) (see [17]).

4. Numerical Experiments

In the present section, we give two numerical experiments on the Lorentz group O(3, 1) to
demonstrate the effectiveness and performance of the proposed algorithms. The Lorentz group as a
homogeneous space has four connected components. Now, we study the optimization on a connected
component SO0(3, 1) containing the identical matrix I4.

In order to emphasize the behavior of the optimization methods RSDA, the EHA and the EGA,
in the following experiments, η = 0.5 and µ = 1.5 are used.

4.1. Numerical Experiments on Averaging Two Lorentz Matrices

In subsection 3.1, it is noticed that the geodesic distance d(A, B) and the discrepancy D(A, B)
between two points A and B are different. Now, given B1, B2 ∈ O(3, 1), numerical experiment results
are shown to compare d(B1, B2) and D(B1, B2). The following two points are sought:

B1 =


cosh(0.5) 0 0 sinh(0.5)

0 1 0 0
0 0 1 0

sinh(0.5) 0 0 cosh(0.5)

 , B2 =


cosh(0.1) 0 0 sinh(0.1)

0 1 0 0
0 0 1 0

sinh(0.1) 0 0 cosh(0.1)

 .

It can be verified that B>i I3,1Bi = I3,1, Bi ∈ O(3, 1), i = 1, 2. The optimization problem to compute
the geodesic distance d(B1, B2) can be solved by means of a descent procedure along the negative
Euclidean gradient (9) with a line search strategy. In Figure 1, the results show that the Frobenius norm
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of U is decreasing steadily when the criterion function J(U) tends to be constant 0 during iteration.
By the numerical experiments, we can get

U∗ =

(
0.0000 0.0000 0.0000 −0.4000
0.0000 −0.0000 −0.0000 0.0000
0.0000 −0.0000 −0.0000 0.0000
−0.4000 0.0000 0.0000 −0.0000

)
.

Iteration

0 5 10 15 20 25 30 35 40 45 50

N
o
rm

 o
f 
U

/C
ri
te

ri
o
n
 f
u
n
c
ti
o
n
 J

(U
)

0

0.5

1

1.5

2

2.5

Norm of U

Criterion function J(U)

Figure 1. The criterion function J(U) and the Frobenius norm of U during iteration, respectively.

It is interesting that the geodesic distance between B1 and B2 is d(B1, B2) = ‖U∗‖ ≈ 0.5657, and
the discrepancy between B1 and B2 is D(B1, B2) = ‖ log(B−1

1 B2)‖ ≈ 0.5657.
In the following experiment, we consider the average value of two points B1 and B2. Figure 2

displays the results of running the RSDA, the EHA, and the EGA. Note that the iteration sequence
{Ap} is expected to converge to a matrix that locates amid the samples {Bq}, and the condition
‖B−1

q Ap− I4‖ < 1 holds. The initial point is set as A0 = B1, which satisfies ‖B−1
2 A0− I4‖ ≈ 0.5921 < 1.

More initial points can be chosen in a neighbor of the matrix B1 by the following rule (25). It can be
found that the averaging algorithms converge steadily and the RSDA has the fastest convergence rate
among three algorithms and needs one iteration to obtain the average value as follows:

Ā =

( 1.0453 0.0000 0.0000 0.3045
0.0000 1.0000 0.0000 0.0000
0.0000 0.0000 1.0000 0.0000
0.3045 0.0000 0.0000 1.0453

)
.
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Figure 2. Convergence comparison among the Riemannian-steepest-descent algorithm (RSDA), the
extended Hamiltonian algorithm (EHA) and the Euclidean gradient algorithm (EGA) during iteration.
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However, the EHA and the EGA need 13 and 18 iterations to realize the same accuracy, respectively.
It is interesting to compare the discrepancy D(Ā, B1) ≈ 0.2828 with the discrepancy D(Ā, B2) ≈ 0.2828,
which confirms that the computed average value is truly a midpoint (i.e., it is located at approximately
equal discrepancy from the two matrices).

4.2. Numerical Experiments on Averaging Several Lorentz Matrices

The numerical experiments rely on the availability of a way to generate pseudo-random samples
on the Lorentz group. Given a point B ∈ O(n, k) which is referred to as “center of mass” or simply
center of the random distribution, it is possible to generate a random sample Bq ∈ O(n, k) in a neighbor
of a matrix B by the rule [26,27]

Bq = B eB−1X , (24)

where the center matrix B can be generated by a curve departing from the identical matrix , B = eV

with V generated randomly matrix in o(n, k).
According to the structure of the tangent space TBO(n, k), expression (24) can be written

Bq = B eIn,k(C−C>), (25)

where C ∈ R(n+k)×(n+k) is any unstructured random matrix.
Figure 3 displays the results on optimization over O(3, 1) with N = 50 Lorentz matrices. The initial

point A0 is randomly generated,
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Figure 3. (a) convergence comparison among the RSDA, the EHA and the EGA during
iteration; (b) the norm ‖A−1∇A f ‖ of the Riemannian gradient (17) during iteration by the
Riemannian-steepest-descent algorithm (RSDA); (c–d) the discrepancy D(A, Bq) before iteration
(A = A0) and after iteration (A = Ā), respectively.
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A0 =

(
0.8412 0.2117 0.5487 −0.2351
−0.0045 1.0783 −0.2160 −0.4577
−0.5410 0.2998 0.8456 −0.3126
−0.0203 −0.5454 −0.2508 1.1665

)
.

Figure 3a shows the values of the criterion function (14) through the RSDA, the EHA and the EGA.
Numerical experiments show that the average value of 50 Lorentz matrices is

Ā =

(
0.9127 −0.1134 0.3933 0.0235
0.0317 0.9853 0.2035 −0.1154
−0.4088 −0.1675 0.8980 −0.0407
0.0342 −0.1087 −0.0504 1.0077

)
,

which can be obtained after seven iterations using the RSDA, while the EHA and the EGA need
15 iterations. Figure 3b gives the norm ‖A−1∇A f ‖ of the Riemannian gradient (17) during iteration by
the RSDA, from which we can obtain that the norm of the Riemannian gradient tends to be constant
0 after iteration 6. Figure 3c,d give the values of the discrepancy D(A, Bq) before iteration and after
iteration, respectively. In particular, note that all the discrepancy from the samples Bq and the matrix A
are decreased substantially. The results show that the convergence rate of the RSDA is still the fastest
among three algorithms.

5. Conclusions

In this paper, we consider the averaging optimization problem for the Lorentz group O(n, k),
namely, to measure the average of a set of Lorentz matrices. In order to tackle the related optimization
problem, a geodesic-based Riemannian-steepest-descent algorithm is presented on the Lorentz group
endowed with a left-invariant metric (Riemannian metric). The devised averaging algorithm is
compared with the extended Hamiltonian algorithm and the Euclidean gradient algorithm. The results
of numerical experiments over the Lorentz group O(3, 1) show that the convergence rate of the
geodesic-based Riemannian-steepest-descent algorithm is the best one among these three algorithms.
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