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Abstract: Information theory is often utilized to capture both linear as well as nonlinear relationships
between any two parts of a dynamical complex system. Recently, an extension to classical information
theory called partial information decomposition has been developed, which allows one to partition
the information that two subsystems have about a third one into unique, redundant and synergistic
contributions. Here, we apply a recent estimator of partial information decomposition to characterize
the dynamics of two different complex systems. First, we analyze the distribution of information
in triplets of spins in the 2D Ising model as a function of temperature. We find that while
redundant information obtains a maximum at the critical point, synergistic information peaks in
the disorder phase. Secondly, we characterize 1D elementary cellular automata rules based on
the information distribution between neighboring cells. We describe several clusters of rules with
similar partial information decomposition. These examples illustrate how the partial information
decomposition provides a characterization of the emergent dynamics of complex systems in terms of
the information distributed across their interacting units.
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1. Introduction

The universe is full of systems that comprise a large number of interacting elements. Even if the
immediate local interactions of these elements are rather simple, the global observable behaviour that
they give rise to is often complex. Such systems, intuitively understood to be physical manifestations
of the expression “the whole is more than the sum of its parts”, are aptly called complex systems.
Canonical examples of complex systems include the human brain, ant colonies and financial markets.
Indeed, most of these systems have many relatively simple parts (e.g., neurons) interacting nonlinearly,
whose collective behavior engenders complex phenomena (e.g., consciousness).

In addition to physical systems, many mathematical models have been developed that capture the
essence of different complex systems. These theoretical models are particularly interesting because one
has complete knowledge of how their various parts are connected together and which rules they obey
while interacting with each other. Nevertheless, the emergent global structures are often so complex
that their exact evolution is difficult to predict from the initial conditions and the interaction rules
without actually simulating the system. Cellular automata and the Ising model are quintessential
examples of such models.

One way to analyze these complex models is to treat them as information processing systems and
measure the amount of information that their elements have about each other. Often, such analysis
is done by using a well-known quantity from classical information theory, mutual information, and
its various derivations, which measure statistical dependencies between a pair of random variables.
These measures are particularly useful because of their sensitivity to both linear as well as nonlinear
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interactions between random variables. Among other things, they allow one to quantify the amount of
information that is stored [1], transferred [2–5] and modified [6] in different parts of the system.

However, only measuring the information that is processed between two sub-components is rather
restrictive. Indeed, even the simplest of logic gates has more elements, being composed of a pair of
inputs and an output, which statistical dependencies we are interested to characterize. While one could
consider the inputs as a single sub-component, this would not capture the intricate interactions among
the inputs themselves. In particular, components in the input ensemble can provide information
uniquely, redundantly, or synergistically about the output [7].

To capture this distribution of information between two inputs and a single output, an extension
to classical information theory is needed [7]. Recently, several axiomatic frameworks have been
developed to account for such extension and they are often referred to as partial information
decomposition (PID) [7–11]. For a review of the uses of partial information decomposition in
Neuroscience, see [12,13]. In this article, we capitalize on a recently developed numerical estimator for
PID [14] for a particular version of PID [8], and use it to characterize the emergent dynamics of several
complex systems (2D Ising model and 1D cellular automata) in terms of the information distribution
across their interacting sub-units.

The remaining of this article is organized as follows. In the Background sections, we give a brief
overview of partial information decomposition including its numerical estimation, as well as the basics
of Ising and elementary cellular automata models. The Methods section details both the numerical
simulation and PID analyses for both systems. The Results section describes the results of applying
the PID estimator to the dynamics of neighboring cells in the Ising model and elementary cellular
automata. We conclude by discussing the implications of the obtained results and related work, as well
as the limitations of applying the current approach to other systems such as artificial neural networks,
and provide suggestions for future work.

2. Background

2.1. Partial Information Decomposition

Mutual information measures the amount of information two random variables, or more generally,
two random vectors have about each other. However, it is often worthwhile to ask how much
information an ensemble of input (source) random variables carries about some output (target) variable.
A trivial solution would be to measure the mutual information between the whole input ensemble
considered as a single random vector and the output. However, this would not capture the interactions
between the input variables themselves. Moreover, by considering the input ensemble as a single unit,
knowledge about how the interactions between specific individual units and the output differ is lost.

This section briefly reviews the partial information decomposition proposed by [8]—a specific
mathematical framework for decomposing mutual information between a group of input variables
and single source variable.

2.1.1. Formulation

The simplest non-trivial system to analyze that has an ensemble of inputs and a single output is a
system with two inputs. Given this setup, one can ask how much information one input variable has
about the output that the other does not, how much information they share about the output, and how
much information they jointly have about the output such that both inputs must be present for this
information to exist.

More formally, let Y and Z be two random variables that are considered as sources to a third
random variable X. The mutual information between the pair (Y, Z) and X is defined in terms of
entropies as

MI(X; Y, Z) = H(X)− H(X|Y, Z).
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The partial information decomposition framework aims to decompose this mutual information
into unique, redundant and complementary information terms.

Unique information quantifies the amount of information that only one of the input variables
has about the output variable. The unique information that Y has about the output X is denoted as
UI(X : Y \ Z). Similarly, UI(X : Z \Y) denotes the unique information that Z has about the target X.

Shared information quantifies the amount of information both inputs share about the output
variable. It is also sometimes called redundant information because, if both inputs contain the
same information about the output, it would suffice to observe only one of the input variables.
The shared information is denoted as SI(X : Y; Z). (To be consistent with “Elements of Information
Theory”, the notation used in this article for PID terms deviates a little from the one introduced by
Bertschinger et al. [8]. Specifically, a colon (:) is used to partition the set of random variables to a single
output (on the left-hand side) and a set of inputs (on the right-hand side). As before, a semicolon
(;) is used to separate the input variables on the right-hand side, signifying that these variables are
considered to be separate entities, not part of a single random vector.)

Complementary or synergistic information quantifies the amount of information that is only
present when both inputs are considered jointly. The complementary information is denoted as
CI(X : Y; Z).

It is generally agreed [7–10] that mutual information can be decomposed into the four terms just
described as follows:

MI(X; Y, Z) = SI(X : Y; Z) + UI(X : Y \ Z) + UI(X : Z \Y) + CI(X : Y; Z). (1)

The same sources also agree on the decomposition of information that a single variable, either
Y or Z, has about the output X:

MI(X; Y) = UI(X : Y \ Z) + SI(X : Y; Z),
MI(X; Z) = UI(X : Z \Y) + SI(X : Y; Z).

(2)

It is important to note that thus far in this section, no formulas for actually calculating the PID
terms have been given, and only several relationships that such a decomposition should satisfy have
been stated. The only computable quantities so far are the mutual information terms on the left-hand
side of Equations (1) and (2). The discussion of computing the specific PID terms is developed in the
next section, which is heavily inspired by an intuitive overview of the paper “Quantifying Unique
Information” by Bertschinger et al. [8], provided by Wibral et al. [13].

2.1.2. Calculating PID Terms

It turns out that the current tools from classical information theory—entropy and various forms of
mutual information—are not enough to calculate any of the terms of the PID [7]. Indeed, there are only
three Equations (1) and (2) relating to the four variables of interest, making the system undetermined.
In order to make the problem tractable, a definition of at least one of the PID terms must be given [8].

Taking inspiration from decision theory, Bertschinger et al. [8] were able to provide such a
definition for unique information. Their insight was that, if a variable contains unique information,
there must be a way to exploit it. In other words, there must exist a situation such that an agent
having access to unique information has an advantage over another agent who does not possess this
knowledge. Given such a situation, the agent in possession of unique information can prove it to
others by designing a bet on the output variable, such that, on average, the bet is won by the designer.

In particular, suppose there are two agents, Alice and Bob, Alice having access to the random
variable Y and Bob having access to the random variable Z from Equation (1). Neither of them
have access to the other player’s random variable, and both of them can observe, but not directly
modify, the output variable X. Alice can prove to Bob that she has unique information about X via Y
by constructing a bet on the outcomes of X. Since Alice can only directly modify Y and observe the
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outcome X, her reward will depend only on the distribution p(X, Y). Similarly, Bob’s reward will
depend only on the distribution p(X, Z). From this, it follows that the results of the bet are not
dependent on the full distribution p(X, Y, Z), but rather only on its marginals p(X, Y) and p(X, Z).

Let p ≡ p(X, Y, Z) be the original joint probability distribution that we are interested in computing
the PID of, and let ∆ be the set of all joint probability distributions of X, Y and Z. Under the assumption
that the unique information depends only on the two marginal distributions of p, a set of probability
distributions ∆p can be defined such that the unique information stays constant for any element in
this set. Such a set consist only of the probability distributions that have the same marginal distributions
of the pairs (X, Y) and (X, Z) as p. It is defined as follows:

∆p = {q ∈ ∆ : q(X = x, Y = y) = p(X = x, Y = y)

and q(X = x, Z = z) = p(X = x, Z = z) for all x ∈ X, y ∈ Y, z ∈ Z}

Putting the observation that unique information is constant on ∆p and Equation (2) together,
it becomes apparent that shared information will also be constant on ∆p. Thus, only complementary
information varies when considering arbitrary distribution q from ∆p. The last observation makes
sense intuitively and is to be expected, since “complementary information should capture precisely
the information that is carried by the joint dependencies between X, Y and Z” [8].

Using the chain rule for information as well as decompositions (1) and (2), the following identities
can be derived:

MI(X; Y|Z) = UI(X : Y \ Z) + CI(X : Y; Z),

MI(X; Z|Y) = UI(X : Z \Y) + CI(X : Y; Z).
(3)

Now, if a distribution q0 ∈ ∆p could be found that yields vanishing synergy, the unique
information could be calculated using quantities from classical information theory. Indeed, from
Equation (3), it can be seen that when synergy is 0, the mutual information and unique information
terms coincide. Bertschinger et al. [8] prove that a distribution q0 ∈ ∆p with this property only exists
for specific measures of unique, shared and complementary information. They define the suitable
measure for unique information as follows:

ŨI(X : Y \ Z) = min
q∈∆p

MIq(X; Y|Z), (4)

ŨI(X : Z \Y) = min
q∈∆p

MIq(X; Z|Y), (5)

where the subscript q under the mutual information symbol means that the quantity is calculated over
the distribution q.

Replacing these measures with the corresponding quantities in Equations (1) and (2), measures
for shared and complementary information can be defined as follows:

S̃I(X : Y; Z) = max
q∈∆p

MIq(X; Y)−MIq(X; Y|Z), (6)

C̃I(X : Y; Z) = MI(X; Y, Z)−min
q∈∆p

MIq(X; Y, Z). (7)

These four constrained optimization problems (Equations (4)–(7)) are all equivalent in the sense
that it would suffice to solve only one of these problems and the obtained optimal joint distribution q
would produce the optimal value for all the remaining three measures as well.

2.1.3. Numerical Estimator

Bertschinger et al. showed that “the optimization problems involved in the definitions of ŨI,
S̃I and C̃I . . . are convex optimization problems on convex sets” [8]. A notable property of convex
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functions is that their local and global minimums coincide, making the optimization problems that
involve such functions relatively easy to solve. Indeed, many effective algorithms have been developed
that solve even large convex problems both efficiently and reliably [15].

However, in this particular case, the convex optimization problem is not trivial because “the
optimization problems . . . can be very ill-conditioned, in the sense that there are directions in which
the function varies fast, and other directions in which the function varies slowly [8].” This means
that there exists extremely small eigenvalues in the positive definite matrix that needs to be inverted
as part of the convex optimization procedure, making the method numerically unstable. To tackle
this problem in [14], the optimization problem is analyzed in detail and found that the problematic
issues occur mostly at the boundary of the feasible region. Hence, the authors proposed and compared
several versions of interior point methods to provide a fast estimator of PID terms together with a
certificate of its approximation quality.

The analyzed numerical estimator takes the approach of solving the optimization problem given
in Equation (7) and then using the resulting distribution q to find the other quantities of interest.
The user interface of the estimator is rather simple, abstracting away all the technical details of its inner
workings: it takes as input a probability distribution p(X, Y, Z) and outputs the scalars MI(X; Y, Z),
UI(X : Y \ Z), UI(X : Z \ Y), SI(X : Y; Z) and CI(X : Y; Z). For all of the analyses conducted, the
convex program is solved in CVXOPT [16] ,using an interior point method. When the interior point
method failed to converge, we refined the solution by solving iteratively the Karush–Kuhn–Tucker
equations of the program until a desired level of tolerance was reached. See [14] for a detailed study of
the performance of different algorithms to solve the optimization problem in Equation (7).

2.2. Ising Model

The Ising model, first conceived by Wilhelm Lenz in 1920 [17], is a mathematical model of
ferromagnetism. The model abstracts away the rather complex details of atomic structures of magnets,
consisting simply of a discrete lattice of cells or sites, denoted as si, each of which has an associated
binary value of either −1 or +1 [18]. Conceptually, the lattice can be thought of as a physical material,
where the sites roughly represent the unpaired electrons of its atoms. The binary value of each site
intuitively corresponds to the direction of the electron’s spin. A value of −1 means that the spin is
considered to point down, otherwise it is said to be pointing up. A given set of spins, denoted as s
(without the subscript), is called the configuration of the lattice [18].

The probability of a configuration s at thermal equilibrium is given by the Boltzmann distribution:

Pβ(s) =
e−βE(s)

∑s e−βE(s)
, (8)

where the sum in the denominator is over all possible spin configurations, E(s) denotes the energy
associated with the configuration s, and β = 1

kBT , where T is the temperature and kB is the Boltzmann
constant. Thus, β is proportional to the inverse temperature of the system.

The probability of a configuration s depends on two quantities: the internal energy of the
configuration under discussion, and the temperature. Two observations that stem from Equation (8)
are of importance. First, the lower the energy E(s) of a configuration s, the higher its probability.
Second, the higher the temperature T (or equivalently, the lower the parameter β), the more diffuse
the distribution becomes. The latter mathematical property models the physical fact that, at high
temperatures, the thermal “oscillation” of the atoms break the alignment of the spins, demagnetizing
the material.

Assuming that the external magnetic field interacting with the lattice is omitted, and the
interaction strength between pairs of nearest neighbors is fixed to be equal to the Boltzmann constant kB,
the energy of a spin configuration s simplifies to
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H(s) = −∑
〈ij〉

sisj, (9)

where the sum is over all different nearest neighboring pairs of spins (each pair counted only once).
The minus sign in front of the sum accounts for a lower energy state (and, thus, with a higher
probability) is achieved when neighboring spins take on the same value, as this yields a positive
product. It can be intuitively thought as if the spins are intrinsically trying to align with their neighbors,
while the temperature of the system quantifies the amount of prohibition that prevents them from
doing so.

The Ising model in two or more dimensions exhibits a second order phase transition with a critical
temperature Tc such that, for temperatures T < Tc, the expected magnetization (net alignment of
spins) quickly rises to be different from zero. The Ising model is thus a prototypical example of many
complex systems exhibiting collective order even under the constant presence of a source of disorder.

2.3. Elementary Cellular Automata

Elementary cellular automata (ECA) are discrete dynamical complex systems that consist of a
one-dimensional array of cells, each of which has an associated binary value. Every automaton is
uniquely defined by its rule table—a function that maps the value of a cell to a new value based on the
cell’s current value and the values of its two immediate neighbors. Since each rule table corresponds
to a unique 8-bit binary number, there are only 28 = 256 elementary cellular automata in total, each of
which is associated with a unique decimal number from 0 to 255.

Elementary cellular automata can be simulated in time by simultaneously applying the update
rule to each cell in the one-dimensional array, producing a two-dimensional plot where the vertical
axis represents time. The result of evolving the rule 30, given an initial lattice configuration of all white
cells except the center, can be seen in Figure 1. Notably, the figure shows that the evolution of the
dynamics can be rather non-trivial. Indeed, cellular automata are interesting precisely because, despite
their simplicity, the patterns that emerge as a function of the rule table and the initial configuration
can be quite complex. For example, elementary cellular automata have been shown to be capable of
generating random numbers [19], modelling city traffic [20] and simulating any Turing machine [21].
On the other hand, many rules quickly converge into an uninteresting homogeneous or repetitive state.

Figure 1. A space-time diagram of the evolution of rule 30 [22].

Because the set of all elementary cellular automata is rather diverse, consisting of both
computationally interesting as well as uninteresting rules, it would make sense to try to group
them based on the apparent complexity of their behaviour. In his seminal paper “Universality and
Complexity in Cellular Automata” [23], Stephen Wolfram did just that.
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After qualitatively analyzing the global structures that the different rules give rise to, given
random initial states, Wolfram proposed a classification scheme that partitions all elementary cellular
automata into four classes. The proposed classes are as follows:

• Class 1: Cellular automata that converge to a homogeneous state. For example, rule 0, which
takes any state into a 0 state, belongs to this class.

• Class 2: Ceullar automata that converge to a repetitive or periodic state. For example, rule 184,
which has been used to model traffic, belongs to this class.

• Class 3: Cellular automata that evolve chaotically. For example, rule 30, which Mathematica uses
as a random number generator [24], belongs to this class.

• Class 4: Cellular automata in which persistent propagating structures are formed. For example,
rule 110, which is capable of universal computation, belongs to this class. It is conjectured that
other rules in this class are also universal.

3. Methods

3.1. Methodology for Analyzing the Ising Model

To estimate the PID terms in the Ising model, a two-dimensional model with Glauber
dynamics [25], periodic boundary conditions and a square lattice of size 128 × 128 was simulated.
A single simulation consisted of a burn-in period of 104 updates, followed by 105 updates from which
the samples were gathered. As in the paper by Barnett et al. [26], “each update comprised L (potential)
spin-flips according to Glauber transition probabilities”, where L is the size of the lattice. Hence, the
probability to accept a transition is given by

P(s→ sn) =
1

1 + e
∆E(s→sn)

T

, (10)

where s and sn denote the old and new lattice configurations, respectively, T stands for temperature and
∆E(s→ sn) = E(s)− E(sn) is the difference between the energies of the two successive configurations.

In other words, using Algorithm 1 as a subprocedure, the model was simulated according
to Algorithm 2 with B = 104, N = 105 and L = 128 × 128. This procedure was performed
at 102 temperature points spaced evenly over the interval [2.0, 2.8], which encloses the theoretical
phase transition at Tc ≈ 2.269.

Algorithm 1: A single Glauber dynamics update, which consists of L spin-flip attempts

1 Input: A lattice configuration s, temperature T and lag L
2 for i = 1...L do
3 Choose a random site from the lattice;
4 Flip the spin associated with the chosen site to obtain a configuration sn;
5 Calculate P(s→ sn);
6 Generate a random number x uniformly at random within the range [0, 1];
7 if x ≤ P(s→ sn) then
8 s = sn; . accept the new configuration

9 return s;
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Algorithm 2: The full Glauber dynamics algorithm

1 Input: Temperature T, burn-in period B, lag L, and the number of samples to draw N
2 Initialize a random lattice configuration s;
3 for i = 1...B do
4 s = Run Algorithm 1 on inputs s, T and L;

5 set samples to empty list . List to save the sampled configurations to
6 for i = 1...N do
7 s = Run Algorithm 1 on input s, T and L;
8 save configuration s to samples;

9 return samples

The obtained 105 lattice configurations at each temperature point were subsequently used to
construct the probability distributions that the PID estimator takes as input. One-hundred sites were
chosen uniformly at random at the beginning of the simulation, and they stayed the same for all
temperature points. Figure 2 illustrates the 100 randomly chosen sites of the 128× 128 lattice. For each
site, the relative frequency of the spin configurations of its local neighborhood (the site itself along
with four of its neighbors) was measured, yielding a total of 100 joint probability distributions of
five random variables per temperature point. An example of one such distribution at temperature
T ≈ 2.119 is given by Table 1, where the first random variable C represents the center site, and the
following four random variables represent its immediate neighbors. For example, the last row of the
table illustrates that the configuration where all the spins point upwards at a specific location on the
lattice has a probability of 0.776, meaning that it appears approximately 0.776× 105 = 77,600 times out
of a total of 105 configurations sampled. The high probability of “all aligned” spins is to be expected,
since the samples are taken while the Ising model is in the ordered, low temperature regime.

Figure 2. One-hundred randomly chosen sites (blue dots) of a 128× 128 square lattice.

Having created 100 probability distributions for each of the 102 temperature points, it remains
to feed the distributions into the PID estimator for analysis. However, this can not be done naively
with the current setup, as the estimator works with probability distributions of 3 random vectors only,
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where one of them is thought of as an output and the remaining as inputs. Thus, the distributions of the
same form as the one in Table 1 must be reconfigured such that they are understood by the estimator,
i.e., it must be decided how neighboring sites are partitioned into 2 sets of inputs and an output.
Two different setups were considered. First, the center site was taken to be the output, and only 2
neighbors were chosen without repetitions uniformly at random (out of the possible set of 4 neighbors)
as inputs. Second, the center was again considered as an output, but, in this experiment, all 4 neighbors
were taken into consideration as inputs: the full set of neighbors was randomly partitioned into 2
disjoint pairs, such that each pair was a two-dimensional random vector. After estimating the PID
terms, an arithmetic mean across the sites was taken at each temperature point, yielding 102 average
PID vectors, one for each temperature point.

Table 1. Joint probability distribution of a random site and its four neighbors at temperature T ≈ 2.119.
The column labels represent the location of the sites with respect to the neighboring center (C) site:
upper (U), right (R), down (D), left (L).

C U R D L Pr

−1 −1 −1 −1 −1 0.004
−1 −1 −1 −1 1 0.002
−1 −1 −1 1 −1 0.003
−1 −1 −1 1 1 0.003
.. .. .. .. .. ..
1 1 1 −1 1 0.035
1 1 1 1 −1 0.033
1 1 1 1 1 0.776

Due to the randomness present in the Glauber dynamics and in choosing the 100 sites from
the lattice for analysis, the results may vary across different runs. To gain more confidence in the
results, the whole experiment described above (simulating the Ising model, choosing 100 random
sites for analysis, estimating the PID of the local neighborhood of the sites) was repeated 8 times and
the results averaged. In the very first run, each initial spin configuration was initialized randomly
at each temperature point as in line 2 of Algorithm 2, and the configuration that was arrived at
after the burn in period of 104 updates was saved. For the subsequent 7 runs, the very first lattice
configuration for temperature point Ti was chosen to be equivalent to the saved lattice configuration
from the very first run at temperature point Ti. After doing the first run separately to obtain the initial
configurations, the 7 remaining simulations to gather the relevant lattice configurations were run for
8 days on 41 computing nodes in parallel in a computer cluster.

3.2. Methodology for Analyzing the Elementary Cellular Automata

The average information distribution was estimated in all 88 inequivalent elementary cellular
automata. (While there are 256 different rules in total, some of them are computationally equivalent.
In particular, exchanging the roles of black and white in the rule table and reflecting the rule through a
vertical axis does not change the computational capabilities of the automaton. Not considering rules
that are equivalent under these transformations yields 88 rules that are of interest). To gather the
probability distributions for the PID estimator, 88 automata with 104 cells were simulated for 103 time
steps using periodic boundary conditions. For each automaton, a random initial configuration was
generated, such that each cell at time step t = 0 was associated with a value taken uniformly at random
from the set {0, 1}.

The input pair for the PID was taken to be the cell’s 2 neighbors (considered as a single random
vector) and the cell itself at time step t, while the output was the cell’s value at the next time step t + 1.
This is indeed a logical setup to use, as it ensures that the input set contains all the variables that the
output is a function of. Using these random variables, a single global distribution was generated for
each rule. Note that this differs from the methodology that was used in the case of the Ising model,
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where a subset of the sites was chosen for analysis, yielding 100 different local distributions and PID
values, the latter of which were subsequently averaged to obtain estimates of the global measures.

Because the emergent dynamics of a cellular automaton depend on the initial configuration of the
lattice, the above experiment (generating initial configurations for each of the 88 automata, simulating
the dynamics and generating the distribution that is fed into the estimator) was repeated 5 times, after
which the resulting 5 PIDs of each rule were averaged.

4. Results

Next, we provide the results of applying a PID estimator to the dynamics of neighboring units in
two different complex systems. The focus of the first section is on the Ising model, while the second
concentrates on elementary cellular automata.

4.1. Ising Model: Partial Information Decomposition as a Function of Temperature

First, we consider the case in which the partial information decomposition is evaluated for triplets
of neighboring spins in the lattice. In Figure 3, the average mutual information and PID terms are
given as a function of the temperature.

Figure 3. Average mutual information and PID terms (with two random neighbors of every “center”
spin considered as inputs) of a 128× 128 lattice Ising model evaluated at 102 temperature points spaced
evenly over the interval [2.0, 2.8]. All information functionals are given in nats. Error bars represent
the standard deviation over eight runs.

As seen from the figure, mutual information peaks around the phase transition (more precisely, at
T ≈ 2.293)—a phenomenon that agrees with previous theoretical and numerical work [26]. In addition,
since, in the experiment under discussion, the mutual information was measured between a site
and two of its neighbors, as opposed to measuring it between two neighboring sites only, it would
be reasonable to expect the resulting mutual information to be higher in the current experiment.
Indeed, two neighbors should have more information about their center site than a single neighbor has.
Barnett et al. [26] observed that the mutual information between two neighboring sites (the quantity
Ipw in the paper) achieves a maximum value of less than 0.3. In agreement with intuition, the blue
graph representing mutual information in Figure 3 achieves a peak value of just under 0.5.
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Observing the partial information decomposition terms of the Ising model in Figure 3, one can see
that the non-zero terms seem to peak around the phase transition, just as mutual information itself does.
Shared information is the most dominant of the partial information decomposition near the phase
transition (before and after) and it reaches its maximum at the critical point. Indeed, shared information
follows a curve similar to the mutual information, with the exception of being shifted downwards
about 0.15 nats for temperatures near the phase transition. The synergistic information as a function of
temperature follows a different graph with noteworthy differences. First, numerically, it peaks slightly
before mutual information does at T ≈ 2.333. In addition, its overall behaviour also deviates from that
of mutual information, with the graph being quite a bit flatter, not exhibiting a sharp peak.

The unique information terms are always near 0, no matter which neighbor is considered. First,
it is reasonable that both of the unique information terms are identical, as the neighbors are chosen
randomly. Second, the fact that there is no unique information in the system is also intuitively plausible,
as each neighbor interacts with the center site in an identical fashion. Indeed, from corollary 8 in [8],
a symmetry in the probability distributions p(X, Y) = p(X, Z) between the two inputs Y and Z
ensures that both unique information terms should be identically zero. This symmetry between two
random neighbors in a 2D Ising model is expected to be maintained across all temperatures unless
the neighboring sites would belong to different frozen clusters, which is a negligible event. Moreover,
all computations of PID are averaged over many different sites.

In Figure 4, the results of measuring information-theoretic functionals between the center sites
and all of their neighbors are illustrated. As expected, the mutual information term increases in value
(about 0.1 nat at the critical point) compared to Figure 3 because, considering all four of the sites that
interact with the center site, as opposed to just two, should reduce the amount of uncertainty one has
about the center. Further inspection reveals that the PID term most responsible for the increased mutual
information is shared information. The complementary and unique information terms have roughly
the same values in both experiments. Specifically, at all temperature points, unique information terms
are 0 and synergistic information varies around 0.1 nats in the disorder regime.

Figure 4. Average mutual information and PID terms (with all random neighbors considered as inputs)
of a 128 × 128 lattice Ising model evaluated at 102 temperature points spaced evenly over the interval
[2.0, 2.8]. Error bars represent the standard deviation over eight runs.
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An unanticipated difference between the first (two neighbors) and second (four neighbors)
experiment is that, when all neighbors are considered, the synergistic information term is flatter
than before and peaks even deeper in the disorder phase, at temperature T ≈ 2.554, while shared
information does not change its maximum point across the two experiments.

As for the behaviour of synergistic information, we do not have an analytical explanation for the
observed phenomenon. That said, it is possible that it is related to the peak of global transfer entropy
(a form of conditional mutual information) in the disorder phase of the Ising model, as demonstrated
by Barnett et al. [26]. According to Equation (3), when unique information vanishes, synergy becomes
equal to conditional mutual information as well. However, the exact relationship between the synergy
and transfer entropy in the Ising model remains unclear, as the random variables considered as
arguments to the conditional mutual information functional in this paper do not correspond to the
ones used by Barnett et al.

To confirm that the observed phenomena are not specific to a lattice of size 128 × 128, but are
general characteristics of the computational properties of the Ising model, the simulations were
repeated with a smaller, 64 × 64 lattice. The experimental setup was analogous to the one used in the
previous experiments, with the exception that the measurements were averaged over six different runs
(instead of eight) and, for each run, 50 different random sites were chosen for PID analysis (instead of
100). The simulations were run on 102 temperature points spaced evenly over the interval [2.0, 2.8].

Figure 5 depicts the results when only two random immediate neighbors are considered as input
to the center site in the PID framework. Although the mutual, shared and synergistic information
graphs are more shaky at the phase transition due to random fluctuations, in general, the graphs
are almost identical to the corresponding graphs in Figure 3. The mutual and shared information
quantities peak at T ≈ 2.277, while synergistic information peaks at T ≈ 2.327.

The results of measuring PID terms when all neighboring sites are considered as inputs to the
center site are illustrated in Figure 6. Both mutual and shared information again peak at T ≈ 2.277.
Complementary information peaks at T ≈ 2.515, a little closer to the phase transition than was the case
when the lattice size was twice the size (Figure 4). This observation validates that the peak in synergy
does not gradually move closer to the phase transition with increasing lattice sizes, suggesting that it
could be a general property of the model.

Figure 5. Average mutual information and PID terms (with two random neighbors considered as
inputs) of a 64 × 64 lattice Ising model evaluated at 102 temperature points spaced evenly over the
interval [2.0, 3.0]. Error bars represent the standard deviation over eight runs.
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Figure 6. Average mutual information and PID terms (with all random neighbors considered as inputs)
of a 64 × 64 lattice Ising model evaluated at 102 temperature points spaced evenly over the interval
[2.0, 3.0]. Error bars represent the standard deviation over eight runs.

4.2. PID of Elementary Cellular Automata

In Figure 7, all 88 inequivalent elementary cellular automata have been depicted based on their
PID terms. Each point represents a single rule, and the points are colored according to their Wolfram’s
class. Because there are four terms in PID, principal component analysis was used to project the
four-dimensional PID vectors into three-dimensional space. It is important to explicitly mention
that some “points” in the plot are actually clusters of several rules, but, due to their almost identical
PID terms, they overlap with each other, yielding a single visual mark on the plot. For example,
the cluster numbered as 1 appears to be a single point, but there are actually five different rules present
at this location.

From the figure, it can be seen that the rules corresponding to Wolfram’s class I are all clustered
together in a single location separate from the rest of the automata. This is natural, as these class I
rules quickly converge to a homogeneous all-white state, such that there is no uncertainty left in the
system. In an all-white state, the entropy of the system is 0 implying that mutual information, and,
accordingly, all of the PID terms to be 0 as well. While various other clusters appear, they do not
correspond well to Wolfram’s three other classes, meaning that there is no straightforward relationship
between Wolfram’s classification and the information distribution in elementary cellular automata.

To further investigate this claim, we show the distribution of PID values across Wolfram’s classes
in Figure 8. From Figure 8a, it can be seen that, in general, the synergy goes up when the complexity of
the automata in terms of Wolfram’s classification increases. However, there are many outliers in the
second class and the variance of the third class is extremely high, making it hard to further draw any
specific conclusions. On average, shared information seems to be higher in class 2 automata, while it
is almost 0 for the majority of class 3 and 4 automata. Focusing on the last two panels (Figure 8c,d),
it shows that, for these rules, two neighbors at the previous time step have usually more information
about a cell’s value at current time step than its own previous value does.
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Figure 7. All 88 inequivalent cellular automata positioned on a three-dimensional space according to
their information distribution. The automata are coloured based on their Wolfram’s class. Some of the
clusters of rules are highlighted and numbered, so that they can be referred to in the text.

(a) Complementary information (b) Shared information

(c) Unique information of the cell itself (d) Unique information of the neighbors

Figure 8. Boxplots representing the distributions of specific PID terms of cellular automata belonging
to Wolfram’s classes II, III and IV.

In Figure 9, the top panels show the space-time diagrams of two different rules, where the dynamics
were generated using random initial states. The two considered automata belong to Wolfram’s second
class because they quickly converge into a repetitive state. The diagrams look very alike visually as
well, containing densely populated diagonal lines. It would not be unreasonable to expect these rules to
be clustered together in Figure 7. Interestingly, however, these rules are partitioned into two different
clusters that are spaced far apart from each other. In particular, rule 6 (and similarly rules 38 and
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134) appears in cluster 2, while the automaton 130 (and similarly rules 24 and 152) belong to cluster 3.
At first glance, this partitioning might be rather confusing, but the solution to the conundrum becomes
apparent when one zooms in on the space-time diagrams. As can be seen from the bottom panels in
Figure 9, the intricate structure of the diagonal lines is different between rules 6 and 130. It turns out
that rules such as 6, 38 and 134 all have diagonal lines that are composed of small “inverted L” type
blocks, while the diagonals of rules 130, 24, and 152 are much simpler, having a thickness of just a single
cell. More generally, the PID terms seem to depend heavily on the specific local details of the emergent
repeating, ubiquituous patterns in the space-time diagrams of cellular automata.

(a) Rule 6 (b) Rule 130

(c) Zoom-in Rule 6 (d) Zoom-in Rule 130

Figure 9. Top panels: space-time diagrams of elementary cellular automata belonging to Wolfram’s class
II. Rule 6 automaton belongs to cluster 2 in Figure 7, while Rule 130 belongs to cluster 3. Bottom panels:
zoomed space-time diagrams for rules 6 and 130.

To better understand why the specific details of the diagonals yield a radical change in the PID
terms, a closer quantitative look at the PID of the rules under discussion is in order. The mutual
information of all of the six rules is almost exclusively divided between synergy and the unique
information provided by the neighbors, leaving the remaining PID terms close to 0. The first three
rules each have roughly about 0.55 nats of synergy and 0.25 nats of unique information. In contrast,
the last three rules have no complementary information, but their neighbors have about twice as much
unique information about the cell’s next state, approximately 0.62 nats each. Thus, almost all of the
information in the systems with simpler diagonals is provided uniquely by the neighbors of a site.

The former numeric observations are not surprising because, looking at the dynamics of rule 130
from Figure 9d, the new states are almost always uniquely determined by the neighbors alone. Indeed,
the ubiquitous white background arises mainly because, if the right neighbor of a cell is white, this cell’s
next value will also be white. If, however, the left neighbor is white and the right is black, the cell’s next
state will be black. The latter relationship produces the diagonals. In the case of rule 6, there is a lot
more synergy in the system because neither the cell’s previous state or the neighbors are able to produce
the complex “reversed L” shaped diagonals alone. The rather high unique information comes from the
fact that the left neighbor being black completely determines that the cell’s value will be white in the
next step.
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Some other clusters are not as straightforward to analyze, but, nevertheless, in many cases, it is
still possible to give some intuitive justifications of the characterization that the PID has produced.
For example, Figure 10 depicts the rules in cluster 4, which all have exactly 0.5 nats of synergy and
0.5 nats of unique information from the neighbors. While the automata look rather different from the
distance, zooming into the lattices again reveals the similarities. Looking at the zoomed space-time
diagrams in Figure 11, it can be seen that what the automata under observation have in common is that
they all contain rather complex stairway-like structures traveling from the upper right to the lower left.

(a) Rule 154 (Wolfram’s class 2) (b) Rule 30 (Wolfram’s class 3)

(c) Rule 45 (Wolfram’s class 3) (d) Rule 106 (Wolfram’s class 4)

Figure 10. Space-time diagrams of elementary cellular automata belonging to cluster 4 in Figure 7.

(a) Rule 154 (b) Rule 30

(c) Rule 45 (d) Rule 106

Figure 11. Zoomed space-time diagrams of the automata plotted in Figure 10.
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Another noteworthy collection of rules is cluster 5, which consists of three automata that Wolfram
has classified as chaotic. All the automata belonging to this cluster have 1 nat of mutual information,
which is all exclusively provided by complementary information. The cluster is interesting because it
shows that, at least for some subset of automata, their qualitative characterization coincides with the
quantitative one provided by the PID.

5. Discussion

This section starts by putting the results obtained in the two complex systems into a larger context
and by discussing their implications. The possibility of analyzing other dynamical complex systems
with the information-theoretic tools used in this article is critically examined in the second section.
Finally, we will conclude with several suggestions for further work.

5.1. Implications of the Results

In the paper “Information flow in a kinetic Ising model peaks in the disordered phase” [26], it is
shown that global transfer entropy peaks in the disorder phase in the Ising model, just before the phase
transition. This result might suggest the possibility that global transfer entropy might be used as an
indicator of an impending phase transition before it actually takes place. In a subsequent commentary
discussing this work [27], Lionel Barnett, one of the authors of the paper, argues that this result
might also generalize to other real-world dynamical complex systems that undergo phase transitions.
The practical importance of this could be high as a predictor of imminent phase transitions, but it
needs to be tested in practice with real data.

In this article, it was found that one of the PID terms, complementary information or synergy also
obtains a maximum in the disorder regime in the Ising system. Taking the commentary by Barnett into
account, it would be worthwhile to study various real-world systems near phase transitions in terms
of partial information decomposition. In particular, it would be interesting to measure the synergy
between various components with the hope of predicting the arising phase transition in advance.

As for elementary cellular automata, the obtained characterization of the rules based on the
PID can be a complementary perspective to Wolfram’s classification. Wolfram’s classification relies
largely on human intuition and was developed by qualitatively analysing the space-time diagrams
of all elementary cellular automata. In contrast, the characterization based on partial information
decomposition is automatic and more grounded theoretically, not relying on qualitative observations.
While Wolfram’s classification is able to differentiate between different automata based on the global
behaviour of the emergent structures, it is agnostic to the subtle details in the structures themselves.
As for the characterization based on the PID terms, the opposite seems to be true.

5.2. Related Work

There is a large body of previous work in applying information theory to analyze dynamical
complex systems that undergo phase transitions. Specifically, it has been shown that mutual
information and other related information-theoretic measures peak at the critical point where the
systems undergo an order–disorder transition. Such is the case for several mathematical models like
random Boolean networks [28] and Vicsek’s self-propelled particle model [29].

As for real-world systems, Harre and Bossomaier [30] measured mutual information between
pairs of selected stocks and found that the peaks in information take place around known market
crashes. In another paper [31], to better understand phase transitions in cognitive behaviours, the
same authors analyzed mutual information between successive moves in the game of Go as a function
of players’ skill level. They found that information peaks around the transition from amateur to
professional, “agreeing with other evidence that a radical shift in strategic thinking occurs at this
juncture” [32].

Particularly relevant to the work at hand is the above-mentioned information-theoretic analysis
of the Ising model. It has been analytically shown that, in a two-dimensional Ising model, the
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mutual information between joint states of two spin systems peaks at the critical temperature [33].
Barnett et al. [26] show empirically that mutual information measured between pairs of neighboring
spins peaks at the phase transition. In the current paper, this result is replicated and extended by
also measuring the decomposition terms of this mutual information. They further discovered that
another related quantity called global transfer entropy peaks strictly in the disorder phase before the
phase transition.

Not directly related to this article, but contextually rather relevant, are various works that have
made use of information theory to quantitatively validate long-held hypotheses about information
storage and transfer in elementary cellular automata. In the article “Local measures of information
storage in complex distributed computation” [1], Lizier et al. found quantitative evidence that specific
structures in elementary cellular automata called blinkers and background domains are “dominant
information storage processes in these systems.” In another closely related paper [34], the same
authors conclude that “local transfer entropy provides the first quantitative evidence for the long-held
conjecture that the emergent traveling coherent structures known as particles . . . are the dominant
information transfer agents in cellular automata.”

Of particular interest to this paper is the work done by Chliamovitch et al. [35], in which
the behaviour of multi-information, a generalization of mutual information to multiple variables,
in elementary cellular automata was studied. It was found that, while it could be possible to establish
a classification of cellular automata rules based on this measure, it would not correspond with
Wolfram’s four classes. This is because multi-information failed to discriminate between all pairs of
Wolfram’s classes except between classes I and IV.

5.3. Limitations

The two complex systems analyzed in this paper have an important property in common that
makes their investigation with PID estimators very convenient, not to say possible. First, they are both
binary, meaning that the individual elements of the systems can only be in two different states. Second,
in both systems, each local part of the model is directly influenced by only a handful of other agents.
Indeed, in the Ising model, the energy of a single site depends only on the spins of its four immediate
neighbors, while the next value of a cell in elementary cellular automata is determined by the three
cells in its local neighborhood. What follows is a discussion of why both of these characteristics are
paramount to successful analysis of information distribution in complex systems.

First, the systems being binary, or more generally, discrete with relatively few possible states,
ensures that the number of rows in the probability distribution that the PID numerical estimator
takes as input is relatively small. The number of rows of the distribution increases polynomially
in the number of states of the random variables that it contains. For example, a distribution with
three random variables with 20 possible states would have 8000 rows. Such a large distribution is
challenging for the numerical estimators we used, and the version at the moment we conducted this
research was able to handle distributions with roughly 2500 rows. This challenge also can arise when
the analyzed system has continuous elements, since a naive discretization strategy, or, in other words,
dividing the continuous signal into a finite number of different states, will result in a large number of
number of states. To analyze the performance of the estimator on discretized versions of continuous
signals, a multivariate Gaussian probability distribution was generated, discretized, and fed into the
estimator. The convergence of this discretization approach together with the study of the optimization
challenges in the numerical estimators of PID are presented in [14].

Second, the systems having few directly interdependent components again ensures that the
number of rows in the distributions is relatively small, the latter increasing polynomially in the
number of random variables that the three random vectors contain. There is, however, an even more
fundamental problem that has nothing to do with the numerical estimator, but rather with the fact
that the PID mathematical framework has currently been developed for two logical input sets only.
In particular, if the number of inputs in the system grows, and they are not naturally divisible into
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two distinct sets, it becomes increasingly hard to reasonably choose the two subsets of input channels.
Even if the input space is composed of two logical sets, taking only a small subset of components
from each might not yield desirable results. This is because there is exponentially many ways to
choose the subsets with respect to each other, and there is often no straightforward way to know which
configuration is the “right” one.

To better understand the argument put forth in the last paragraph, it is instructive to look at the
results of another preliminary experiment that was carried out as part of this research. In particular, the
average information distribution between the nodes in a feed-forward neural network was analyzed
while it was trained on a classification task. The model consisted of two hidden layers, each containing
300 neurons. While such models usually have continuous activation functions, it is not feasible to
discretize these continuous signals with fine enough granularity without making their analysis with
the estimator unfeasible. Thus, binary activations were used in the hidden layers of the network,
as introduced by Courbariaux et al. [36]. The output layer of the network consisted of softmax units.
The network was trained on the MNIST handwritten digit database [37] for 150 epochs. The training
and validation learning curves of this classifier exhibited smooth decaying graphs saturating at certain
base levels.

To estimate the information distribution in the system, 200 triplets were taken for analysis.
For each triplet, the two inputs were taken to be two random nodes from the last hidden layer of the
network, and the output was taken to be the true target decimal value. The 200 probability distributions
were subsequently fed into the PID numerical estimator and the results averaged. This procedure was
repeated for each epoch, but the 200 triplets remained the same throughout the experiment.

We observed that the mutual information behaves similarly to the reflection of the training loss
over the horizontal axis. This agrees with the observation made in Bard Sorngard’s master’s thesis
“Information Theory for Analyzing Neural Networks” [38], in which the mutual information between
the neurons in a toy neural network was measured during training. We also observed that the unique
information terms follow the mutual information curve almost exactly, and that complementary and
redundant information terms are both essentially 0. It is the authors’ belief that the PID terms are
rather uninteresting largely because the inputs do not come from two logically distinct subsystems
(especially given the limitation that we used a PID framework so far restricted to characterize the
information relations between one output and two input variables). Every neuron in the last layer has
299 neighbors, and there is no fundamental reason to prefer one neighbor over the other. This illustrates
some challenges in finding a natural partition of a complex system in meaningful triplets of random
variables to which one could apply most of the current versions of partial information decomposition.

5.4. Future Work

There are various promising research directions in the domain of partial information
decomposition itself. First, the mathematical framework of partial information decomposition
used here has so far been developed for the bivariate input case. The general decomposition of
multi-variate information remains to be further developed, and it is expected to open the door to a
refined characterization of information distribution in many classes of complex systems not considered
in this article.

In the case of the Ising model, it might be of interest to study more theoretically how information
is distributed between the different parts of the model. This would provide some further insight as to
why the PID functionals behave as they do in this specific model. In addition, the results obtained in
the Ising system should inspire further research into real-world complex systems in which it would be
of importance to predict the occurrence of a phase transition in advance.

A system of major importance in which Ising models have been shown to be a good fit is the
dynamics of ganglion cells in the vertebrate retina [39]. This system has been extensively researched as
an excellent model to study neuronal population codes. In particular, a pressing question is to what
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degree these neurons code visual information in a redundant or independent manner, a question that
can be directly addressed by the framework analyzed here.

In this paper, elementary cellular automata were studied, in which, by definition, each cell is
directly influenced by only three cells in its local neighborhood. However, these relatively simple
systems are just a special case of a larger class of models, called one-dimensional cellular automata,
where cells can depend on an arbitrary fixed number of nearby cells. It is up to further work to
study the information distribution in cellular automata that are not elementary. Das et al. [40] used
genetic algorithms to discover different rules that are able to perform specific computational tasks,
like classifying whether the majority of cells in the initial configuration have a value of 1. It could be
worthwhile to study the information distribution in different automata that solve common tasks.

Finally, there is more work to be done in analyzing the information distribution in artificial
neural networks. The PID measurements obtained from analyzing feed-forward neural networks in
this work were uninteresting largely because there was no natural partitioning of nodes belonging to
the same layer in this model. However, such a partitioning does exist in recurrent neural networks,
where each neuron has both bottom-up inputs from the previous layer and lateral contextual inputs
from the same layer at the previous time step. Applying the current numerical estimator to recurrent
networks can prove to be difficult, however, as for the authors’ knowledge, there is no existing work
validating that binarizing the activations of a recurrent network yields a reasonable model.

More generally, we consider that, provided a meaningful partition of nodes in the network
and armed with multivariate approaches [41,42], the concepts and tools from information theory
can play an important role in characterizing and bringing a novel perspective on the training of
neural networks.

6. Conclusions

Most of this paper is devoted to applying PID to empirically analyze the distribution of
information in two well-known dynamical complex systems.

First, it was observed that complementary or synergistic information peaks in the disorder
regime of the Ising model. If such phenomenon is to be generalizable to other phase transitions,
this result could be of practical value. Second, a novel quantitative characterization of elementary
cellular automata based on information distribution was obtained. The proposed characterization
is complementary, and orthogonal, to the popular qualitative classification proposed by S. Wolfram.
Third, feedforward neural networks were found to be difficult to characterize in information
distribution terms within the current bivariate PID framework. Some more promising research
directions in the study of neural networks and information dynamics include recurrent neural networks
and multivariate formulations of PID.
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