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Abstract: The numerical study of continuum-rarefied gas flows is of considerable interest because
it can provide fundamental knowledge regarding flow physics. Recently, the nonlinear coupled
constitutive method (NCCM) has been derived from the Boltzmann equation and implemented to
investigate continuum-rarefied gas flows. In this study, we first report the important and detailed
issues in the use of the H theorem and positive entropy generation in the NCCM. Importantly,
the unified nonlinear dissipation model and its relationships to the Rayleigh–Onsager function
were demonstrated in the treatment of the collision term of the Boltzmann equation. In addition,
we compare the Grad moment method, the Burnett equation, and the NCCM. Next, differences
between the NCCM equations and the Navier–Stokes equations are explained in detail. For validation,
numerical studies of rarefied and continuum gas flows were conducted. These studies include rarefied
and/or continuum gas flows around a two-dimensional (2D) cavity, a 2D airfoil, a 2D cylinder, and a
three-dimensional space shuttle. It was observed that the present results of the NCCM are in good
agreement with those of the Direct Simulation Monte Carlo (DSMC) method in rarefied cases and are
in good agreement with those of the Navier–Stokes equations in continuum cases. Finally, this study
can be regarded as a theoretical basis of the NCCM for the development of a unified framework for
solving continuum-rarefied gas flows.

Keywords: nonlinear coupled constitutive method; continuum-rarefied gas flows; positive entropy
generation; Boltzmann equation

1. Introduction

The numerical study of continuum-rarefied gas flows is of great interest because it can
provide fundamental knowledge regarding flow physics and provide a theoretical tool to precisely
predict the aerodynamic or aerothermodynamic performance of hypersonic vehicles and/or
Micro-Electro-Mechanical Systems [1–4]. For more than 150 years, the Navier–Stokes–Fourier (NSF)
equations have been accepted as the model that describes flow dynamics. Unfortunately, the NSF
equations have serious limitations in capturing the correct flow physics under highly nonequilibrium
conditions, such as for rarefied gas [5]. For the investigation of rarefied and/or micro-gas flows,
much effort has been put into the development of computational models beyond the NSF framework.
The models can be classified into two categories: the full kinetic model and the fluid dynamics
model. The most successful methods in the former category are the direct simulation Monte Carlo
(DSMC) [6–9] and Lattice Boltzmann Methods (LBM) [10–14], and they have been extensively used
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for the computation of rarefied and/or micro-scale gas flows. Although the Direct Simulation
Monte Carlo (DSMC) method is commonly used in the investigation of rarefied gas flows, it has
unacceptable memory demands in near continuum states because it uses simulated molecules to
model the movement of molecules and the collision of gas flows. Great progress has been made in the
development of LBM to remove its capability limit in complex far-from-equilibrium flows, of which the
regularized LBM work done by Montessori and Succi is typically representative [12]. Importantly, LBM
has been successfully extended to investigate turbulent gas flows by Chen and Succi [15]. On the other
hand, the fluid dynamics models are based on the hyperbolic conservation laws and nonconserved
variables appearing in the conservation laws, the latter being determined by their evolution equations
which can be derived with the help of the Boltzmann equation. Up to present, several models have
been developed for the latter category. This category may be subdivided into a few classes: in one
of them, the Burnett-type equations [16,17] are used for devising computational models; in another,
Grad moment equations [18] and 13 moment equations [19,20] are employed in conjunction with
extended thermodynamics; and in still another, the Eu moment equations that serve as the basis of
the generalization of thermodynamics [21,22] have been used in a manner consistent with the laws of
thermodynamics at every order of approximation employed. Recently, Eu moment equations have
been well-developed by Myong to investigate stiff hypersonic nonequilibrium gas flows [22–26].

Recently, we reported and validated the nonlinear coupled constitutive method (NCCM) for the
development of a unified scheme for modelling continuum-rarefied gas flows [4]. It can be regarded
as another option to treat EU equations. In addition, we tried to extend the NCCM to investigate
turbulence and have made great progress recently. In the NCCM, the conservation laws of mass,
momentum, and energy are derived from the Boltzmann equation via the EU method [21,22] and
are similar to those of the NSF equations. However, nonconserved variables associated with thermal
nonequilibrium, such as the shear stress tensor and the heat flux vector, are described by the evolution
equations. These variables are quite different from those in the NSF equations in conjunction only
with the linear constitutive relations of the gradients of velocity and temperature. In the present study,
we first provide the theoretical basis of the NCCM, particularly for positive entropy generation and
the unified nonlinear dissipation model according to Eu method. This study can be regarded as an
extension of the previous study of the NCCM and Eu method, in which we focus on the numerical
scheme for solving NCCM equations and its validation in typical continuum-rarefied gas flows.

2. Boltzmann Equations and Entropy Transport Equation

2.1. Boltzmann Equations and the Feature of Irreversibility

The distribution function fi denotes the probability of finding a particle of species i in the range of
vi + dvi and ri + dri at time t. The Boltzmann equation yields the evolution equation for fi,

∂ fi
∂t

+ vi · ∇ fi + Fi · ∇vi fi = R( fi). (1)

In this equation, R( fi) is the collision term, Fi is the external force, and vi is the velocity of a
particle of species i. We can simply rewrite R( fi) in the following form:

R( fi) =
r
∑

j=1
C
(

fi, f j
)

C
(

fi, f j
)
=
∫

dvj
∫ 2π

0 dφ
∫ ∞

0 bgij[ f ∗i (v
∗
i , r; t) f ∗j (v

∗
j , r; t)− fi(vi, r; t) f j(vj, r; t)]db

(2)

where b is the impact parameter and it is the distance between the two parallel lines passing through
the center of the collision molecule, r is the number of species, and gij =

∣∣vi − vj
∣∣ is the relative speed.

C
(

fi, f j
)

is the Boltzmann collision integral, and it accounts for the decrease and increase in probability
caused by collisions and reverse collisions, respectively [21].
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If we reverse time t to −t, then the velocities must also be reversed, and the Boltzmann equation
takes the following form:

(∂−t + (−vi) · ∇i + Fi · ∇−vi ) fi(−vi, r;−t) =
r

∑
j=1

C
(

fi(−vi, r;−t)i, f j
(
−vj, r;−t

))
. (3)

In this equation, we have

C
(

fi(−vi, r;−t)i, f j
(
−vj, r;−t

))
=
∫

dvj
∫ 2π

0 dφ
∫ ∞

0 bgij[ fi(−vi, r;−t) f j(−vj, r;−t)− f ∗i (−v∗i , r;−t) f ∗j (−v∗j , r;−t)]db
. (4)

Because the time is reversed, the positions of the post-collision and pre-collision terms are exchanged
in Equation (4). This reversion transforms the Boltzmann collision integral into the negative of the
original one before the time reversal. Thus, the time reversal invariance is broken because of the
presence of the Boltzmann collision integral. As a result, in the sense that the time reversal invariance is
broken, the Boltzmann equation is irreversible and is consequently expected to describe the irreversible
macroscopic process towards equilibrium. This feature expression is very important and is represented
in a more useful form via the H theorem and the Entropy balance equation [21].

2.2. H Theorem and Entropy Balance Equation

The H function was introduced by Boltzmann to show that the solution of the Boltzmann equation
generally approaches a unique equilibrium solution. In addition, this function’s time derivative can
be proved to decrease to zero as the system approaches equilibrium. Moreover, this H function was
found to be closely related to the entropy introduced by Clausius. Thus, the nonequilibrium entropy
of the system is defined by [21]:

S(t) = −kB

r

∑
i=1

∫
V

dr
∫

dvi fi(vi, r; t)(ln fi − 1). (5)

The H theorem states that
dS
dt
≥ 0. (6)

If we use the local equilibrium temperature Te to replace the temperature T in the Maxwell–Boltzmann
distribution function, then the local equilibrium distribution function can be obtained:

f 0
i (vi, r) = n0

i (mi/2πkBTe)
3/2 exp[−(1

2
miν

2
i + miΨi(r))/kBTe]. (7)

Thus, the local equilibrium entropy can also be expressed by

Se(t, f 0
i ) = −kB

r

∑
i=1

∫
V

dr
∫

dvi f 0
i
(vi, r; t)(ln f 0

i
− 1). (8)

Furthermore, the nonequilibrium entropy can be defined by

Sn(t) = S(t, fi)− Se(t, f 0
i ) = −kB

r

∑
i=1

∫
V

dr
∫

dvi[ fi ln( fi/ f 0
i )− fi + f 0

i ]. (9)

By the well-known inequality,
y ln(y/x)− y + x ≥ 0 (10)

We conclude that
Sn(t) = S(t, fi)− Se(t, f 0

i ) ≤ 0. (11)
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In other words, the entropy increases towards the equilibrium entropy, as dictated by the second law
of thermodynamics. By differentiating Sn(t) as a function of time, we obtain

d
dt

Sn = −kB

r

∑
i=1

∫
V

dr
∫

dvi[∂t fi ln( fi/ f 0
i )]. (12)

Substituting the Boltzmann equation and proceeding in the same manner as that for the proof of the H
theorem, we find

d
dt

Sn ≥ 0. (13)

This finding indicates that the nonequilibrium entropy increases as the system approaches equilibrium.
In addition, this feature can be expressed in the latter entropy balance equation.

We define the entropy density ζ by the formula

ρζ = −kB

r

∑
i=1

∫
dvi fi(ln fi − 1) = 〈 fi(ln fi − 1)〉 (14)

where ζ is the entropy per unit mass of the gas, and the total entropy can be obtained by integrating ρζ

over the volume. By differentiating ρζ over time and using the Boltzmann equation on the right hand,
the entropy balance equation can be obtained:

ρ
d
dt

ζ = −∇ · Js(r, t) + σent(r, t) (15)

where Js(r, t) is the entropy flux, and σent(r, t) is the entropy production. Next, the same procedure as
that used to prove the H theorem can be applied to show that the entropy production is positive:

σent(r, t) = −kB
r
∑

i=1

r
∑

j=1

〈
ln fiC

(
fi, f j

)〉
= 1

4 kB
r
∑

i=1

r
∑

j=1

∫
dvi
∫

dvj
∫ 2π

0 dφ×
∫ ∞

0 bgij ln( f ∗i f ∗j / fi f j)( f ∗i f ∗j − fi f j)db ≥ 0
. (16)

Therefore, the entropy balance equation has a positive source for entropy, i.e., the source creates
entropy. The statistical expression for σent(r, t) suggests that entropy is created through numerous,
random collisions of the particles in the gas because entropy production is intimately associated with
energy dissipation. In addition, the energy dissipation may be regarded as a result of particle collisions
that occur incessantly and randomly in the gas flow.

From the discussion above, one can conclude that the Boltzmann equation is irreversible in the
nonequilibrium state. In addition, this feature can be expressed by the H theorem and entropy
production. Meanwhile, the entropy production σent(r, t) is related to the collision term of the
Boltzmann equation [21]. Moreover, this production is also associated with energy dissipation.
The treatment of the collision term of the Boltzmann equation requires the identification of a model of
energy dissipation.

3. Nonlinear Coupled Constitutive Method

3.1. Conservation Laws in the NCCM

The Boltzmann equation fulfils the requirements of the mass, momentum, and energy conservation
laws. By differentiating the densities of mass, momentum, and energy, the conservation equations of
gas flows can be obtained:
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∂ρ
∂t +∇ · ρu = 0
∂ρu
∂t +∇ · (ρuu + P)− ρF = 0

∂ρE
∂t +∇ · (Q + ρEu) + P : ∇u−

r
∑

i=1
(Ji · Fi) = 0.

(17)

In this equation, P is the stress tensor and is defined by P = pI + ∆I + P. Fi is the external force per
unit mass. In the gas flows, the external force is usually omitted. Thus, the conservation laws are
simplified into [22–26]:

∂ρ
∂t +∇ · ρu = 0
∂ρu
∂t +∇ · (ρuu + P) = 0

∂ρE
∂t +∇ · (Q + ρEu) + P : ∇u = 0.

(18)

In this equation, P and Q are nonconservation variables with molecular expressions that do not yield a
collisional invariant.

3.2. Evolution Equations of the Nonconservation Variables in NCCM

To derive the evolution equations for the nonconservation variables, we must define the velocity
moment of order l

R(abc...l)
i = 〈mi`ia`ib`ic . . . `il fi(vi, r, t)〉. (19)

Next, differencing this moment with time, we have

∂
∂tR

(abc...kl)
i = −∂tuaR(bc...l)

i − ∂tubR
(ac...l)
i − ∂tucR(abd...l)

i − . . .

−∂tulR
(abc...k)
i + 〈mi`ia`ib`ic . . . `il∂t fi〉

(20)

The last collision term of Equation (20) is given by:

Sab...kl = 〈mi`ia`ib`ic . . . `il∂t fi〉 =
〈

mi`ia`ib`ic . . . `il i(
r
∑

j=1
C
(

fi, f j
)
− vi · ∇ fi − Fi · ∇vi fi)

〉
= −(u · ∇ua)R(bc...l)

i − (u · ∇ub)R
(ac...l)
i − (u · ∇uc)R(abd...l)

i

− . . . . . .−(u · ∇ul)R
(ab...k)
i −R(·bc...l)

i · ∇ua −R(a·c...l)
i · ∇ub

−R(ab·d...l)
i · ∇uc − . . . . . .−R(abc...k·)

i · ∇ul + FiaR
(bc...l)
i

+FibR
(ac...l)
i + FicR

(abd...l)
i + . . . . . . FilR

(abc...k)
i

−∇ ·
(
R(·ab...l)

i + uR(ab...l)
i

)
+ Λ(R)(abc...kl)

i

. (21)

In this equation, Λ(R)(abc...kl)
i =

r
∑

j−1

〈
mi`ia`ib`ic . . . `ilC

(
fi, f j

)〉
.

Finally, the derivative of the velocity moment can be obtained:

∂
∂tR

(abc...kl)
i = −∇ ·

(
R(·ab...l)

i + uR(abc...l)
i

)
− ∑

all terms

(
du
dt

)
a
R(bc...l)

i

− ∑
all terms

R(·bc...l)
i · ∇ua + ∑

all terms
FiaR

(bc...l)
i

+Λ(R)(abc...kl)
i

(22)

Substituting the stress tensor and the heat flux term into Equation (22), we have

P =
r

∑
i=1
〈mi`i`i fi(vi, r; t)〉Q =

r

∑
i=1

Qi =
r

∑
i=1

〈
1
2

mi`
2
i `i fi(vi, r; t)

〉
.
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Next, we also obtain the transport equation of the stress tensor and the heat flux:

∂
∂t Pi = −∇ ·

(
ϕ
(3)
i + uPi

)
− (dtuJi + Jidtu)−

[
Pi · ∇u + (∇u)t · Pi

]
+(FiJi + JiFi) + Λ(P)

i
∂
∂t Qi = −∇ ·

(
ϕ
(4)
i + uQi

)
− dtu · (Pi + ρi`iU)− ϕ

(3)
i : ∇u−Qi · ∇u

+Fi · (Pi + ρi`iU) + Λ(Q)
i

. (23)

In this equation,
ϕ
(3)
i ≡ 〈mi`i`i`i fi〉

ϕ
(4)
i ≡

〈
1
2 mi`

2
i `i`i fi

〉
Λ(P)

i =
r
∑

j=1

〈
mi`i`iC

(
fi, f j

)〉
Λ(Q)

i =
r
∑

j=1

〈
1
2 mi`

2
i `iC

(
fi, f j

)〉
. (24)

In addition, the external force is usually omitted. Moreover, it can be seen that there are four terms in
these transport equations: the derivative with time, the gradient of high-order terms, and the flux and
collision parts. Usually, we use the viscous stress and the excess normal stress to replace the stress
tensor. For this purpose, the following formulations should be defined in the molecular expressions
for the moments:

h(1)i = [mi`i`i]
(2) h(2)i =

1
3

mi`
2
i − pi/ni h(3)i = (

1
2

mi`
2
i + miΨi − ĥmi)`i (25)

when the traceless part of the stress tensor is averaged over velocity, we denote them by the symbol Φ(a)
i

Φ(a)
i =

〈
h(a)

i fi(vi, r; t)
〉

(26)

where a = 1, 2, 3, and i = 1, 2, 3, . . . , n. The meaning of the term Φ(a)
i is as follows:

Φ(1)
i = Pi = [Pi]

(2), Φ(2)
i = ∆i =

1
3

TrPi − pi, Φ(3)
i = Qi. (27)

Thus, the transport equation of nonconservation variables can be obtained:

ρ
d
(

Φ(α)/ρ
)

dt
+∇ · ψ(α) = Λk + Zk. (28)

Here, Λk denotes the collision term and can be expressed as

Λk =
r

∑
j=1

〈
h(a)

i C( fi, f j)
〉

. (29)

3.3. Treatment of the Distribution Function in the Boltzmann Equation

At this stage, the most important work remaining is determining how to treat the collision term.
The first step is the definition of the distribution function. The following primary concepts were
implemented in this definition.

(1) The definition of the distribution function from nonequilibrium to equilibrium is weak in form
and dynamic. In other words, the distribution function has no exact and specific expression in
the process of nonequilibrium.
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(2) The distribution function should fulfil not only the conservations of mass, momentum, and
energy, but also the H theorem and positive entropy generation.

To fulfill the abovementioned rules and essential construction of the thermodynamic theory of
irreversible processes, the definition of the distribution function is expressed via Eu Methods [17]
as follows:

fi = exp[− 1
kBT

(Hi + H(1)
i − µi)]. (30)

In this equation,
`i = vi − u denotes the thermal motion velocity.
Ψi(r) denotes the potential energy.
Hi =

1
2 mi`

2
i + miΨi(r)

H(1)
i = ∑ X(α)

i � h(α)i
h(α) is the molecular expressions for the moments of the nonequilibrium variable, and Xα denotes

the weighting coefficient.
µi denotes the following factor:

exp(− 1
kBT

µi) = n−1
i

〈
exp[− 1

kBT
(Hi + H(1)

i )]

〉
. (31)

In addition, in Equation (30), Hi can be regarded as the local equilibrium, H(1)
i denotes the

nonequilibrium condition, and µi connects the local equilibrium and nonequilibrium conditions
to fulfill the conservation laws and positive entropy generation.

The advantage of this exponential form of the distribution function is obvious; in the physical
sense, it is the only form that satisfies the additive property of the entropy and entropy production
as well as the calortropy and calortropy production, all of which are in the logarithmic form of the
distribution function; in the mathematical sense, it assures the non-negativity of the distribution
function regardless of the level of approximations.

If we substitute this definition of the distribution function into the entropy balance equation,
the entropy generation can be obtained:

σent =
1
T

r

∑
i=1

∑ X(α)
i �Λ(α)

i ≥ 0. (32)

This form renders a clear, physical interpretation of entropy production: the entropy production is a
direct measure of the energy dissipation arising from molecular collisions in the system, which in turn
gives rise to a dissipative evolution of nonconserved macroscopic fluxes (moments).

In addition, the local equilibrium distribution function can be given in a form similar to the
exponential form as follows:

f 0
i = exp[−β(Hi − µ0

i )]

exp(−βµ0
i ) = n−1

i 〈exp(−βHi)〉.
(33)

By applying the following dimensionless processes,

−
µi = µi/T, ∆

−
µi =

−
µi −

−
µ

0

i ,
−
X
(α)

i = X(α)
i /T (34)

The local equilibrium distribution function can be further written as

fi = f (0)i exp[−k−1
B (∑

−
X
(α)

i � h(α)i −mi∆
−
µi)]. (35)

Moreover, the molecular expressions of the viscous stress, excess normal stress, and heat flux can be
rewritten again.
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The unknown functions of X(α)
i now must be calculated in terms of the macroscopic variables

obeying the evolution equations of mass, momentum, and energy (conservation laws). We substitute
the nonequilibrium canonical form of the distribution function into the Boltzmann equation and
multiply by h(α)i to obtain the energy dissipation:〈

fih
γ
i (dt + li · ∇+ Fi · ∇vi)

(
−k−1

B

)
(∑

α

−
X
(α)

i � h(α)i −mi∆
−
µi)

〉
= Λ(γ)

i . (36)

In this equation, Λ(γ)
i denotes the energy dissipation and represents the collision term of the

transportation equation for nonconservation variables.
For comparison of Λ(γ)

i , we define

h̄(α)i = ha
i

[
1 + k−1

B ∑
α

−
X
(γ)

i � hγ
i − k−1

B mi∆
−
µi

]
. (37)

Consider the transport equation of
〈

fi h̄
(γ)
i

〉
:

ρdt(ρ
−1
〈

fi h̄
(γ)
i

〉
) = −∇ ·

〈
li h̄

(γ)
i fi

〉
+
〈

fi(dt + li · ∇+ Fi · ∇vi)h̄
(γ)
i

〉
+

r

∑
j=1

〈
h̄(γ)i C

(
fi, f j

)〉
. (38)

Comparing this equation with the transportation equation for nonconservation variables, it can be
rewritten as

ρdt(ρ
−1
〈

fih
(γ)
i

〉
) = −∇ ·

〈
lih

(γ)
i fi

〉
+
〈

fi(dt + li · ∇+ Fi · ∇vi)h
(γ)
i

〉
+

r

∑
j=1

〈
h(γ)i C

(
fi, f j

)〉
. (39)

Equation (38) is equivalent to Equation (39), leading to the conclusion that
〈

fi h̄
(γ)
i

〉
must be a constant

multiple of Φ(γ)
i : 〈

fi h̄
(γ)
i

〉
= b

〈
fih

(γ)
i

〉
= bΦ(γ)

i . (40)

Here, b is a constant. Equations (36) and (39) are both the transport equations of nonconservation
variables coupled with the Boltzmann equation, with the distinction being (38); thus, b = 0, and we have

∑
α

〈
fih

(γ)
i h(α)i

〉
�
−
X
(α)

i = −(kB −mi∆
−
µi)Φ

(γ)
i . (41)

In the lowest-order approximation of the dissipation term, by applying the model of small perturbation,

we can set fi = f 0
i and ∆

−
µi = 0. Thus,

∑
α

〈
f (0)i h(γ)i h(α)i

〉
�
−
X
(α)

i = −kBTΦ(γ)
i . (42)

The moments of h(α)i are treated as orthogonal tensor Hermite polynomials; as a result, we have〈
f (0)i h(γ)i h(α)i

〉
= δαγ

〈
f (0)i h(γ)i h(γ)i

〉
.

Finally, we obtain 〈
f (0)i h(γ)i h(γ)i

〉
�
−
X
(γ)

i = −kBTΦ(γ)
i (43)
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And
X(1)

i = −Πi/2pi

X(2)
i = −3∆i/2pi

X(3)
i = −Qi/pi ĥi

. (44)

3.4. Treatment of the Collision Term in the Boltzmann Equation

The distribution function can be rewritten in the following form:

fi = f (0)i exp(xi)

xi = β(H(1)
i − µi + µo

i ).
(45)

Thus, the entropy production can be expressed as

σent(r, t) =
1
4

kB

r

∑
i=1

r

∑
j=1

∫
dvi

∫
dvj

∫ 2π

0
dφ×

∫ ∞

0
dbbgij f (0)i f (0)j × [exp(−yij)− exp(−xij)](xij − yij).

In this instance, xi,j = xi + xj, yi,j = x∗i + x∗j .
Next, we normalize the entropy production,

σ̂ent = σentg/kB g = (m/2kBT)1/2/n2d2 (46)

σ̂ent(r, t) =
1
4

r

∑
i=1

r

∑
j=1

〈〈
(xij − yij)[exp(−yij)− exp(−xij)]

〉〉
. (47)

In addition, we define

κ = 1
2

〈〈
r
∑

i=1

r
∑

j=1
(xij − yij)

2

〉〉1/2

κ2 = 1
4

〈〈
r
∑

i=1

r
∑

j=1
(xij − yij)

2(xij + yij)

〉〉

κ3 = 1
4

〈〈
r
∑

i=1

r
∑

j=1
(xij − yij)

2(x2
ij + xijyij + y2

ij)

〉〉 . (48)

The entropy production can be further expressed as

σ̂ent(r, t) =
κ

2

 exp
[
κ − 1

2 (κ2/κ + κ2) + 1
3! (κ3/κ + 3κ2 + 2κ3) + · · ·

]
− exp

[
−κ − 1

2 (κ2/κ − κ2)− 1
3! (κ3/κ − 3κ2 + 2κ3) + · · ·

]
. (49)

If we neglect the second- or higher-order terms, then we have

σ̂ent(r, t) = κsinhκ = κ2q(κ) = κ
eκ − e−κ

2
(50)

when the gas flows approach the near-equilibrium state from the nonequilibrium state, κ approaches
zero. Therefore, we take the limit:

Lim
κ→0

(σ̂ent(r, t)) = κ2. (51)

In other words, when the gas flows approach the near-equilibrium state,

σ̂ent(r, t)→ κ2. (52)
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In addition, the Rayleigh–Onsager dissipation function denotes the dissipation energy in
near-equilibrium states; thus, κ2 is the Rayleigh–Onsager dissipation function.

κ =
(mikB)

1/4
√

2d
T1/4

p
(∇ui : Πi + I∇ui · ∆i +∇T ·Qi)

1/2 (53)

In this equation,

∇ui =
Πi

µNS
∇T =

Qi
kNS

then κ is expressed as

k =
(mkB)

1/4
√

2d
T1/4

p

[
Π : Π

2η
+ γ′

∆2

ηb
+

Q ·Q
λT

]1/2

γ′ =
5− 3γ

2
. (54)

From the above discussion, we conclude that entropy production is caused by nonlinear energy dissipation:

σent(r, t) = κsinhκ = κ2q(κ). (55)

When this dissipation approaches the near-equilibrium state, q(κ) = 1. In addition, the nonlinear
energy dissipation is limited to the linear Rayleigh–Onsager dissipation function of κ2. In the
far-from-equilibrium state, nonlinear factors q(κ) gradually increase. Of course, we can prove that
q(κ) = 1 in the Grad equation; thus, the Grad moment method cannot solve the problem of the
far-equilibrium state of gas flow.

3.5. Nonlinear Coupled Constitutive Method

The transport equation of nonconservation variable Φ(k) is:

ρ
D
(

Φ(k)/ρ
)

Dt
+∇ · ψ(k) = Λk + Zk, (56)

This new hydrodynamic equation can be rewritten as follows:

∂U
∂t

+∇ · Finv(U) +∇ · Fvis(U, Π, ∆, Q) = 0, (57)

∂(Φ)
∂t +∇ · (Φu) + Λk + Zk = 0

U =

 ρ

ρu
ρE

, Finv(U) =

 ρu
ρuu + pI
(ρE + p)u

, Fvis(U, Π, ∆, Q) =

 0
Π + ∆

(Π + ∆I) · u + Q

.

Φ =


Π

∆I + Π

Q

, Λk =


2(p + ∆)[∇u](2) + 2[Π · ∇u](2)

2γ′(∆I + Π) : ∇u + 2
3 γ′p∇ · u

(p + ∆)Cp∇T + Π · Cp∇T + Q · ∇u

, Zk =


p
η Πq(κ)

2
3 γ′ p

ηb
∆q(κ)

pCp
λ Qq(κ)


(58)

The Discontinuous Galerkin (DG) scheme is used to solve the above equations; the specific
numerical process is given as follows: (1) compute Π0, ∆0, Q0 (which are Newton’s law of shear and
bulk viscosity and Fourier’s law of heat flux, respectively) based on conserved variables U; (2) update
Π, ∆, Q based on Π0, ∆0, Q0 in Equation (58) by the Runge–Kutta method; (3) according to the updated
Π, ∆, Q, update U in Equation (57) by the Runge–Kutta method; and (4) return to step (1) until the
convergent error is satisfied.
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3.6. Comparisons among the Viscous Stress in the NCCM, the Grad Moment Method, and the Burnett Equation

Figure 1 shows comparisons of the one-dimensional dimensionless normal viscous stress in the
NCCM at steady state for the Grad moment method, the second-order Burnett equation, and the
third-order Burnett equation. The following observations are made:

(1) The NCCM and the Burnett and Grad moment methods show nonlinear constitutive relations
which is quite different from the NSF equation. However, the NCCM and the Burnett and Grad
moment methods have the same linear relations as those of Newton’s laws near the equilibrium
state. In other words, the NSF equation can be regarded as the low-order approximation of
NCCM, Burnett, and Grad. Further discussion can be found in [4,22].

(2) All three of these nonlinear relationships are consistent in the near-equilibrium region. Because
both of the latter methods can solve the problem of near-equilibrium gas flows, the NCCM should
be correct in the near-equilibrium region.

(3) The NCCM has a different nonlinear trend than those of the Burnett equation and the Grad
moment method in the far-from-equilibrium region. Note that both the Burnett equation and
the Grad moment method cannot be used in far-from-equilibrium states. In contrast, the NCCM
shows the opposite trends as those of the Grad moment and Burnett methods. This finding has
been validated by the DSMC method, as shown in Figure 1. This feature indicates that the NCCM
can be used to describe the gas flow in the far-from-equilibrium state.
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4. Results

In the section above, we can see that the NCCM equations approach the NSF equation for
near-equilibrium states. In addition, this equation can be validated by the DSMC in far-equilibrium
states. For validation, we first provide the verification and validation of the NCCM based on
experimental results. Next, we present the test cases of hypersonic gas flows for both a low and
a high Kn number. The comparison between the NCCM and the NSF equation at a low Kn number and
the comparison between the NCCM and the DSMC method at a high Kn number were both performed
in hypersonic gas flows. Furthermore, a comparison among the NCCM results, the DSMC, and the
experiment involving three-dimensional (3D) complicated hypersonic vehicles in moment was also
conducted. All convergent error is set to be 10−6.
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4.1. Verification and Validation

For verification and validation of the present NCCM equations, the air flows around a NACA
0012 airfoil were first considered. The chord length is regarded as the characteristic length to define
Re and the Kn number. To verify grid independence, as shown in Table 1, four sets of meshes are
used to calculate the drag coefficient. Next, a set of unstructured triangle meshes, with 100 cells in
the airfoil-conforming direction and 100 cells in the wall-normal direction, is implemented in the
computational domain. Then, the smallest cell size is less than one percent of chord. Free stream
conditions are applied in the outside circle, which has a radius that is 10 times the length of the chord.

Figure 2 presents the dimensionless velocity contours of the NSF equation and the NCCM together
with the experimental [27] and DSMC results [8]. All of these results capture the shock wave with
a large thickness. The velocity in the after stream of the shockwave is under-predicted by the NSF
equation. Both the NCCM and DSMC-IP (Information Preservation) results show good agreement
with the experiment, especially in capturing the value of the 0.9 contour at the trailing edge.

Table 1. Grid independence of Ma = 2.0, Kn = 0.026.

Case 20 × 20 40 × 40 80 × 80 100 × 100

CD 0.4101 0.3951 0.3901 0.3902
CL 9.0 × 10−3 1.23 × 10−4 1.02 × 10−6 1.11 × 10−6
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4.2. Cavity Flow

Lid-driven cavity flows are studied at high Knudsen numbers. The cavity has a fixed wall
temperature Tw = 290 K. The Knudsen number is defined as the ratio of the mean free path to the
length of the cavity’s side wall, and the mean free path of gas is evaluated for a hard sphere model.
Similar to the previous work [28], the wall velocity is U∞ = 300m/s for cases at Kn = 0.671 and 6.712.
The solutions are compared with the DSMC ones. The computational domain is discretized using a
mesh of 100 × 100 cells in physical space. The results of the present study and the DSMC at Kn = 0.671
and 6.712 are presented in Figures 3 and 4, where the temperature contours are shown. Excellent
agreements are obtained.Entropy 2017, 19, 683 14 of 19 
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4.3. Hypersonic Gas Flow in a Low Kn Number

In this section, two-dimensional (2D) NCCM is validated for hypersonic gas flows past a circular
cylinder. The typical triangular mesh is used in 2D cases, and the outer circular radius that corresponds
to a good computational domain is chosen as Router = 30 R. The cell size in unstructured mesh is
200 × 120. In other words, there are 200 points on the cylinder surface and 120 points in the radial
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direction of the computational domain. The linear element (P1) and the quadratic element (P2) are
initially tested for the 2D case; because their numerical results are not distinguishable, the linear
element is chosen for all 2D simulations.

The input parameters for the first case are Ma = 5.48, Kn = 0.001, and Pr = 0.607, and the working
gas is argon. The contours of Ma number, density, and heat flux are shown in Figure 5; typical
distributions around the cylinder are found. Good agreement between the NCCM and the NSF
equation was observed. These factors include the position of the shock wave and the contour lines
(both in the forebody and the afterbody). This case is for a low Kn number and in the region of
near-equilibrium states.Entropy 2017, 19, 683 15 of 19 
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4.4. Hypersonic Gas Flow at a High Kn Number

The input parameters for these two cases are Ma = 20, Kn = 0.01 and Ma = 20, Kn = 1.0. The working
gas is argon. The heat fluxes around the solid surface are given in Figure 6. Good agreement of the
results of the NCCM and the DSMC and UGKS (Unified gas-kinetic scheme) methods [29] was observed.
These two cases are of a high Kn number and in the region of far-equilibrium states.
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Furthermore, a 3D NCCM is validated for hypersonic gas flows past 3D complicated hypersonic
vehicles as shown in Figures 7 and 8. The typical tetrahedron mesh is used in 3D cases, and the outer
circular radius for a good computational domain is chosen as Router = 30 R. In this equation, R is the
characteristic size of the vehicles. The input parameters for the first case are Ma = 20.0, Kn = 2.531, and
Pr = 0.707, and the working gas is air. Good agreement between the results of the NCCM and the DSMC
method was observed. This case is of a high Kn number and in the region of far-equilibrium states.Entropy 2017, 19, 683 16 of 19 
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The present authors also validated hypersonic gas flows around a 3D Apollo 6 command module
with Ma = 5.0, Kn = 0.5 in the earlier study [4], and good agreement between the results of the NCCM
and the DSMC method was observed in this case. Here, we just give the results as can be seen in
Figure 9 to prove that the NCCM can solve the problems of far equilibrium. More details can be seen
in reference [4].
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5. Discussion

The processes for the derivation of the NCCM equations from the Boltzmann equation were
given in detail in the present study. The two features implemented in this derivation are discussed in
detail. First, the H theorem and positive entropy generation are considered in the irreversible process.
In addition, the definition of the distribution function is formal and dynamic. Second, based on the
constraint of positive entropy generation, the unified highly nonlinear dissipation model from the
nonequilibrium state to the equilibrium state is derived; this model turns into the Rayleigh–Onsager
dissipation function near the equilibrium state. Next, the nonlinear coupled constitutive relations of
viscous stress and heat flux, which strictly fulfil the second law of thermodynamics, were derived.
In addition, coupled with the conservative laws of mass, moment, and energy, a unified scheme for
continuum and rarefied gas flow was proposed. A comparison among the Grad moment method,
the Burnett equation, and the NCCM was presented. In addition, the differences and relationships
between the NCCM equations and the Navier–Stokes–Fourier equations were explained in detail.

For validation, numerical studies of rarefied and continuum gas flows were conducted.
These studies include rarefied and/or continuum gas flows around a cylinder and a 3D model of a
space shuttle. It was observed that the present results of the NCCM equations were in good agreement
with those of the DSMC and UGKS methods in rarefied cases and were in good agreement with those
of the Navier–Stokes equations in continuum cases. All these results indicate that the present NCCM
equations provide a new approach for developing a unified scheme for solving continuum-rarefied
gas flows.
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Appendix A. The Derivation of the Nonlinear Parameter in the NCCM

The nonlinear parameter of R plays an important role in the NCCM equations. Note that the R in
Equation (58) is different from that in [16]. The following gives the modification.

k =
(mkB)

1/4
√

2d
T1/4

p

[
Π : Π

2η
+ γ′

∆2

ηb
+

Q ·Q
λT

]1/2

, γ′ =
5− 3γ

2

Note that the molecular model is included in k.
Here, m and d are the mass and diameter of the molecule, respectively.
The dimensionless process of k
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Therefore, k can be expressed in the following form:
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c can be regarded as the parameter related the molecular model.

Appendix B. Positive Entropy Production in Eu Moment Equations

According to Equation (49), if the third order is included, the entropy production σ̂ent can be given
by the form

σ̂ent = κ exp
[

1
2

(
κ2 − κ2

)]
sinh

(
κ − κ2/2κ + κ3/6κ + κ3/3

)
The higher-order cumulant approximation must be taken in such a way that σ̂ent is always positive.

Although the second- or third-order cumulant approximation for entropy production has potentially
interesting features, rather involved calculations are required for them since tensors of high ranks
appear in the integrals to be evaluated. Most of the studies done so far are based on the first-order
cumulant approximation for σ̂ent, which is already highly nonlinear and able to account for interesting
experimental observations as have been shown by the applications of the present theory.
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Since first-order cumulant κ is positive, the entropy production given in Equation (50) clearly
is positive and vanishes only at equilibrium where X(α)

i = 0 for all i and α, as will be shown shortly.
In fact, κ2 turns out to be the Rayleigh–Onsager dissipation function if the 13 moments are taken
for macroscopic variables. Since the Rayleigh–Onsager dissipation function is directly related to the
entropy production in the linear theory of irreversible processes, Equation (50) is already a significant
generalization of the nonlinear regime of the entropy production appearing in the linear theory.
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