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Abstract: Permutation entropy (PeEn) is a complexity measure that originated from dynamical
systems theory. Specifically engineered to be robustly applicable to real-world data, the quantity
has since been utilised for a multitude of time series analysis tasks. In electroencephalogram (EEG)
analysis, value changes of PeEn correlate with clinical observations, among them the onset of
epileptic seizures or the loss of consciousness induced by anaesthetic agents. Regarding this field of
application, the present work suggests a relation between PeEn-based complexity estimation and
spectral methods of EEG analysis: for ordinal patterns of three consecutive samples, the PeEn of an
epoch of EEG appears to approximate the centroid of its weighted power spectrum. To substantiate
this proposition, a systematic approach based on redundancy reduction is introduced and applied to
sleep and epileptic seizure EEG. The interrelation demonstrated may aid the interpretation of PeEn
in EEG, and may increase its comparability with other techniques of EEG analysis.
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1. Introduction

Electroencephalography (EEG) is a neurophysiological technique widely used in research and
medical diagnostics. Regardless of its broad spectrum of applications, a common denominator of
working with EEG is the assessment of motifs/patterns/features in the signals, and to relate them to
observations from other modalities. Analyses are either performed by visual inspection or supported
by computer-based parameter extraction. Ultimately, the purpose of EEG analysis is the inference on
cortical state changes.

EEG signals are varying electrical potentials that are (in most cases) non-invasively measured
across the scalp. These voltage fluctuations represent a very low-dimensional projection of the
underlying cerebral processes, and their relation to higher cortical functions is not fully understood.
Most techniques of quantitative EEG analysis are therefore intrinsically empirical. Be it the classic
frequency band-related measures or more recent additions to the set of analysis tools: the mechanistic
background of the vast majority of EEG parameters is not entirely known. In this inherently
probabilistic framework, any given signal property that correlates with behavioural observations
constitutes a parameter worth considering for EEG analysis.

One quantity that is receiving increasing attention in the field is permutation entropy (PeEn).
Introduced by Christoph Bandt and Bernd Pompe as a complexity measure for time series, PeEn is the
Shannon entropy of a sequence of ordinal patterns—the latter being discrete symbols that encode how
consecutive time series entries relate to one another in terms of position and value [1]. PeEn has been
successfully used for EEG analyses in sleep scoring, general anaesthesia monitoring and research on
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disorders of the central nervous system, most notably epilepsy. Comprehensive overviews regarding
the manifold applications of PeEn can be found in [2,3].

New applications of PeEn in EEG processing, and especially ways of extending the method are
constantly reported on. For instance, “weighted” [4], “multiscale” [5], “multivariate multi-scale” [6],
and “amplitude-aware” [7] variants of PeEn have so far been proposed. As literature suggests, the
quantity may well be relevant to any research field that benefits from a widely accepted measure of the
complexity of EEG.

Considering the great interest taken in PeEn, and given its virtually universal applicability in
EEG analysis, a particular set of questions is surprisingly seldom addressed: what are the dynamic
signal characteristics of EEG that PeEn responds to? Can the parameters pattern order and time delay
be selected on a phenomenological basis? How should the abstract notion of complexity be interpreted
in EEG?

From the outcome-oriented perspective, these may be minor issues. Nevertheless, a careful
examination of PeEn in EEG might foster our general understanding of this class of electrophysiological
signals. The present work takes a step in this direction, pioneering the following approach: (1) instead
of extending PeEn, try to simplify it without compromising its suitability for EEG analysis; and (2) if
successful, examine whether the result can more easily be interpreted than the initial chaos-theoretic
complexity measure.

Credit for inspiring this idea is due to Bandt [8], who recently questioned the usage of terms like
“complexity”, “chaos” and “disorder” in the EEG context and suggested that the PeEn of an epoch
of EEG is equivalent to its distance from white noise—a simplification that immediately increases
interpretability. In the following article, we shall advance this strategy, systematically deriving an
intuitive explanation for the behaviour of PeEn in EEG.

2. An Overview of Permutation Entropy

Both the terminology and mathematical formulation regarding PeEn may vary between authors.
To avoid ambiguity, it seems reasonable to shortly recapitulate the basic principles underlying the
quantity—using the definitions, notations and nomenclature this work will adhere to.

2.1. Sequences of Ordinal Patterns

The ordinal pattern of an m-tuple of real numbers (x1, x2, . . . , xm) describes how its elements
relate to one another in terms of position and value. For instance, the ordinal pattern of the tuple
(17, 7, 8) is fully specified by: “There are three elements, the first is the greatest, the second is the least.”

Apart from didactic purposes, formal representations of ordinal patterns are usually preferred.
Let us hereto agree upon the following simple notation: each element xi of an m-tuple (x1, x2, . . . , xm)

shall be assigned a distinct index ki ∈ {1, 2, . . . , m}, whereby the greatest element is assigned the
index m, the second-greatest is assigned the index m− 1, and so forth. The ordinal pattern of the
aforementioned tuple (17, 7, 8) thus corresponds to the indices (k1, k2, k3) = (3, 1, 2). We shall simply
write 312 when referring to this specific pattern.

Only tuples of pairwise distinct elements can have an unambiguous ordinal pattern. Let us
neglect this latent ambiguity, limiting our considerations to tuples (x1, x2, . . . , xm) with xi = xj if and
only if i = j. For any such tuple, each permutation of its set of values {xi} results in a different ordinal
pattern. Consequently, a set of m! ordinal patterns Ωm = {Π1, Π2, . . . , Πm!} exists for tuples of length
m. The parameter m ≥ 2 is called the order of the ordinal pattern.

Consider, for example, the tuple (x1, x2, x3) with x1 6= x2 6= x3. Its m! = 6 possible ordinal
patterns of order m = 3 shall be denoted Ω3 = {123, 132, 213, 231, 312, 321}. Figure 1 displays the
shapes of these ordinal patterns.
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Figure 1. A schematical representation of the six ordinal patterns of order m = 3.

Any sequence of real numbers (x1, x2, . . . , xn) can be mapped onto a sequence of ordinal patterns.
Given the order m, the particular pattern πt at time index t is obtained from the m-tuple of values

(xt, xt+τ , xt+2τ , . . . , xt+(m−1)τ) 7→ πt ∈ Ωm. (1)

This encoding is frequently called the symbolisation technique and yields an ordinal pattern sequence
of the form

(π1, π2, . . . , πk) with k = n− (m− 1)τ, (2)

where k is the number of patterns obtainable from a sequence of n samples. The parameter τ ≥ 1
represents the distance between samples compared and is usually named the time delay.

2.2. Estimating the Permutation Entropy of EEG

PeEn of order m and time delay τ is the Shannon entropy [9] of a discrete probability distribution
of m! ordinal patterns. In EEG analysis, the probability distribution vector

p =
(

p1 p2 . . . pm!

)T
and ‖p‖1 = 1 (3)

is obtained by first mapping a sequence of EEG samples (x1, x2, . . . , xn) onto its corresponding sequence
of ordinal patterns (π1, π2, . . . , πk) in terms of Equations (1) and (2). The probability distribution p is
then estimated by counting pattern occurrences. For a sequence of k elements, the probability pi of the
pattern Πi ∈ Ωm is hence

pi =
1
k

k

∑
t=1

[
πt = Πi

]
for 1 ≤ i ≤ m! = |Ωm|. (4)

The operator
[
·
]

represents the Iverson bracket [10], a convenient means of notating anonymous
indicator functions. Shannon entropy is then computed from the probability distribution p according
to the fundamental formula

H(p) =
m!

∑
i=1

pi log
1
pi

. (5)

For any pi = 0, the corresponding summand is replaced by the value of its limit towards zero,

lim
pi→0

pi log
1
pi

= 0. (6)

PeEn thus converges for any given ordinal pattern distribution. The base of the logarithm can be
chosen arbitrarily and determines the unit of measure. Entropy values reported in this work were
divided by log m! for normalisation—they are dimensionless quantities on the interval [0, 1].

3. Shannon Entropy and Pairwise Probability Balances

No matter the unit of measure: the absolute value of PeEn as obtained from a single epoch of
EEG is insignificant. Conversely, the quantity is highly relevant for EEG analysis when comparing
entropies across multiple EEG epochs. Considerable contrast in value can then be observed (and be
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correlated with behavioural observations as is common practice). Let us call these decisive inter-epoch
fluctuations the dynamics of PeEn. Their relation with the signal characteristics of EEG are the main
topic of the article at hand. To approach the subject, we shall consider some properties of Shannon
entropy and derive implications for the dynamics of PeEn therefrom.

Pairwise Probability Balances

From a model-free perspective, Shannon entropy can be interpreted as a statistical parameter on a
discrete probability distribution

p =
(

p1 p2 . . . pn

)T
and ‖p‖1 = 1. (7)

One of its core properties is that it increases with any pairwise modification of p towards the uniform
distribution [9]. To utilise this behaviour, let us partition the n elements of p into a set of n2 probability
pairs

X =
{
(pi, pj) | (i, j) ∈ {1, . . . , n} × {1, . . . , n}

}
, (8)

and let us further define for each such pair (pi, pj) a probability balance coefficient

βij =

{
pi/(pi + pj) for pi + pj > 0,

1/2 for pi + pj = 0.
(9)

It then holds that βij = 1/2 if and only if pi = pj. In analogy to the steady continuation of Shannon
entropy as per Equation (6), this justifies the stipulation βij = 1/2 for pi + pj = 0. Moreover, it holds that

βij + β ji = 1. (10)

Using its balance coefficient βij, the contribution of a particular probability pi to the overall value of
Shannon entropy can be expressed as

pi log
1
pi

= pi log
1

pi + pj
+ pi log

pi + pj

pi
= pi log

1
pi + pj

+ pi log
1

βij
. (11)

The summed contribution of a probability pair (pi, pj) then is

pi log
1
pi

+ pj log
1
pj

=
(

pi log
1

pi + pj
+ pi log

1
βij

)
+
(

pj log
1

pi + pj
+ pj log

1
β ji

)
= (pi + pj)

(
log

1
pi + pj

+ βij log
1

βij
+ (1− βij) log

1
1− βij

)
= (pi + pj)

(
log

1
pi + pj

+ Hb(βij)
)

.

(12)

The right-hand side of this equation is an affine transformation of the binary entropy function

Hb(x) = x log
1
x

+ (1− x) log
1

1− x
. (13)

Introducing pij = pi + pj, Equation (12) can be reformulated as the bivariate function

H∆(pij, βij) = pij log
1
pij

+ pij Hb(βij), (14)

which behaves as depicted in Figure 2. In particular, if we fix the summed probability pij at a constant
value, H∆ is a concave function on the domain 0 ≤ βij ≤ 1. This function is symmetrical with
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regard to its maximum at βij = 1/2, where pi = pj. Thus, if we reallocate among a pair (pi, pj) their
summed probability pij such that pi and pj approach their average (while pij remains constant), βij
approaches 1/2 and Shannon entropy increases. The same principle applies to any pair of probabilities
drifting apart, where the entropy decreases. Two well-known corner cases of this generic property are
that (1) Shannon entropy is maximal for the uniform distribution, while (2) it is zero if all but one pi
are zero [9].

0

1/2

1

0

1

0

1

βij
pij

H
∆

/
bi

t

Figure 2. The graph of H∆ as specified by Equation (14), calculated using the binary logarithm. The
function is symmetrical to the plane βij = 1/2, where it is maximal with regard to βij for any constant pij.
H∆ is then an affine transformation of the binary entropy function Hb. It is the binary entropy function
for pij = 1.

For a probability distribution p of n elements, a quadratic matrix of n2 balance coefficientsβ11 . . . β1n
...

. . .
...

βn1 . . . βnn

 (15)

can be created. We limit our considerations to the entries above its main diagonal, namely the subset

B =
{

βij | 1 ≤ i < j ≤ n
}

such that |B| =
(

n
2

)
=

n2 + n
2

. (16)

The remaining coefficients, βij with i ≥ j, are easily obtained via the property of symmetry as given by
Equation (10).

In conjunction with the relation ‖p‖1 = 1, the coefficients βij ∈ B constitute a system of |B|+ 1
linear equations in the probabilities p. Its augmented system matrix is

1 1 1 1 . . . 1 1
β12 − 1 β12 0 0 . . . 0 0
β13 − 1 0 β13 0 . . . 0 0
β14 − 1 0 0 β14 . . . 0 0

...
...

...
...

. . .
...

...
0 0 0 0 . . . βn−1, n 0


. (17)
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By Gaussian elimination, one confirms this system to be overdetermined but consistent. Any
probability distribution vector p is hence unambiguously determined by its corresponding set of
balance coefficients βij ∈ B. The same holds true for the value of Shannon entropy H(p). Consequently,
the dynamics of PeEn can be studied by analysing variations within the probability balances βij ∈ B.

4. Complexity and Pseudo-Complexity

PeEn depends on a set of parameters and surrounding conditions. Besides the order m and time
delay τ, also the sampling rate fs, the window length n as well as any filters applied to the EEG
may affect the results. Those are a lot of parameters to decide upon, especially when considering the
empirical nature of ordinal pattern-based EEG analysis. Existing guidelines on parameter selection are
essentially based on computational or statistical feasibility concerns [3], and are rather not motivated
by (electro-)physiological considerations. Therefore, any parametrisation of PeEn reported suitable for
EEG analysis must be regarded as the result of extensive experimentation.

With that in mind, it is remarkable that independent groups have successfully used the six
ordinal patterns of order m = 3 for EEG encoding [11]. Most likely by experimental optimisation,
investigators ended up using the lowest-possible order that still accounts for more than just the patterns
“the signal increases” (12) versus “the signal decreases” (21). Paradoxically, if six ordinal patterns
suffice for the analysis, most of what makes PeEn a complexity measure can apparently be omitted.

Accepting this immanent contradiction, one may raise the following questions: can the number
of ordinal patterns be even further reduced without impairing the dynamics of PeEn? If so, do the
remaining patterns permit a more tangible interpretation of this EEG analysis technique?

4.1. A New Class of Ordinal Patterns?

Regarding these questions, variegating the pattern order m obviously does not permit any further
investigation. A finer-grained approach is necessary and shall here be introduced. It is based on the
idea that any pattern pair may be the redundant bifurcation of a less specialised, yet more decisive
kind of motif.

By way of illustration, let us define an augmented class of ordinal patterns of order m = 3. For any
tuple of distinct values (x1, x2, x3), our extra-ordinal patterns shall not only describe how its elements
relate to one another, but additionally encode the value of the Boolean expression

(xhi − xmid) ≥ (xmid − xlo). (18)

Figuratively, we assess if the centroid of a pattern lies above or below its equatorial axis. This is
visualised in Figure 3.

Figure 3. The twelve extra-ordinal patterns of order m = 3. Highlighted samples are pivotal in that
they render a pattern top-heavy (t) or bottom-heavy (b). Each pattern pair Πti and Πbi descends from
a common ordinal pattern Πi.
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Consequently, we shall call the respective pattern either top-heavy or bottom-heavy. As an
example, the tuple (23, 11, 14) features the bottom-heavy pattern 312b, while the tuple (28, 6, 17) maps
onto a top-heavy 312t. Both patterns are derivates of the same (conventional) ordinal pattern 312,
though, and it holds for their probabilities that p312 = p312t + p312b. Generally, a pair of extra-ordinal
patterns Πti and Πbi exists for each ordinal pattern Πi, and their probabilities relate to each other as in

pi = pti + pbi. (19)

In practice, calculating this extra-ordinary permutation entropy (XPeEn) only marginally differs from the
standard approach: probability distribution estimates for 2×m! = 12 distinct patterns are to be obtained.

4.2. Pseudo-Complexity in Ordinal Pattern Analysis

Apart from nomenclature, XPeEn is theoretically a reasonable extension. Using conventional
PeEn of order m = 3, we implicitly agree to distinguish two upward-peak patterns (132 and 231) as
well as two downward-peak patterns (213 and 312). By implication, the additional distinction between
top-heavy and bottom-heavy patterns is then equally justified. Both kinds of partitions stem from the
same principle, and the degree of granularity that better matches the signal characteristics of EEG is
not evident: ultimately, the relations between ordinal patterns and EEG are not understood.

Understood are, however, the properties of Shannon entropy. According to Equation (14), and in
conjunction with Equation (19), it holds for any pair of extra-ordinal patterns Πti and Πbi that their
summed contribution to XPeEn is

H∆(pi, βi) = pti log
1
pti

+ pbi log
1

pbi
= pi Hb(βi) + pi log

1
pi

, (20)

where βi is the probability balance coefficient

βi =
pti

pti + pbi
=

pti
pi

. (21)

By estimating the variance of a particular βi from a suitably large collection of EEG epochs, we
can thus quantify the impact its corresponding pattern pair Πti and Πbi has on the dynamics of XPeEn.
As an example as intuitive as unlikely, imagine that the variance of some balance coefficient βi is found
to be zero, such that βi and Hb(βi) remain constant for any epoch of EEG. Equation (20) then implies
that Πti and Πbi can merely contribute to the dynamics (= value changes) of XPeEn via the sum of
their probabilities pi, which is the probability of the conventional ordinal pattern Πi. In this case, the
distinction between Πti and Πbi is redundant in the first place: without impairing the dynamics of
XPeEn, the respective extra-ordinal patterns Πti and Πbi can be merged into their common ancestor,
the traditional ordinal pattern Πi.

More realistically, any balance coefficient will most likely feature some variance. Nevertheless,
estimating the variances of all balance coefficients βij ∈ B as defined by Equation (16), we can rank the
corresponding pattern pairs by their relative contribution to the overall dynamics of XPeEn. Thus, we
can separate decisive pattern pairs from redundant ones—and tell apart the complexity of the data
from the pseudo-complexity of the method.

Admittedly, if the lengths of the EEG epochs analysed suffice for accurate probability estimation,
it is not necessarily detrimental to use more ordinal patterns than the underlying signal characteristics
demand for. However, doing so conveys the impression of a more intricate phenomenon than there
might actually be, and could hence promote the misinterpretation of analysis results.
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5. The Entropy of Peaks

The principle just demonstrated is directly transferable to actual PeEn. To this end, let us choose
the six ordinal patterns of order m = 3 as a starting point. In addition, let us limit our considerations to
the time delay τ = 1 for now—arbitrary time delays will be discussed near the end of the manuscript.
We are thus looking at probability distributions of the form

p =
(

p123 p132 p213 p231 p312 p321

)T
(22)

and at their corresponding balance coefficients in terms of Equations (9) and (15),

β123/123 β123/132 β123/213 β123/231 β123/312 β123/321
β132/123 β132/132 β132/213 β132/231 β132/312 β132/321
β213/123 β213/132 β213/213 β213/231 β213/312 β213/321
β231/123 β231/132 β231/213 β231/231 β231/312 β231/321
β312/123 β312/132 β312/213 β312/231 β312/312 β312/321
β321/123 β321/132 β321/213 β321/231 β321/312 β321/321


. (23)

Due to the symmetry relation of Equation (10), it suffices to consider the matrix entries above the
main diagonal, that is, the coefficients βij with 1 ≤ i < j ≤ 6. We shall aggregate those 15 elements
into a vector of balance coefficients

β =
(

β123/132 β123/213 β123/231 . . . β231/312 β231/321 β312/321

)T
. (24)

Henceforth, we will use linear indexing, that is, the notation βi with 1 ≤ i ≤ 15, when referring to the
individual elements of the vector β.

5.1. An Open-Source, Open-Data Approach

The statistics of balance coefficients in EEG have to be assessed empirically, that is, from a
suitably large collection of data. The analyses presented here were carried out on the CAP Sleep
Database [12], a set of 108 polysomnographic recordings conducted at the Ospedale Maggiore di Parma,
and kindly dedicated to the public domain. Sleep EEG data are particularly suitable for the task at hand:
PeEn reportedly varies for different stages of natural sleep [8,13], and polysomnographic recordings
usually encompass hours of contiguous data per subject. In addition, a multitude of pathologies justify
polysomnographic clarification, which increases the heterogeneity of the data—another plus for our use case.

To aid reproducibility, using a dataset available to all of the scientific community was considered
obligatory. The choice for the CAP Sleep Database was motivated by Bandt’s recent publication
on PeEn [8]. The dataset is hosted by PhysioNet [14] and provided free of charge. Once more in
the interest of reproducible science [15], the free and open-source numerical computation software
GNU Octave 4.2 was utilised for all data analyses. The code is available in the supplementaries—and
was tested compatible with MATLAB R2015b (MATLAB is a registered trademark of: The MathWorks,
Inc., Natick, MA, USA).

5.2. EEG Segmentation and Processing

The CAP Sleep Database is a collection of 108 files stored in European Data Format (EDF) [16].
Four of them had to be rejected due to apparent inconsistencies in their file headers. From the remaining
polysomnograms, all channels containing EEG were selected, irrespective of electrode location and
referencing. These signals were converted to a common sampling rate of 200 Hz. No additional
preprocessing nor any artefact correction were applied. The resampled EEG traces were then split
into non-overlapping epochs of 20 s duration each. To avoid biasing the ordinal pattern distributions,
epochs containing ties (= triples of values that violate the constraint x1 6= x2 6= x3) were discarded.
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The procedure yielded Ncap = 1.6× 106 individual segments—more than a year of (single-channel)
EEG data.

Using the order m = 3 and time delay τ = 1, epochs were then mapped onto sequences of
ordinal patterns according to Equations (1) and (2). For each of the resulting Ncap pattern sequences,
its distribution vector

pi =
(

p123i p132i p213i p231i p312i p321i

)T
(25)

was estimated in terms of Equation (4), and PeEn calculated as per Equation (5). Dividing by log m!,
results were normalised to the interval [0, 1]. As is to be expected for sleep EEG, the data feature a wide
range of PeEn values. Figure 4 depicts a density estimate of the non-trivially distributed entropy vector

hcap =
(

h1 h2 . . . hNcap

)T
. (26)

0 0.2 0.4 0.6 0.8 1

0

2

4

6

PeEn / log 3! bit

D
en

si
ty

Figure 4. Kernel density estimate (Gaussian, bandwidth σ = 5 × 10−3) for the Ncap = 1.6 × 106 PeEn
values obtained from the CAP Sleep Database.

5.3. The Principle Components of Probability Balances

Furthermore, a vector of balance coefficients βi as per Equation (24) was computed for each
ordinal pattern distribution pi. These vectors were concatenated to form the Ncap × 15 data matrix

B =
(

β1 β2 . . . βNcap

)T
. (27)

Interpreting each vector βi (each row in B) as one point in a 15-dimensional feature space, principle
component analysis (PCA) was then carried out on the data matrix. This method constitutes a perfect
match for the problem at hand, given that probability balance coefficients shall be ranked by their
contribution to the overall variance in the data matrix B. Let us notate PCA in terms of computing the
set of eigenpairs {

(λi, wi) | 1 ≤ i ≤ 15
}

(28)

to the 15× 15 covariance matrix ΣB of the data matrix B. The eigenvectors wi are then the loading
vectors of the PCA and map B onto its principle components zi = Bwi. Each principle component
zi is a linear combination of the balance coefficients βi and explains a fraction of the variance in the
dataset B, whereby it holds that λi = Var(zi). As is common practice, principle components shall
be enumerated such that λ1 ≥ λ2 ≥ · · · ≥ λ15. By convention, the first principle component z1 then
contributes most to the variance in B. For the actual CAP dataset, PCA revealed that

1
λ0

4

∑
i=1

λi > 0.999 with λ0 =
15

∑
i=1

λi. (29)
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Thus, more than 99.9% of variance in B are due to the principle components z1, z2, z3 and z4

(see Table 1). Further considerations were hence limited to the first four principle components.
Their density estimates, as shown in Figure 5, are highly instructive.

Table 1. Eigenvalues and explained variations (normalised eigenvalues) of the first four principle
components, as well as their Spearman correlation coefficients with the permutation entropy (PeEn)
vector hcap.

Component Eigenvalue Explained Variation Spearman Correlation
zi λi λi/λ0 ρ(hcap, zi)

z1 5.0 × 10−2 94.4% 0.99996
z2 1.5 × 10−3 2.8% −0.006
z3 1.2 × 10−3 2.2% −0.008
z4 2.5 × 10−4 0.5% 0.02
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D
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si
ty

Principle component z1
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Principle component z2

−0.2 −0.1 0 0.1 0.2
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10
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Principle component z3

−0.2 −0.1 0 0.1 0.2

0

10

20
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Principle component z4

Figure 5. Kernel density estimates (Gaussian, bandwidth σ = 1 × 10−2) for the principle components
z1, z2, z3 and z4 of the data matrix B.

The density of z1 resembles the PeEn distribution depicted in Figure 4, suggesting some correlation
between z1 and the entropy values hcap. In contrast, the density estimates of z2, z3 and z4 seem to be
normally distributed around zero—they appear to be random noise.

Testing for monotonic correlation between the PeEn values hcap and the principle components
z1, z2, z3 and z4, respectively, Spearman correlation coefficients as reported in Table 1 were obtained.
Consistent with the graphical representations of Figures 4 and 5, the first principle component z1 is
almost perfectly correlated with PeEn, while z2, z3 and z4 clearly contain uncorrelated noise. Moreover,
z1 alone explains more than 94% of the variance in B. It is therefore safe to assume that the dynamics
of PeEn are exclusively driven by z1.
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5.4. Eliminating Pseudo-Complexity

The nature of the first principle component’s loading vector w1 is the pivotal result of the manuscript
at hand. According to the data presented in Table 2, it holds in very good approximation that

z1

w1,1
=

βTw1

w1,1
u



β123/132
β123/213
β123/231
β123/312
β132/321
β213/321
β231/321
β312/321



T 

1
1
1
1
−1
−1
−1
−1


=



β123/132
β123/213
β123/231
β123/312
β321/132
β321/213
β321/231
β321/312



T 

1
1
1
1
1
1
1
1


. (30)

Here, the property of symmetry as per Equation (10) and a division by w1,1 were applied to aid
interpretability.

Table 2. The principle component z1 = βTw1 is a (trivially simple) linear combination of a subset of
balance coefficients. In addition, all balance coefficients not included in z1 (listed in the lower part of
the table) appear to be symmetrically distributed around 1/2.

Index Balance Weight Mean Median Mode

i βi w1,i w1,i/w1,1 E[βi] Md[βi] Mo[βi]

1 β123/132 −0.353 1.000 0.8588 0.8842 0.9000
2 β123/213 −0.354 1.002 0.8586 0.8842 0.9000
3 β123/231 −0.353 0.999 0.8588 0.8842 0.9000
4 β123/312 −0.352 0.997 0.8590 0.8842 0.9000
9 β132/321 0.354 −1.003 0.1415 0.1157 0.0909

12 β213/321 0.355 −1.005 0.1417 0.1158 0.0909
14 β231/321 0.354 −1.002 0.1414 0.1158 0.1111
15 β312/321 0.353 −1.000 0.1412 0.1158 0.0909

5 β123/321 0.002 −0.005 0.5004 0.5004 0.5000
6 β132/213 −0.001 0.003 0.4997 0.5000 0.5000
7 β132/231 0.001 −0.001 0.5001 0.5000 0.5000
8 β132/312 0.001 −0.004 0.5004 0.5000 0.5000

10 β213/231 0.001 −0.004 0.5004 0.5000 0.5000
11 β213/312 0.002 −0.007 0.5007 0.5008 0.5000
13 β231/312 0.001 −0.003 0.5003 0.5000 0.5000

This is a bubble of pseudo-complexity bursting: while we were trying to isolate some pattern pairs
that are irrelevant for the dynamics of PeEn in EEG, Equation (30) implies that the balances βi among
all pattern pairs

Ω† =
{
(123, 321), (132, 213), (132, 231), (132, 312), (213, 231), (213, 312), (231, 312)

}
(31)

contribute virtually nothing to the variance in z1, and are thus negligible in good approximation.
Those are the balances between any two peak patterns, as well as the balance β123/321 between the
all-rising and all-falling pattern.

Furthermore, estimating from data matrix B the mean, median and mode of each balance
coefficient, results as presented in Table 2 were obtained. In particular, it holds true for all pattern pairs
in Ω† that

E[βi] u Md[βi] u Mo[βi] u 1/2, (32)



Entropy 2017, 19, 692 12 of 23

which strongly suggests that their respective balance coefficients are symmetrically distributed
around 1/2. Under this premise, and in conjunction with the definition as per Equation (9),

E[p123] u E[p321] as well as E[p132] u E[p213] u E[p231] u E[p312] (33)

immediately follow. Moreover, and again due to the linear combination of Equation (30), the balance
coefficients for the pattern pairs

Ω? =
{
(123, 132), (123, 213), (123, 231), (123, 312),

(321, 132), (321, 213), (321, 231), (321, 312)
} (34)

contribute almost equally to the variance in B. These are the balances between any peak pattern and
either the all-rising or all-falling pattern. Defining the peak probability p̂ such that

p̂ = p132 + p213 + p231 + p312 and 1− p̂ = p123 + p321, (35)

and using the relations given in Equation (33), each of these balance coefficients can be approximated by

β? =
(1− p̂)/2

(1− p̂)/2 + p̂/4
=

2 ( p̂− 1)
p̂− 2

. (36)

The linear combination given by Equation (30) can therefore be reduced to the expression

z1

w1,1
u 8 β? =

16 ( p̂− 1)
p̂− 2

. (37)

Let us assume that equality holds in the above relation, such that all variance within the decisive
principle component z1 is exclusively induced by the peak probability p̂. Without compromising
the dynamics of PeEn, all four peak patterns 132, 213, 231 and 312 can then be merged into just one
ordinal pattern—the peak pattern. Likewise, the all-rising and all-falling patterns 123 and 321 can be
unified, yielding a single edge pattern. On this basis, PeEn of order m = 3 and time delay τ = 1 can be
replaced by a much simpler entropy of peaks function

H( p̂) = p̂ log
4
p̂

+ (1− p̂) log
2

1− p̂
= Hb( p̂) + p̂ log 2 + log 2. (38)

This function is concave with its maximum at p̂ = 2/3, where pi = 1/6 for all i. The latter is consistent
with Shannon entropy being maximal for the uniform distribution. The graph of H( p̂) is depicted in
Figure 6.
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Figure 6. The entropy of peaks function H( p̂) of Equation (38), divided by log 3! for normalisation.
The maximum is taken on for p̂ = 2/3, where H( p̂) = 1.



Entropy 2017, 19, 692 13 of 23

For the purpose of validation, H( p̂) was calculated for all EEG epochs obtained from the CAP Sleep
Database. Using the same overall approach as described in Section 5.2, but now computing the entropy
of peaks according to Equations (35) and (38), a vector of Ncap results ĥcap was obtained. Comparison
with the conventionally obtained PeEn values hcap yielded a Pearson correlation coefficient of
r(hcap, ĥcap) = 0.99998 and a mean relative error of

η(hcap, ĥcap) =
1

Ncap

Ncap

∑
i=1

∣∣hi − ĥi
∣∣

hi
= 0.03%. (39)

Thus, the ordinal patterns obtained from the CAP Sleep Database can essentially be replaced by
binary symbols that encode the disjoint properties “three consecutive values form a peak” and
“three consecutive values form an edge”.

6. Linearising Permutation Entropy

At this point, we have substantiated the working hypothesis that, for EEG analysis, PeEn of order
m = 3 may be a function of the peak probability p̂ only. This probability can be estimated from an
epoch of n EEG samples (x1, x2, . . . , xn) by computing

p̂ =
n̂
n

with n̂ =
n−1

∑
k=2

∣∣[xk − xk−1 ≥ 0
]
−
[
xk+1 − xk ≥ 0

]∣∣ , (40)

where the number of peaks n̂ is expressed using Iverson bracket notation [10]. Let us look in more
detail at the properties of the decisive peak pattern.

6.1. Signal Peaks and Spectral Bandwidth

In mathematical terms, a peak is a local extremum. Any real-valued, twice differentiable function s
has a peak at tk if it holds that s′(tk) = 0 and s′′(tk) 6= 0. In other words, a peak in s is a zero crossing
in its first derivative s′. Now, consider a real-valued function s, periodic in T = 1/ f0 and band limited
to frequencies including N f0, which is

s(t) =
N

∑
k=0

ak sin (2πk f0t + φk) with ak ∈ R. (41)

Its first derivative is again a real-valued function, periodic in T and band limited to N f0, namely

s′(t) =
N

∑
k=0

2πakk f0 cos (2πk f0t + φk) =
N

∑
k=0

bk sin (2πk f0t + ϑk). (42)

Being the N-th partial sum of a Fourier series, the function can alternatively be represented using
complex exponentials,

s′(t) =
N

∑
k=−N

ck ej2πk f0t with j =
√
−1 and ck ∈ C. (43)

This expression constitutes a trigonometric polynomial of order N and therefore has exactly 2N roots
per period [17]. As for any real-valued polynomial, its zeroes

Z =
{

tk | s′(tk) = 0, k ∈ {1, 2, . . . , 2N}
}

(44)
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are not necessarily distinct, and are either real or occur in complex conjugate pairs. Let us focus on the
subset of zero crossings exclusively, which is

Zø =
{

tk ∈ R | s′′(tk) 6= 0
}
⊆ Z. (45)

With Zø being a subset of Z, it obviously holds that |Zø| ≤ 2N. Furthermore, the number of peaks n̂ in
the function s equals the number of zero crossings |Zø| in its first derivative s′. It therefore holds that

n̂ = |Zø| ≤
2 fmax

f0
with fmax = N f0. (46)

Sampling one full cycle of the function s at a sampling rate of fs = n f0, we obtain a sequence of
n values (x1, x2, . . . , xn). We can then express the maximum number of peaks per period by

n̂ ≤ 2n fmax

fs
with fmax ≤

fs

2
. (47)

Consequently, it holds for the peak probability p̂ that

p̂ =
n̂
n
≤ 2 fmax

fs
. (48)

From a practical point of view, this relation is not limited to periodic signals. To assess fmax in
any signal segment, Fourier transform needs to be applied, which by definition constitutes a periodic
continuation of the analysis window. Thus, the inequality given by Equation (48) provides an upper
bound on the number of peaks in any band limited signal.

This bound may be naïvely conservative, but it is easily derived and suffices our purpose:
let us reconsider the entropy of peaks function H( p̂) as defined by Equation (38), which increases
monotonically on the interval 0 ≤ p̂ ≤ 2/3. In combination with Equation (48), this means that PeEn is
monotonic with p̂ for EEG epochs band limited such that

fmax ≤
fs

3
. (49)

As stated earlier, the absolute value of PeEn obtained from a single EEG epoch is insignificant.
It is the contrast in value across distinct epochs—its dynamics—that renders PeEn a valuable tool for
EEG analysis. However, this contrast persists for any parameter that grows monotonically with PeEn.
Therefore, the following constitutes an astounding, yet sensible proposition: given an epoch of EEG,
digitised at sampling rate fs and band limited such that fmax ≤ fs/3, PeEn of order m = 3 and time
delay τ = 1 can be substituted by the peak probability p̂, that is, the number of peaks per unit time.

6.2. Counting the Zigzags of EEG

For an experimental validation of the above, further EEG analyses were performed. To rule
out possible peculiarities of the CAP Sleep Database (or sleep EEG in general), the data corpus was
expanded by a set of EEG signals from a considerably different clinical setting. The CHB-MIT Scalp
EEG Database is a collection of EEG recordings obtained from 22 paediatric patients, all suffering
from epileptic seizures [18]. Acquired at Boston Children’s Hospital, the data were generously put
into the public domain and are available from PhysioNet [14]. In strict analogy to the procedure
described in Section 5.2, a total of Nmit = 4.1× 106 EEG epochs of 20 s duration were obtained from
this dataset—another two and a half years of (single-channel) EEG data. For each of these epochs,
PeEn of order m = 3 and time delay τ = 1 was computed according to Equations (1)–(6), yielding a
vector of results hmit.
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From each EEG epoch of the CAP and CHB-MIT datasets, a peak probability p̂ as per Equation (40)
was also obtained. Results were aggregated to form the respective vectors p̂cap and p̂mit. For both
datasets, individual Spearman correlation coefficients between peak probabilities p̂ and PeEn values h
were then computed for (1) the subset of EEG epochs with p̂ ≤ 2/3, (2) the subset of EEG epochs with
p̂ ≥ 2/3, and (3) the entire set of epochs. Results are listed in Table 3.

Table 3. Spearman correlation coefficients between PeEn values h and peak probabilities p̂ for the
electroencephalographic data from the CAP Sleep Database and the CHB-MIT Scalp EEG Database.
Quantities subscripted “high” and “low” correspond to results obtained from those subsets of signal
epochs for which p̂ ≥ 2/3 or p̂ ≤ 2/3 hold, respectively.

Database Number of Epochs Spearman Correlation

N Nlow Nhigh ρ(h, p̂) ρlow(h, p̂) ρhigh(h, p̂)

CAP 1.6× 106 1.6× 106 6.0× 102 0.99998 0.99998 −0.923
CHB-MIT 4.1× 106 4.0× 106 1.1× 105 0.99937 0.99993 −0.963

The above results clearly support the hypothesis that PeEn of order m = 3 and time delay τ = 1
increases monotonically with the peak probability for p̂ ≤ 2/3. The correlation is inverted for peak
probabilities exceeding this bound. Both results are in line with the function graph of Figure 6. When
testing on the full set of peak probabilities, strong positive correlation is maintained: epochs for which
p̂ > 2/3 holds are too seldom to make a difference. This directly relates to the bandwidth constraint
of Equation (49). Given our chosen sampling rate fs = 200 Hz, the peak probability cannot increase
beyond p̂ = 2/3 for any EEG epoch band limited to frequencies below fmax u 66.7 Hz.

Not only is the relative bandwidth fmax ≤ fs/3 rarely exceeded in the datasets considered
here, but the same presumably holds true for the vast majority of EEG in general. Sampling rates
below 100 Hz are quite uncommon for EEG, while spectral content above 30 Hz is often regarded as
insignificant (and actively suppressed using low-pass filtering). Moreover, an investigator actually
interested in gamma-band oscillations will choose a considerably higher sampling rate. It is therefore
likely that the decrease in PeEn for peak probabilities p̂ > 2/3 is not a part of the actual effect, but a
rarely observed flaw of the analysis technique. In essence, utilising PeEn of order m = 3 and time
delay τ = 1 for EEG analysis may constitute an involved way of counting zigzags.

7. Permutation Entropy as a Spectral Estimator

While counting signal peaks may seem a trivial procedure at first glance, a profound mathematical
theory supports this approach to signal analysis. It was formulated by Benjamin Kedem in the
1980s and is centred around the notion of higher order crossings. Only a humble outline of
his framework—and one limited to aspects that aid the interpretation of PeEn—shall here be
provided. For a large-scale, yet low-threshold introduction to the theory of higher order crossings,
the reader is referred to Kedem’s comprehensive article “Spectral Analysis and Discrimination by
Zero-Crossings” [19], which served as the primary source for the section to follow.

7.1. Zero Crossings and the Dominant Frequency Principle

Signal analysis by means of higher order crossings is a generalisation of the more
commonly known zero crossing rate—a classic method of fundamental frequency estimation [20].
Self-descriptively, the zero crossing rate rø of a signal is its average number of x-intercepts per unit
time. It is obtained from a discrete sequence of samples (x1, x2, . . . , xn) by means of

rø =
nø

n− 1
with nø =

n

∑
i=2

∣∣[xi ≥ 0
]
−
[
xi−1 ≥ 0

]∣∣. (50)
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Kedem refined the meaning of this quantity, demonstrating that the zero crossing rate of a
discrete-time signal constitutes an approximation of the centroid of its power spectrum

cS =
1

mS

∫ ∞

0
f S( f )d f with mS =

∫ ∞

0
S( f )d f . (51)

Here, S( f ) denotes the power spectral density of the signal and mS is its (single-sided) spectral mass.
Intuitively, if S( f ) contains a predominant frequency fc, the spectral centroid cS will gravitate towards
this particular frequency. The more S( fc) outweighs the rest of the spectrum, the shorter the distance
between cS and fc will be. Kedem termed this the “dominant frequency principle”. Regarding its
relation with the zero crossing rate, he further deduced that

rø =
nø

N − 1
u 2 cS. (52)

Maintaining the interdisciplinary scope of the article, we do not discuss the mathematical
derivation of this relation—it can be found in [19]. Instead, a very conclusive example from the same
publication shall be reproduced. Let our signal be the sinusoidal function s(t) = A sin(2π fct + ϕ),
which has the power spectrum

S( f ) =

{
A2/4 for f = ± fc,

0 otherwise.
(53)

With fc being the only frequency in the spectrum, it is obviously the dominant frequency. Calculating
the spectral centroid of the signal, we see that the equality cS = fc holds true in this case. Hence, this
example is a showcase for the dominant frequency principle. Moreover, and just as comprehensible,
the relation

rø = 2 fc = 2 cS (54)

also applies: any sinusoidal signal has exactly two zero crossings per cycle.

7.2. Kedem’s Higher Order Crossings

Within the framework of higher order crossings, the peak probability p̂ of our simplified PeEn
is closely related to the zero crossing rate rø. Let (x1, x2, . . . , xn) be a sequence of values sampled
from a continuous-time EEG signal s(t) at discrete time steps t = i/ fs = iTs. Estimating the peak
probability p̂ of that sequence as per Equation (40) is equivalent to obtaining the zero crossing rate rø

of the difference sequence
(∇x2, ∇x3, . . . , ∇xn), (55)

whereby the difference operator ∇ is defined such that

∇xi = xi − xi−1 = s(iTs)− s(iTs − Ts). (56)

In terms of Kedem’s theory, the generalised zero crossings obtained by applying the ∇-operator
k times recursively are called: higher order crossings of the Dk+1 type. Thus, actual zero crossings are
higher order crossings of the D1 type, while the peak patterns considered in this manuscript are of
type D2.

Kedem’s approach is highly convenient in that the ∇-operator consitutes a linear time-invariant
system with the power transfer function

|H( f )|2 = |(1− e−j2π f Ts)|2 = 2− 2 cos(2π f Ts). (57)
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This system acts as a high-pass filter in the digital domain. Its frequency response is depicted in
Figure 7. In practical terms, the filter compresses the spectral mass, effectively shifting its centroid
further to the right with each recurrent application of the ∇-operator.
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Figure 7. Power transfer function |H( f )|2 of the∇-operator for frequencies including the Nyquist rate.

7.3. The Spectral Estimation Hypothesis

We have now discussed all aspects necessary to propose an explanation for PeEn of order m = 3
and time delay τ = 1 in EEG. Let us summarise: due to their specific distribution in EEG, it may suffice
to distinguish two kinds of ordinal patterns—peaks and edges. Their respective probabilities are p̂ and
1− p̂. The peak probability p̂ is the zero crossing rate rø of a high-pass filtered version of the signal,
whereas the zero crossing rate rø is an estimate of its power spectral centroid. For EEG epochs with
p̂ ≤ 2/3, the peak probability p̂ and PeEn are monotone and can therefore be used interchangeably in
comparative analyses.

On that basis, it is a rational hypothesis that applying PeEn of order m = 3 and time delay τ = 1
to EEG epochs with peak probability p̂ ≤ 2/3 effectively means: high-pass filtering the signal according
to Equation (57) and estimating the centroid of the resulting weighted power spectrum. Both steps
are standard procedures of linear signal processing, possibly rendering this EEG parameter a spectral
estimator in disguise.

8. Higher Pattern Orders and Time Delays

Throughout the manuscript, considerations and propositions were repeatedly limited to the
pattern order m = 3 and the time delay τ = 1. Regarding the latter, a general discussion was postponed
for reasons of simplicity only. It will be presented in the following section. Conversely, formulating a
universal interpretation for pattern orders m > 3 is a subject still under investigation—and hopefully
one to be reported on in the future. For the time being, the reader is invited to consider the following
preliminary results.

8.1. Prospects for Patterns of Higher Order

An ordinal pattern of order m = 3 is either a peak or an edge. For higher orders, there is no such
simple duality. In the general case, an ordinal pattern of order m can contain up to m− 2 peaks, while
the peaks of consecutive ordinal patterns may overlap. Moreover, the marginal probability relation
of Equation (33) does not translate to the “sub-patterns” of order m = 3 that form a pattern of higher
order. Conditional probabilities have to be considered instead.

Despite such intricacies, the principle behaviour of PeEn does apparently not change when
increasing the order m within statistically reasonable limits. Calculating PeEn of orders m ∈ {3, 4, 5}
for all EEG epochs obtained from the CAP and CHB-MIT datasets, results as depicted in Figure 8 were
obtained. Strong monotonic correlation between PeEn and the peak probability p̂ is maintained for
higher pattern orders. This hints at a possible generalisation of our spectral estimation hypothesis.
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Figure 8. Solid curves represent the median of permutation entropy (PeEn), plotted with regard to the
peak probability. Where graphically representable, inner shaded bands correspond to the 25th–75th,
outer shaded bands to the 5th–95th percentiles. Peak probabilities occurring less than 100 times were
discarded and missing values linearly interpolated. A moving average filter of bandwidth 2.5× 10−3

was applied for data smoothing.

8.2. Sampling, Resampling and Aliasing

In comparison to higher pattern orders m, interpreting arbitrary time delays τ is straightforward.
Under the premise that PeEn acts as a spectral estimator in EEG analysis, the principles of linear
systems theory fully apply. Using time delays τ > 1 is then a means of downsampling (and thus,
of band limiting), but also constitutes a violation of the Nyquist–Shannon sampling theorem. Let
us substantiate.

The Nyquist–Shannon sampling theorem [21] states that any time-discrete representation of an
analogue signal is implicitly band limited to frequencies below and including half its sampling
rate fs. Due to this fundamental constraint of digital signal processing, an analogue low-pass
filter is commonly applied during signal acquisition. This filter prevents distortions known as
aliasing—spectral content beyond the Nyquist frequency fs/2 folding back into the usable frequency
range as given by the mapping

f 7→ fs

2
−
∣∣( f mod fs)−

fs

2

∣∣ with f ≥ 0. (58)

This relation describes a triangle waveform with its extrema at multiples of fs/2. Its graph is displayed
in Figure 9.
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Figure 9. The aliasing relation as specified by Equation (58). Any spectral content exceeding the
Nyquist rate fny = fs/2 is periodically folded back into the representable frequency range.

The same constraint applies to sampling rate conversion in the digital domain. Correctly reducing
the sampling rate fs of a digital signal by a factor r therefore involves two steps: limit the bandwidth
to fs/2r, then omit all but every r-th sample. If the band limiting is skipped, downsampling is prone
to aliasing. Any spectral content exceeding fs/2r is not compatible with the targeted sampling rate
fs/r and folds back into the representable frequency range, corrupting the resulting signal.

8.3. The Time Delay as a Downsampling Factor

Let us look again at what is called the symbolisation technique. Given a sequence of samples
(x1, x2, . . . , xn), its ordinal pattern πt of order m and time delay τ at time index t is obtained from the
m-tuple of values

(xt, xt+τ , xt+2τ , . . . , xt+(m−1)τ). (59)

To estimate the ordinal pattern distribution of the sequence, we determine πt for 1 ≤ t ≤ n− τ(m− 1)
and count the number of occurrences of each pattern Πi ∈ Ωm. This is the method described by
Equations (1)–(4).

For τ > 1, consider an alternative, yet entirely equivalent estimation algorithm: first, partition the
sequence of samples (x1, x2, . . . , xn) into τ sub-sequences of the form

∀λ ∈ {1, 2, . . . , τ} : (xλ, xλ+τ , xλ+2τ , . . . , xλ+kτ) whereby k =

⌊
n− λ

τ

⌋
+ 1. (60)

Next, estimate from each of the τ sub-sequences its ordinal pattern distribution pλ, now using the
time delay τ? = 1. The ordinal pattern distribution p of the initial sequence can then be obtained by
cumulation, that is

p =
τ

∑
λ=1

pλ = p1 + p2 + · · ·+ pτ . (61)

Observe that generating a sub-sequence as per Equation (60) is identical to downsampling
the sequence (x1, x2, . . . , xn) by a factor τ (whereby the index λ merely specifies which sample
to keep per block of τ consecutive samples). This circumstance is both the explanation and the
fundamental problem of using τ > 1 for ordinal pattern encoding: we implicitly—but no less
effectively—downsample the signal without any anti-aliasing measures taken. Inevitably, all spectral
content exceeding fs/2τ folds back into the representable frequency range. Therefore, calculating
PeEn from EEG using τ > 1 is equivalent to computing PeEn for the time delay τ? = 1 from a set of τ

downsampled (and therefore band limited), yet nonlinearly distorted versions of the actual signal.
Notice that this is not a conceptual flaw of PeEn. One has to keep in mind that the quantity

was developed as a complexity measure for time series. Working with less generic data, additional
constraints and requirements may arise. In particular, while any digital signal can be described as
a time series, not all time series are digital signals in terms of linear systems theory. Only if the
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requirements of the sampling theorem are adhered to can a discrete sequence of voltage measurements
be a valid representation of analogue EEG.

8.4. Frequency Aliasing in Permutation Entropy

Computing the entropy of peaks H( p̂) as per Equation (38) from sinusoidal signals of varying
frequency fc ≤ fs/2, the aliasing introduced by using time delays τ > 1 is easily observed. In
accordance with the frequency mapping of Equation (58), and depending on the effective sampling
rate fs/τ, the signal that is actually fed into the estimator is a sinusoidal wave of frequency

f̃c =
fs

2τ
−
∣∣∣∣( fc mod

fs

τ
)− fs

2τ

∣∣∣∣. (62)

Given that any sinusoidal signal has exactly two peaks per cycle, it further holds that p̂ = 2 f̃c.
In conjunction with Equation (38), the relation

H( p̂) = H(2 f̃c) = Hb(2 f̃c) + 2 f̃c log 2 + log 2 (63)

is obtained. Variegating the time delay τ, the periodic foldback effect manifests in the graphs of this
family of functions. This is depicted and further discussed in Figure 10.
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Figure 10. The entropy of peaks function H( p̂) calculated from a sine wave of increasing frequency.
For the time delay τ = 1, the function behaves as discussed for Figure 6. When using time delays
τ > 1, aliasing is provoked for frequencies exceeding fs/2τ. Those frequencies periodically fold back
into the representable spectrum, which leads to symmetries in PeEn.

The presented approach is based on the work of Erik Olofsen, Jamie Sleigh and Albert Dahan.
To experimentally investigate the frequency dependence of PeEn, the authors calculated PeEn of
order m = 3 and time delays τ ≤ 2 for sinusoidal signals of increasing frequency [22]. Our here
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proposed spectral estimation hypothesis conclusively explains the authors’ observations, including the
discontinuous frequency dependence for τ = 2.

8.5. Anti-Aliased Permutation Entropy

Using time delays τ > 1 for EEG encoding may cause unintended signal distortions. Nevertheless,
a multitude of applications in EEG analysis depend on higher time delays [11]. In practice, the impact
of aliasing may be less detrimental than the graphs of Figure 10 suggest: EEG is anything but sinusoidal,
and while PeEn literally locks onto a single sine wave, the discrepancy will be more subtle for actual
EEG. In addition, EEG is commonly oversampled ( fs � 2 fmax), which further mitigates the issue
(see Section 6).

Nothing is lost by resolving a source of inaccuracy, though. This is easily achieved by means of
sample rate conversion. A possible procedure is as follows: instead of using τ > 1 for PeEn calculation,
correctly convert the EEG to a new sampling rate f ?s = fs/τ and compute PeEn therefrom, now
choosing τ? = 1 for the time delay. An apparent disadvantage of this approach is that it reduces the
number of ordinal patterns available for probability estimation by a factor τ. However, the sampling
theorem implicitly assures that a single rate-reduced sequence suffices to fully describe the band
limited EEG—including its signal peaks. Nothing is gained by counting each peak τ times.

In the anti-aliased case, a very tangible interpretation of the time delay τ immediately follows:
PeEn effectively splits the signal’s single-sided frequency spectrum into τ spectral bands of equal
width, then exclusively responds to the content of the lowest band. Given our spectral estimation
hypothesis, PeEn of order m = 3 and time delay τ ≥ 1 thus approximates the weighted power spectral
centroid of the EEG’s frequency band ranging from 0 to fs/2τ. For applications depending on τ > 1,
it may hence be worthwhile to further investigate the influence of anti-aliasing. This could be a chance
of concisely relating PeEn-based techniques with classic band-spectral methods of EEG analysis.

9. Conclusions

EEG has long become an indispensable tool in research and medical diagnostics, even more so as
the progress in digital technology has revolutionised our general approach towards data—biomedical
data being no exception.

9.1. There Are Only So Many Signal Characteristics

When analysing EEG, one has to accept its predominantly probabilistic nature. Any signal
property that statistically correlates with some behavioural observation is a perfectly valid signal
property because, ultimately, none of them are fully explainable mechanistically. While a plethora of
EEG analysis techniques are available, the application of a new or more sophisticated method does not
necessarily yield new information: analysing the EEG data considered for this manuscript, (1) PeEn of
order m = 3 and time delay τ = 1; (2) the power spectral centroid of the signal’s first derivative; and
(3) Kedem’s higher order crossings of the D2 type can all be used interchangeably.

The signal property apparently underlying all three methods has been known and used for more
than 50 years now. In 1964, Neil Burch and colleagues reported on transferring the EEG analysis
method of counting “baseline crossing[s]” from analogue circuitry to a digital computer [23]. The
authors explicitly pointed out the “well-known accentuation of the higher frequency component in the
derivatives”. Back then, the procedure was called period analysis.

9.2. Next Steps in Ordinal Pattern-Based EEG Analysis

It cannot be over-emphasized that EEG analysis is mostly empirical—including the results of this
manuscript. What applies for the CAP and CHB-MIT databases does not necessarily hold true for EEG
in general. Hence, the work presented does neither falsify the existence of complexity in EEG, nor its
observability using PeEn. Still, it demonstrates that PeEn-based EEG processing does not exclusively
relate to this phenomenon.
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This article thus extends the framework of ordinal pattern-based EEG processing. For a given
analysis task, concurrently computing both PeEn and the peak probability p̂ provides a means of
rejecting the null hypothesis of PeEn acting as a spectral estimator. This may enable the investigator to
narrow down on cases that truly demand for complexity considerations, while otherwise resorting
to a simpler and time-tested analysis technique. To this end, the peak probability p̂ as specified by
Equation (40) integrates seamlessly into the framework of ordinal pattern analysis. A convenient side
effect: if for a particular analysis task PeEn is found to be replaceable by p̂, the issue of pattern order
selection does not arise.

In closing, adding the peak probability parameter to your codebase is straightforward.
The expression

y = mean(abs(diff(diff(x) >= 0)));

suffices to have the quantity available within a GNU Octave or MATLAB environment. An extended
version that supports sliding window analysis is provided in the supplementaries (see the zztop.m
function). While not extensively optimised, its execution speed should meet the requirements of major
analysis campaigns: the main challenge in data analysis today is not computational feasibility, but the
interpretation of the manifold results obtainable.

Supplementary Materials: The GNU Octave/MATLAB code used is available online at www.mdpi.com/1099-4300/
19/12/692/s1 and www.github.com/seb-berger/zztop.
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