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Abstract: In a departure from most work in quantum information utilizing Gaussian states, we use
a single such state to represent a qubit and model environmental noise with a class of quadratic
dissipative equations. A benefit of this single Gaussian representation is that with one deconvolution,
we can eliminate noise. In this deconvolution picture, a basis of squeezed states evolves to another
basis of such states. One of the limitations of our approach is that noise is eliminated only at
a privileged time. We suggest that this limitation may actually be used advantageously to send
information securely: the privileged time is only known to the sender and the receiver, and any
intruder accessing the information at any other time encounters noisy data.
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1. Introduction

In quantum computing, errors arising from quantum noise may be treated using quantum
error-correcting codes, such as the Shor code [1]. The basic idea is to convert a qubit that one is trying
to shield from noise to a higher dimensional state containing redundant information. After being
subjected to noise, a recovery procedure is implemented to rehabilitate the state. Departing from this
approach, the work presented below exploits a unique factorization of quadratic dissipative equations
to leave squeezed states coherent and accessible to quantum processing after a deconvolution at
a privileged time t*. This is accomplished by using a single Gaussian state to represent a qubit.
Quantum noise is thus eliminated without having to increase the dimensions of the system under
study, albeit at the expense of having to perform the deconvolution at t*. We suggest that this limitation
may be used advantageously to help send information securely. Only authorized persons would be
apprised of t*. An intruder accessing the information at any other time encounters noisy data.

Gaussian states have been widely used for continuous variable quantum information processing
(see [2] for a review). Experimental examples include teleporting a single coherent state [3] and
investigating transmitted states of light represented by a mixture of two coherent states [4,5].
Theoretically, a superposition of Gaussian states has been used to represent states of a two-dimensional
code space [6]. Another application of Gaussian states employs a superposition of two substantially
non-overlapping coherent or squeezed states as the computational basis to represent a qubit [7-9].
Because of the small overlap, this superposition is prone to decoherence, a bane of information
processing. Error correction codes for continuous variables have been developed to reduce the
deleterious noise effects [2,4-6,10,11]. Here, we abandon superpositions of Gaussians and instead
utilize a single squeezed state to represent a qubit, reversing decoherence with an impurity filter.
We encode information using the phase space position of the state, as in quantum key distribution
protocols [2] that use coherent [12] or squeezed states [13,14]. The application of the impurity filter
amounts to performing a Wigner function deconvolution, which is in line with the general use of
deconvolutions to eliminate noise, such as instrumental quantum noise [15,16]. In quantum homodyne
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tomography, for example, deconvolutions have been used to reconstruct Wigner functions from noisy
data [17].

2. Review of Quadratic Dissipative Equations

As our testing ground for handling quantum noise, we will utilize general quadratic dissipative
equations (QDEs), describing the evolution of an oscillator subject to fluctuations and dissipation.
QDEs are a class of master equations with time dependent coefficients, also known as non-autonomous
equations. In this section, we will briefly review such equations and mention a few well-known master
equations that are examples of QDEs. Some lessons from these examples will also guide us when we
attempt to eliminate noise in general QDEs. The reader interested in more details of QDEs can consult
Reference [18].

A QDE is the following equation governing the evolution of the density operator, p:

do(t) = G [Hs(t), p(D)] = k1(){q,p(), 4} = ka(){p, p(t), p} + ks(){p. p(1), 9} + ks(t){q,p(1), p} )

where the system Hamiltonian is given by Hs(t) = b1y (t)q% + b1z (t)qp + ba1 (t) pq + b (t) p?, with byy,
bia = by, by, k1 and k; being real functions, k3 being a complex function, k4 = k3 and {A,p, B} =
BATp + pBAT — 2A%pB. As motivation for studying QDEs, we note that most one-dimensional
quantum master equations describing harmonic motion in the literature, both exact and approximate,
are of this form. For example, a subset of QDEs that are identified with Brownian motion has been
solved exactly as a Wigner function convolution [19-21]. Another well known, autonomous example of
a QDE, is the rotating wave optical master equation for an oscillator, which, when written as it usually
is in terms of lowering and raising operators, is given in the interaction picture by (see, e.g., [22] and
references therein)

U= n{aeta} enfasta) g

where 7 is a measure of the coupling strength between the oscillator and its environment, and 7 is the
average number of oscillator quanta in a state of thermal equilibrium.

Although Equation (2) is one of the simplest QDEs, certain features of this equation foreshadow
our approach for reducing quantum noise in more general cases. While at all temperatures the
pure states that maximize the initial rate of change of the purity Trp? predicted by Equation (2) are
the ordinary coherent states [23,24], it is only at absolute zero, when 77 = 0 and the {a,pI , a} term
disappears, that these coherent states—and only these states—remain pure as they evolve [24]. The
key to this result is that at absolute zero, only one dissipative operator of the form {a', p!,a"} remains
in Equation (2), an idea that we will use below when investigating more general QDEs.

With the goal of determining when states can remain pure, Hasse has examined other autonomous
master equations [25]. In this last reference, non-linear Schrodinger equations that describe the
evolution of the corresponding wave function were formulated.

These examples of decoherence-free evolution motivate us to inquire about similar behaviour
in more general, non-autonomous QDEs. We will see that in the general case, we have to content
ourselves with less. In particular, while it is not generally possible for a coherent state to remain
coherent for all times, below we will show that by making use of a deconvolution, we can ensure that
a squeezed state evolves to another squeezed state at a privileged time.

Before leaving this section, we will provide the solution of Equation (1) that we will need for our
work below. In operator form, Equation (1) has the solution p(t) = p(t)p(0), where the propagator
©(t) is given by [18]

o(t) = exp |~y (wi{a, -, a) +walp, -, p = (w3 =57 ) {p, 0} — (ws +i%57 ) {a,- 0} ) | (Us-UST) - (3)
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where U satisfies dudst(t) = L H,(t)Us(t) with initial condition Us(0) = 1, and where the coefficients in

the preceding exponent are solutions to the following inhomogeneous system of differential equations:

d w1 —21712 0 —2511 w1 k]
E wyo =2 0 Zblz 2b22 [0%) + e kz (4)
w3 by —bn1 0 w3 (k3 + k4) /2

with wy = 2ﬁif0t (k3 — k4)dt/, and initial conditions w1 (0) = w>(0) = w3(0) = 0. Not all b;; and k; give
rise to physical solutions; to ensure that p is normalized, Hermitian and positive, we shall assume that

Wy 1\2
these coefficients yield wy > 0, wp > 0, wywy — w3 — C 146h21 )

t>0[18].

> 0 and positive dissipation, wy > 0, for

3. Noise Reduction in Quantum Dissipative Equations

A state evolving under a generic QDE loses coherence as pure states map to mixed states.
Preferred states that minimize entropy production have been investigated for some master
Equations [26,27]. Better, we show that under a simple transformation, which we dub the
deconvolution picture (DP), we can eliminate decoherence altogether: for any QDE, there exists a
pair of time-dependent generalized lowering operators, C(f) and B(t), obeying commutation relations
[C(),CT(t)] = [B(t), B'(t)] = 1 and having squeezed eigenstates and complex eigenvalues satisfying

CHIM ey =7 ®)

and
B(£)|B) sty = BlB)B(r)/ (6)

such that every eigenstate of C(t*) evolves after an arbitrary but fixed time ¢* to an eigenstate of B(t*)
in the DP. Above and throughout this paper, we use Dirac ket notation |¢) to represent a state vector 1.
In addition to obeying the foregoing commutation relation, generalized lowering and raising operators
are linear combinations, with complex coefficients, of the usual lowering and raising (or position and
momentum) operators, and have been extensively studied in the literature [28].

In one example, the DP (denoted by a superscript D) is defined by

P (t) = exp[s(t){p,-, p}]p(t), @)

where p(t) is a density operator obeying a QDE, and §(t) is a non-negative c-function with initial
condition §(0) = 0 to be specified below (we will see that more generally, the DP may be defined via
a real, linear combination of {¢,-,4} and {p, -, p}). The operator exp[é(t){p, -, p}] corresponds to the
aforementioned impurity filter converting states that are not pure to squeezed states that are, but only
at a privileged time t*, which can act as a key for secure communication.

If there were a time when 4(f) would vanish, the deconvolution and Schrodinger pictures
would coincide and, like in Equation (2) at absolute zero, only one dissipative operator, {B*, ., Bt },
would come into play.

For a generic QDE, 4(t) is typically not zero for t+ > 0. Nevertheless, although
4(t) may not vanish, we can propagate wave functions instead of density operators in the
DP, as with Hasse’s non-linear Schrodinger equation. Assuming that the initial state is
p(0) = [B)ce) () (B|, we will see below that the usual Schrodinger picture may be obtained at t* via

o(t*) = exp[—s(t"){p, -, r}] ‘ﬁe_w4(t*)/2>8(t*)3(t*)<‘Be_u’4(t*)/2‘. When we compare this expression

with Equation (7), we see that pP(t*) = ‘,Be_w4(t*)/2> ‘Be_w‘l(t*)/z‘; i.e., under any QDE,

B(t*)B(t*)<

we can find a time t* and generalized lowering operators B(t) and C(t), such that to within a global
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phase factor, the initial pure state |B) - (#+) evolves after t* to another pure state ’ Be—wa(t)/ 2>B(t*) in the
DP. Having described in general terms the role of the operators B(t) and C(t), we now characterize

them in more detail.
The generalized lowering operator B [29] is defined by

2
ets —1

B(t) = (e*ii;\/wl —r1q+ e/, — rzp) (8)

where r1(f) and r(t) are any non-negative functions that at + = 0 vanish and at later times satisfy

W, 2
wy—1r1 >0, wy—ry>0and (w; —r1)(wp —12) = w% + (6146;21) , and where
1. 4 -1 s
<F== — < =,
0<¢ 2tan ( s ) <5 )

This generalized lowering operator satisfies the eigenvalue Equation (6). The propagator given
by Equation (3) can be factored (see [18] for a related factorization) so that the only operator appearing
in the non-Hamiltonian part in the DP is B':

oP(t) =exp(~22{ 8", B'}) (Up(0)U") (10)
where the DP is defined by

oP(t) = exple ™ (r1{q, - q} +r2{p,- p})]0(t). (11)

The operator exple”“4(r1{q,-,q} +r2{p,-, p})] is the general form of the impurity filter.
Because of the freedom in choosing 71 and r,, the factorization (10) is not unique. In Equation (7),
we chose the impurity filter exp[d(t){p,-, p}] corresponding to r; = 0 and 6(t) = e “4r,.
The generalized lowering operator C(t) is generally defined by

C(t) = Us" () B(H)Us(t), (12)

and satisfies the eigenvalue Equation (5). Letting the initial state be p(0) = [B) ()¢ () (B|, where t* is
an arbitrary but fixed time and f is variable, and using the general formula

e HE B ), (Bl = e ) p(pe| 13

for f > 0 and B any generalized lowering operator, we obtain at time ¢*

pD(t*) :“Be—w4(t*)/2> B(t*)<lBe_W4(t*)/2" (14)

B(t*)

With this evolution, we can associate an operator Wpp(t) that propagates kets, |¢(t)) =
Wpp(t)|¢(0)), defined by

A exp(— 42 B (1)B(1) ) Us(1)|¢(0)
Wop(1)[p(0)) = .
. lexp (— 5B (1)B(1) ) U (1) [9(0)) |

(15)

For any QDE, the density operator corresponding to the state [¢(0)) = [B)(;+), with p variable,

evolves in the DP to the density operator corresponding to the state |p(t*)) = Wpp(t*) |¢(0)) =

‘ﬁ€7w4(t*)/2> )

B(t*)
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4. An Example Using the Wehrl Entropy

To further elucidate our work and characterize the privileged time ¢t*, we employ the Wehrl
entropy of a density operator p, denoted by Sw (p). The quasiclassical quantity Sy (p) was introduced
by Wehrl [30], and is defined according to

1 ~ [ =
Sw(p) = —5- [ % [ dp(alpla), In o (alol), (16)

where |«), are the well-known coherent eigenstates of the lowering operator a, which in connection
with a harmonic oscillator of mass m and frequency w are given in the position representation by

(x|a), = (%)1/4exp l—;(\/?x—f)z—i-i\/?xﬁ] (17)

with X and p real, and « = (¥ + iﬁ)/\ﬁ. In the rest of this section, we will set h = w = m = 1.
Given the von Neuman entropy S(p) = —Trp In p, where Boltzmann's constant has been set to unity,
we have the following two inequalities, the first of which was proven in [30], and the second conjectured
in [30] and proven by Lieb [31]:

Sw(p) > S(p) (18)

and
Swip) > 1, 19)

where this last expression becomes an equality if p = |a) ,(a].
We investigate a simple example, in which B is time independent and given by

B=e"/4% (20)

—int/4

where a = (g +ip)/+/2 is the usual lowering operator. We note that the operator e a has coherent

eigenstates |«), with eigenvalue e~""/4a. Thus, |a), :'e’m/ 4IX> . Comparing to Equation (8),

E—ir[/4a

this implies { = 77/4,

eZU4 _ 1
o = 21
w1 — 11 1 (21)
e — 1
wp—12=— (22)
and
ws = 0. (23)

Using these special values in Equation (10) and noting that {ei”/4a+, -,ei”/‘*a*} = {a*, ~,a*},
the density operator in the DP becomes

D _ Wl o+t —1 g% in/4 in/4 *
0 —exp< > {a 0 }) (US (t*,t)]e /3>aa<e ,B’Lls(t ,t)). (24)
The squeezed state
US04 = U 1) B, 25)
= |ﬁ>A(t*,t) (26)

is an eigenstate of the generalized lowering operator A(t*,t) = U; ' (t*,t)e” ™/ *al(t*,t) = u(t*,t)a +
v(t*, t)at with eigenvalue B. Because [A(t*,t), AT(t*,t)] = 1, we have |u[* — |v]* = 1 (see Yuen [28]).
These relations imply that p(t*,+*) = e=7"/* and v(*,+*) = 0.

The foregoing relations impose restrictions on the QDE that is supposed to yield solution (24)
and it is helpful to summarize what these are. Our initial time is taken to be zero and the privileged
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time satisfies t* > 0. We choose the Hamiltonian variables by (t*,t), b1 (t*,t) and by (t*,t) such
that u(t*,t*) = e~"/* and v(t*,+*) = 0. Next, we choose ki, ky and k3 such that w; > (e% —1)/4,
wy, > (e“* —1)/4and w3z = 0 for t > 0. We finally choose r; = wy — (¢* —1)/4and r, = wy —
(e —1)/4.

It is useful to introduce a parameter 7 > 0 into Equation (24), which parameter we will later set
equal to unity, so that

pP(x) = exp(— - {a" et }) (U0,

Differentiating with respect to T yields the differential equation

ei”/4,3>a H<ei”/4,8‘ Us (£, t)). 27)

D
il dT(T) = —ZH{a" P (x), 0t} (28)

with a squeezed state “initial condition”

oD (0) = U (1, 1)

ei”/4,[3>a a<ei”/4[3‘ Us (£, 1). (29)

Conveniently, a solution of Equation (28) with an initial squeezed state has been computed in the
literature [32]. That solution, applied to our particular values, is

ool (D)y = — s deia(’r)| exp {—; (2 (e /) o (1) (2 - <z>ew/2)] (30)
where ,
() = ( e ) @
2= ( 5 ) (32)
and

o BlalB),
& <a<ﬁ|a*|ﬁ>ﬂ>' 9

We can use Equation (30) in the definition of the entropy (16), and consult a table of multivariate
Gaussian integrals to compute the Wehrl entropy of the density operator in the DP. The parameter T
was introduced merely as an aid for computation, and we ultimately set it to unity to obtain

S (pD> =1+ \/1 + |vPewa(2 — emws), (34)

where we note that for the subset of squeezed states characterized by one squeezing parameter, this last
Wehrl entropy appears in Reference [33].

As a check of our work, we note that when we take the noise free case with wy = 0, the system
evolves as a time dependent squeezed state. In such a case, Equation (34) predicts a value for the

Wehrl entropy of 1 +1In4/1+ |1/]2, which agrees with the value for a squeezed state found in the
literature [34]. For the physically reasonable choice of positive dissipation, for which ws > 0 for t > 0,
we see that Syy (o) is greater than its minimum value of unity unless [v| = 0. Because v(t*,+*) =0,
the Wehrl entropy at the privileged time #* is unity and pP is then a coherent state that may be found
with the help of Equation (13):

pP (1) = F ) (

) e o
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— ‘Bef%(ZU4fi7T/2)> ﬂ<1867%(w47i7'[/2) ) (36)
a

This result is consistent with the observation in Reference [24] that for the rotating wave optical
master equation (Equation (2)) at absolute zero, a coherent state remains a coherent state.

To sum up, for the example treated in this section in the DP, we start off at time t = 0 in a
squeezed eigenstate of the operator A(t*,0), and after a time t*, we end up in the coherent state given
by Equation (36).

If we take the Wehrl entropy as a measure of noise, we can provide a rough estimate of
the time interval during which the noise will be less than some tolerance. In other words, we
seek an interval |t — t*| < At so that Sy (pD,t*,t) —1 < & For small At, we can Taylor expand
Sw(pP,t*,t) — 1 as a function of time about +*. Assuming |o(t)] is sufficiently smooth with a
minimum at t = t* so that [o(t*,t*)| = %h:ﬁ = 0, we have to go out to fourth order
before we find a non-vanishing term. Ignoring higher order terms, we find Sy (pD 5, t) -1 =

2
%e‘w‘l(t*) (2 - e‘w‘l(t*)) (m ¢t ) (t — t*)* whence we obtain

o2
* 1/4 —-1/2
p2wa(t") 82|1/(t)|
A (8826wm1 (%) 7
The time At ultimately depends on some of the parameters of the underlying QDE through the

dependence of wy on the difference k3 — k4, via wy = 2hi fot (ks — kq) dt’, and the dependence of |v| on
the Hamiltonian parameters b1y, byp and by, via U (£, t)e™ "/ *alls (t*,t) = u(t*, t)a + v(t*, t)a’.

5. Coherent Processing of a Qubit

A qubit, approximated as a superposition of substantially non-overlapping coherent states,
is prone to decoherence. Thus, we avoid such a superposition and instead represent a qubit by a
single squeezed state whose position in phase space encodes information. The impurity filter enables
processing without decoherence. In the following formalism, unitary operators that keep the set of
squeezed coherent states invariant are candidates for single qubit gates.

We adopt the observable P; = [;°dq|q)(q|, noting that similar projectors arise in the study of
insufficiently selective measurements [35] and homodyne detection [36]. The observable has two
eigenvalues 0 and 1, each having an uncountably infinite degree of degeneracy. Given a squeezed state
|B) g, we next define |0; 8); = Po|B)z= (1 —P1)|B)g and [1;8) = P;|B)p. According to convention [1],
a qubit |¢) is a vector in a two-dimensional state space that is given by

) = al0) +b|1), (38)

where the kets |0) and |1), constituting an orthonormal basis, are fixed and the coefficients,
satisfying the normalization condition |a* + |b|2 = 1, are otherwise variable. We may alternatively
represent a qubit by a squeezed state |B) 5, which can be decomposed as

1B)g =10;B)p + 1L B)p, (39)

where now, opposite to the conventional formalism, the last two kets can vary by changing g and the
coefficients are fixed to unity.

States differing by only a global phase factor are assumed to be equivalent. Therefore, only two
parameters, 6 and ¢, are needed to specify a and b, which then fix the qubit i) [1]. We may parametrize
the qubit, as follows:

) = éerfcl/2(9)|o> + \}Eeiq’erfcl/z(—())ﬂ), (40)
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where erfc (x) is the complementary error function. For fixed variances and to within a global phase
factor, a squeezed state is in one-to-one correspondence with its two first moments, (g) and (p). Thus,

with the help of the equations
= (9)/(V2aq) (41)

and
¢ = (p)/bp, (42)

where Ag and Ap are variances of this state, we can uniquely map a squeezed state |B) (or, if the
variances are held fixed, its first two moments) to a qubit |¢). The probability of measuring a result
of 0 or 1 for the qubit |¢) is erfc(0) /2 and erfc(—8) /2, respectively. These are the same probabilities,
5(Bl0; B) 5 and 5 (B|1; B) 5, that a measurement of the observable P; would yield the eigenvalues 0 or 1
in the state | ), which explains why we chose the foregoing parametrization for the qubit.

In view of this correspondence between squeezed states and qubits, the X (or NOT), Y and
Z gates [1] may be implemented with the operators [], T(0, wAp) T and T(0, TAp), respectively,
where [] is the parity operator defined by []|q) = |—g) [35], and T(qo, po) is the translation operator
that is given by expli (qop — poq)/h], where go and py are real parameters. This is consistent with
the observation that ZX and Y, related by ZX = ¢/™/2Y, yield the same qubits to within a global
phase factor.

With the aid of an impurity filter, it is possible to perform coherent quantum computation on
single qubits evolving under a QDE. Let us look at the following quantum circuit for the NOT gate as
an illustrative example:

By —— ~|peestz) | INOT]|-pernir) (43)

This circuit may be implemented with QDE dynamics as follows:

* * * — —wy (H* —wy (t* 44
T[S PP (1) [Us () B) ooy e (BIU(#) | | T = ‘_53 alt )/2>B<f*>3<f*><_ﬁe a(t >/z‘ (44)

After choosing a time t*, we prime the input state |:B>B(t*)3(t*) (B to U5~ (t*) |:B>B(t*)3(t*) (Bl Us(t%).
Next, we let QDE dynamics run for t*. We then apply the impurity filter and finally the parity operator
to invoke the NOT gate. The result is the state ‘—ﬁe*z"4(t*)/2>8(t*)5(t*) <—ﬁe’w4(t*)/2‘ .

Turning to two qubits, we may take the tensor product of two squeezed states, |a); @ |B)p,
as the fiducial input. However, because gates for multiple qubits generally convert product states to

correlated states, we must admit entangled states into the formalism. A CNOT gate [1,10] serves as an
example. Conventionally, this gate may be written as

Pho1+PoX (45)

where 13] = |j)(j|, with j = 0 or 1. Similarly, in the above formalism where the parity operator
corresponds to the X gate, we can represent the CNOT gate, as follows:

Py®1+P @IL (46)

For example, taking as input the state |0); ® |B)z and making use of the standard expression for
a squeezed state [28] yields the following output in the position representation:

((91] @ (42|) CNOT(|0)5 @ |B) p)

q1
= (58— ) 2 exp (£ ) 0 g1) (al B+ 60 12l )] )
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where 6(q) is the unit step function and B = pa + va'.

6. Discussion
It is tempting to think of the impurity filter given by Equation (7) as the inverse of e =177}, but
this would be strictly incorrect because e~} <e5 {p,',p}p) is not defined for all density operators

p (recall that § > 0). For example, for certain bone fide p, the operator ¢’{7"?}p may not be positive.
Worse, e?{P7} p may not even exist. To see this, formally express e?{P/7} p in the Wigner representation:

{eé{p,-,p}p} W= zx/lﬁ 2 exp (— %) W(p,q — ihx)dx where W is the Wigner function corresponding
to p [37]. For the state p = |0)55(0|, for instance, we require that § < ﬁ for the last integral to

exist. More insight can be gained by looking at [e_é{p"'l’}p} w= 2\/1% %, exp (— %) W(p,q — hx)dx.
This is a Gaussian convolution in the position variable, which explains our choice of the phrase
“deconvolution picture” when applying the operator {77},

Unlike a typical propagator corresponding to Hasse’s non-linear Schrodinger equation,
the wave-function propagator Wpp(t) of Equation (15) does not describe the evolution of the related
master equation for all times and initial states. Rather, for any arbitrary but fixed time t*, and for
any QDE, we have seen that there is a squeezed state basis that, in the DP, evolves after the time t*
to another squeezed state basis according to this last propagator; before or after such time, the states
need not be pure.

Quantum communication is hampered by a no-go theorem of Niset et al.: Gaussian operations
cannot shield states from errors when these states and errors are also Gaussian [38]. A lot of
work in the literature directed to correcting errors arising from quantum noise makes use of
redundancy of states. In contrast, the work herein exploits a unique factorization of the propagator,
followed by a deconvolution that leaves squeezed states coherent and accessible to quantum processing.
A significance of this approach is that quantum noise is attenuated without having to increase the
dimensions of the system under study, albeit at the expense of having to perform a deconvolution at
a privileged time t*. This limitation could be used advantageously for secure information transfer.
An eavesdropper applying an impurity filter at an arbitrary time will not generally recover a pure state
except in the unlikely event that he or she happens to apply the filter at precisely +*. An authorized
person would be apprised of this time, and therefore could recover such a state.

Conflicts of Interest: The author declares no conflict of interest.
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