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Abstract: In recent years, tools from information theory have played an increasingly prevalent
role in statistical machine learning. In addition to developing efficient, computationally feasible
algorithms for analyzing complex datasets, it is of theoretical importance to determine whether
such algorithms are “optimal” in the sense that no other algorithm can lead to smaller statistical
error. This paper provides a survey of various techniques used to derive information-theoretic lower
bounds for estimation and learning. We focus on the settings of parameter and function estimation,
community recovery, and online learning for multi-armed bandits. A common theme is that lower
bounds are established by relating the statistical learning problem to a channel decoding problem,
for which lower bounds may be derived involving information-theoretic quantities such as the mutual
information, total variation distance, and Kullback–Leibler divergence. We close by discussing the
use of information-theoretic quantities to measure independence in machine learning applications
ranging from causality to medical imaging, and mention techniques for estimating these quantities
efficiently in a data-driven manner.

Keywords: machine learning; minimax estimation; community recovery; online learning; multi-armed
bandits; channel decoding; threshold phenomena

1. Introduction

Statistical learning theory refers to the rigorous mathematical analysis of machine learning
algorithms [1,2]. On one hand, it is desirable to derive error bounds for the performance of particular
machine learning algorithms under appropriate assumptions on the probabilistic models used to
generate the data. On the other hand, it is important to understand the fundamental limitations
of any algorithmic procedure, which may be influenced by quantities such as the sample size,
signal-to-noise ratio, or smoothness of an ambient function space. Whereas statistical techniques based
on concentration inequalities and empirical process theory may often be employed to derive rates
of convergence of specific estimators to the underlying parameters of a data-generating distribution,
the somewhat trickier problem of quantifying the best possible performance of any learning procedure
requires tools from information theory.

A general approach is to relate the machine learning task at hand to an appropriate channel
decoding problem, where the output corresponds to the observed data and the input corresponds to a
cleverly constructed subset of the parameter space. For estimation problems, the key observation is
that, if the underlying parameters may be estimated closely (i.e., on the level of discretization of the
subset of parameter space), decoding may be performed accurately with high probability. The hardness
of the decoding problem may in turn be quantified using techniques in information theory [3], leading
to a lower bound on the estimation error. This strategy has been applied successfully to a diverse
array of statistical estimation problems, including parametric and nonparametric regression, structure
estimation for graphical models, covariance matrix estimation, and dimension reduction methods
such as principal component analysis [4–9]. Section 2 discusses the method and several illustrative
examples in greater detail.
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Although some classes of machine learning problems may not be analyzed directly using these
methods, alternative approaches involving related information-theoretic concepts may be employed.
In Sections 3 and 4, we consider the problems of community recovery and online learning, which are
both active areas of research in machine learning. Our discussion of weak recovery in the community
estimation setting is similar to the framework described in Section 2, but since the loss function
used to quantify the estimation error incurred by the algorithm is more complicated, a more careful
analysis must be conducted to derive sharp lower bounds. The theory characterizing the regimes
in which exact recovery is possible are of a somewhat different flavor, but the emergence of sharp
thresholds may again be related to Shannon coding theory. Section 4, concerning online learning for
multi-armed bandits, provides a still different setting, where the goal is to bound a quantity known
as regret. Although this is a radically different goal from bounding estimation error, the techniques
used to obtain lower bounds for multi-armed bandits nonetheless include components of reductions
to channel decoding problems: The key is to relate the performance of a learning algorithm to a
problem of distinguishing between pairs of parameter assignments corresponding to underlying
reward distributions that are close in parameter space.

We include proof sketches for the stated theorems in the main text of the paper, with references
to resources where the reader can find more detailed proofs and additional background material.
Although the discussion of each problem setting is necessarily brief, given the broad scope of this paper,
we hope that our survey will convey the high-level ideas involved in applying information-theoretic
tools to derive lower bounds for some statistical machine learning problems in a clear, concise manner.
We have intentionally selected a diverse variety of problem settings in order to help the reader compare
and contrast different approaches for obtaining lower bounds and identify the common threads
underlying all the strategies.

2. Statistical Estimation

We begin by discussing an approach based on minimax theory for statistical estimation
problems [10]. Our goal is a lower bound on the following quantity, known as the minimax risk:

inf
θ̂

sup
P∈P

EX∼P[`(θ̂(X), θ(P))], (1)

where ` is a symmetric loss function. Here, P denotes a class of data-generating distributions and
θ : P → Ω is a functional that maps each distribution in P to a parameter in the metric space Ω.
The expectation in expression (1) is taken with respect to data from a particular distribution P ∈ P ,
and the infimum is then taken over all possible estimators θ̂ = θ̂(X) computed from the data. In other
words, quantity (1) captures the worst-case risk of the best possible estimator. Whereas statistical
analysis of a specific estimator can provide an upper bound on the minimax risk, tools from information
theory may be used to derive a lower bound on the same quantity. Throughout this section, we will
restrict our attention to the setting where ` = Φ ◦ ρ, for a metric ρ and monotonically increasing
function Φ : [0, ∞) → [0, ∞). For instance, Example 2 below will discuss the setting where ρ is the
L2-distance in a function space and Φ(t) = t2, so ` is the squared L2-distance.

The basic idea is to transform an estimation problem into a decoding problem, in which we
wish to infer the correct message from a discrete set of messages, corresponding to a collection of
parameters. The estimation problem must be at least as hard as the decoding problem, since, if the
parameters in the discrete set are appropriately separated, accurate parameter estimation implies
accurate decoding. In Section 2.1, we present a general technique based on Fano’s inequality, which
expresses the probability of error for the decoding in terms of the mutual information between the
input (parameters in the discrete subset) and output (observed data). Sections 2.2 and 2.3 then
provide methods for bounding the mutual information and discuss applications to concrete statistical
estimation settings. We will follow the convention of Cover and Thomas [3] and take all logarithms
with respect to base 2 in our definitions of entropy and mutual information; analogous results hold
when logarithms are taken with respect to base e.
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2.1. Fano’s Method

We begin by describing the general approach for deriving lower bounds. The key idea consists
of relating the estimation problem to a decoding problem, and then using Fano’s inequality to
lower-bound the probability of error for the decoding problem. Recall the definition of the mutual
information:

I(Y; X) = H(Y)− H(Y|X). (2)

The main result relates the minimax risk to the mutual information between observations and the
data-generating distribution.

Theorem 1. Suppose {P1, . . . , PM} ⊆ P satisfy ρ(θ(Pi), θ(Pj)) ≥ 2δ, for all i 6= j. Then

inf
θ̂

sup
P∈P

EX∼P[`(θ̂(X), θ(P))] ≥ Φ(δ)

(
1− I(Y; X)− 1

log2 M

)
,

where Y is distributed uniformly on {1, . . . , M} and the conditional distribution of X given Y is defined by
X | {Y = j} ∼ Pj.

Proof (sketch). We begin by writing

sup
P∈P

EX∼P[`(θ̂(X), θ(P))] ≥ 1
M

M

∑
i=1

EX∼Pi [`(θ̂(X), θ(Pi))]. (3)

If we define the decision rule
ψ(X) = arg min

1≤j≤M
`(θj, θ̂(X)),

where we break ties arbitrarily, we may verify that

EX∼Pi [`(θ̂(X), θ(Pi))]
(a)
≥ Φ(δ)Pi

(
`(θ̂(X), θ(Pi)) ≥ Φ(δ)

) (b)
≥ Φ(δ)Pi (ψ(X) 6= i) ,

for each 1 ≤ i ≤ M. Inequality (a) is a direct application of Markov’s inequality, and inequality (b)
follows from the fact that if `(θ̂, θi) < Φ(δ), or equivalently, ρ(θ̂, θi) < δ, then

ρ(θ̂, θj) ≥ ρ(θi, θj)− ρ(θi, θ̂) > 2δ− δ > ρ(θ̂, θi), ∀j 6= i,

implying that ψ(X) = i.
Now, recall the statement of Fano’s inequality:

Lemma 1 (Fano’s inequality [3]). For any estimator Ŷ of Y such that Y → X → Ŷ forms a Markov chain,
it holds that

P(Ŷ 6= Y) ≥ H(Y|X)− 1
log2 |Y|

,

where Y is the range of Y.

Applying Lemma 1 with Ŷ = ψ(X) and writing out the error probability explicitly, we obtain

1
M

M

∑
i=1

Pi(ψ(X) 6= i) ≥ H(Y|X)− 1
log2 M

=
log2 M− I(Y; X)− 1

log2 M
, (4)

where the equality follows from relation (2) and the fact that Y has a uniform distribution. Combining
inequalities (3) and (4) establishes the desired result.
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In the following subsections, we describe two methods for upper-bounding the mutual
information term I(Y; X) appearing in Theorem 1, yielding a lower bound on the minimax risk.

2.2. Local Packings

The first method applies the convexity of the Kullback-Leibler (KL) divergence to obtain an upper
bound on I(Y; X) in terms of pairwise KL divergences. We have the following lemma:

Lemma 2. Let X and Y be defined as in Theorem 1. Then,

I(Y; X) ≤ 1
M2 ∑

1≤i,j≤M
DKL(Pi‖Pj).

Proof. We can check that

I(Y; X) =
1
M

M

∑
i=1

DKL(Pi‖P),

where P = 1
M ∑M

j=1 Pj is a mixture distribution. By the convexity of the KL divergence, we then have

I(Y; X) ≤ 1
M

M

∑
i=1

1
M

M

∑
j=1

DKL(Pi‖Pj),

which is the desired expression.

This bounding technique is known as a “local packing”, since the trick is to design an appropriate
set {P1, . . . , PM} such that the parameters θ(Pi) are 2δ-separated, while the pairwise KL divergences
between the data-generating distributions are relatively small.

Example 1 (High-dimensional linear regression). Suppose we have observation pairs {(xi, yi)}n
i=1 from a

linear model:
yi = xT

i β∗ + wi,

where xi ∈ Rp and wi ∼ N(0, σ2) is i.i.d. noise, and β∗ ∈ Rp is the unknown parameter vector. We assume
that p > n, but β∗ is known to have at most s nonzero values, where s ≤ n. More precisely, if Bq(r) denotes the
ball of radius r in the `q norm, we are interested in characterizing the minimax risk over the parameter space

B0(s) ∩B2(1) = {β ∈ Rp : ‖β‖0 ≤ s, ‖β‖2 ≤ 1} .

For any fixed parameter δ > 0, it is possible to construct a subset of parameters {β1, . . . , βM} lying in
the parameter space such that δ ≤ ‖β j − βk‖2 ≤ 2δ

√
2 for all 1 ≤ j < k ≤ M and log M ≥ s

2 log
(

p−s
s/2

)
,

essentially by rescaling a packing of the subset of {−1, 0, 1}p of s-sparse vectors such that the Hamming distance
between any two elements is at least s

2 [4,11]. Furthermore, we may compute the pairwise KL divergences in
terms of the squared `2-norm between parameter vectors, so

DKL(Pj‖Pk) =
1

2σ2 ‖X(β j − βk)‖2
2 ≤

4nδ2γ2
2s

σ2 ,

where γ2s = supβ∈B0(2s)
‖Xβ‖2√

n‖β‖2
. Note that Pj and Pk refer to the conditional distributions of the yi’s given the

xi’s for this example, so we are assuming the design matrix is fixed. Applying Theorem 1 and Lemma 2 with ρ

equal to the `2-distance and Φ equal to the identity, we therefore have

inf
β̂

sup
β∈B0(s)∩B2(1)

E
[
‖β̂− β‖2

]
≥ δ

2

1−
nδ2γ2

2s
σ2 − 1

s
2 log

(
p−s
s/2

)
 .
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Taking δ2 � σs log( p−s
s/2 )

γ2
2sn

and assuming that the problem dimensions satisfy n ≥ Cs log p, we then obtain a lower

bound of the form

inf
β̂

sup
β∈B0(s)∩B2(1)

E
[
‖β̂− β‖2

]
≥ δ

4
≥ c

γ2
2s

√
s
n

log
(

p− s
s

)
.

In the case of the `2-loss, the Lasso estimator achieves the risk expression in the lower bound (up to constant
factors), implying that it is a rate-optimal estimator [4]. Similar bounds on the minimax risk may be derived
when the norms appearing in the loss function and/or parameter space are replaced by a general `q-norm [4,12].

2.3. Metric Entropy

The second method for bounding I(Y; X), due to Yang and Barron [13], is based on the metric
entropy of the parameter space. Recall the notion of the ε-covering number of a set in a metric
space, which is the minimum number of ε-balls required to cover the set. The logarithm of the
covering number is also known as the metric entropy. In particular, we are interested in the quantity
log NKL(ε;P), defined by

NKL(ε;P) = min
{

N : ∃{Q1, . . . , QN} ⊆ P s.t. min
1≤i≤N

√
DKL(P, Qi) ≤ ε, ∀P ∈ P

}
,

which denotes the ε-covering number of P , where distances are measured with respect to the square
root KL divergence. We have the following bound:

Lemma 3. Let X and Y be defined as in Theorem 1. Then,

I(Y; X) ≤ inf
ε>0

{
ε2 + log NKL(ε;P)

}
.

Proof (sketch). Suppose {Q1, . . . , QN} is an ε-cover ofP with respect to the square root KL divergence.
Letting P = 1

M ∑M
i=1 Pi and Q = 1

N ∑N
j=1 Qj, we can check that

I(Y; X) =
1
M

M

∑
i=1

DKL(Pi‖P) ≤
1
M

M

∑
i=1

DKL(Pi‖Q),

where the inequality holds because P minimizes the average KL divergence with respect to the second
argument. Furthermore, we know that there exists some Qn such that DKL(Pi‖Qn) ≤ ε2, implying that

DKL(Pi‖Q) =
∫

log
dPi(X)

dQ(X)
dPi(X) ≤

∫
log

dPi(X)
1
N dQn(X)

dPi(X) = DKL(Pi‖Qn) + log N

≤ ε2 + log NKL(ε;P).

Since the above inequality holds for all ε > 0, we may take an infimum over ε to obtain the stated
bound.

As an example of the above technique, we consider the problem of nonparametric regression. Note
that the following example shows that the general machinery developed above, though described in
terms of parameter estimation, may be applied to nonparametric settings involving function estimation,
as well.

Example 2. (Nonparametric regression) Suppose we observe i.i.d. pairs {(xi, yi)}n
i=1, where

yi = f ∗(xi) + wi,
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xi ∼ Uni f orm[0, 1], wi ∼ N(0, 1), and xi is independent of wi. We also assume that f ∗ belongs to the
function class Fs, for a positive integer s, defined as the set of all continuous functions f on [0, 1] satisfying the
following properties:

(i) f is differentiable s− 1 times on (0, 1),
(ii) sup0≤x≤1 | f (k)(x)| ≤ 1, for all k = 0, 1, . . . , s− 1, where f (0)(x) := f (x),
(iii) f (s−1) is 1-Lipschitz on (0, 1).

We derive lower bounds on the minimax risk of estimating f ∗ when ` is the squared L2-distance, defined by

`( f , g) =
∫ 1

0
( f (x)− g(x))2 dx.

Hence, we will take Φ(t) = t2 and ρ equal to the L2-distance. Let P denote the set of joint distributions of
(x, y) generated by the class Fs. By standard results on the metric entropy of function classes [14,15], we have
the bound

c
(

1
ε

)1/s
≤ log N2(ε;Fs) ≤ C

(
1
ε

)1/s
,

where log N2(ε;Fs) denotes the metric entropy of Fs with respect to the L2-distance. Furthermore, for any

δ > 0, there exists a δ-packing { f1, . . . , fM} of Fs in the L2-metric such that log M = c′
(

1
δ

)1/s
. For two

functions f , g ∈ Fs, we may compute the KL divergence between the corresponding distributions Pf , Pg ∈ P :

DKL(Pf ‖Pg) =
n
2
· ‖ f − g‖2

2.

Hence, it follows that

log NKL(ε;P) ≤ log N2

(
ε

√
2
n

;Fs

)
≤ C

(
1
ε

√
n
2

)1/s

.

Minimizing the bound obtained from Lemma 3 with respect to ε, we obtain ε∗ = C′n
1

4s+2 , and plugging back
into Theorem 1, we obtain the lower bound

δ2

(
1− C′′n1/(4s+2)

(1/δ)1/s

)
.

Taking δ �
(

1
n

)s/(4s+2)
then yields the bound

inf
f̂

sup
f ∗∈Fs

E f ∗
[
‖ f̂ − f ∗‖2

2

]
≥ c′

(
1
n

)s/(2s+1)
.

A matching upper bound may be derived using local weighted polynomial regression [16], so the minimax risk is
Θ
(

n−s/(2s+1)
)

.

3. Community Recovery

Another area of machine learning that has recently received a substantial amount of attention
concerns recovering communities based on node connectivity in a network. A popular probabilistic
model is known as the stochastic block model (SBM). In the simplest form of the model, parametrized
by (n, K, p, q), the graph has nodes {1, . . . , n} partitioned into K communities. Let the community
label of node i be denoted by σ(i). The edge set E of the random graph G is then constructed in the
following manner: each edge (i, j) is generated independently from all others, with probability
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P
(
(i, j) ∈ E

)
=

{
p, if σ(i) = σ(j),

q, if σ(i) 6= σ(j).

The goal is to partition the n nodes into the underlying communities based on observing the graph G.
In order to measure the performance of an algorithm, we consider the loss function

r(σ̂, σ) =
1
n

min
τ∈SK

dH(σ̂, τ ◦ σ).

Here, the estimator σ̂ : {1, . . . , n} → {1, . . . , K} corresponds to a partitioning of the nodes into K
communities, and dH denotes the Hamming distance between assignments. Furthermore, we take
the minimum over all permutations SK of the community labels. Hence, r(σ̂, σ) is the proportion of
incorrectly labeled nodes (for the optimal labeling of partitions). We will focus our discussion on the
setting where K is fixed, but p and q may vary with n; generalizations exist in the literature where K is
allowed to grow with n, as well. We are interested in the behavior of various algorithms as n→ ∞.

In the following two subsections, we discuss the popular notions of weak recovery and exact recovery.
The algorithm σ̂ achieves weak recovery if E[r(σ̂, σ)]→ 0 (i.e., the expected fraction of misclassified
nodes tends to 0 as n→ ∞), and achieves exact recovery if r(σ̂, σ) = 0. For a more complete description
of current work on stochastic block models, see the extensive survey paper by Abbe [17].

3.1. Weak Recovery

Analogous to the setting discussed in Section 2, we may derive bounds on the minimax risk

inf
σ̂

sup
σ∈Σ(n,K)

E[r(σ̂, σ)],

where Σ(n, K) is an appropriate class of underlying community labelings. We state and prove a result
for approximately equal-sized communities in the limit as n→ ∞, so Σ(n, K) is the set of all labelings
σ such that |{i : σ(i) = k}| = (1 + o(1)) n

K , for all 1 ≤ k ≤ K.
The main result is the following [18]:

Theorem 2. Suppose p = a
n and q = b

n , and suppose nI
K → ∞, where

I = −2 log

(√
a
n

√
b
n
+

√
1− a

n

√
1− b

n

)
. (5)

A lower bound on the minimax risk of community estimation is given by

inf
σ̂

sup
σ∈Σ(n,K)

E[r(σ̂, σ)] ≥ exp
(
−(1 + o(1))

nI
K

)
.

Proof (sketch). The core of the approach bears similarity to the method for obtaining lower bounds
for estimation, in the sense that we construct a subset ΣL of the parameter space corresponding to
“messages”, which we wish to recover via an appropriate decoding strategy. In the case when K = 2
(and n is even), the subset ΣL consists of all partitions of the nodes into equal-sized communities and
communities of size

( n
2 + 1, n

2 − 1
)
. We focus on the case K = 2 in the present proof sketch to avoid

technical complications.
The proof is somewhat more involved than the strategies outlined in Section 2, however, since the

unknown quantity to be estimated is a set of discrete labelings and the loss function is defined with
respect to an optimal permutation. The first step is to lower-bound the minimax risk by the average
risk over the class ΣL. Furthermore, a more technical argument shows that we may just examine the
average local risk defined with respect to a single node in the graph:



Entropy 2017, 19, 617 8 of 17

inf
σ̂

sup
σ∈Σ(n,K)

E[r(σ̂, σ)] ≥ inf
σ̂

sup
σ∈ΣL

Eσ[r(σ̂, σ)]

≥ inf
σ̂

1
|ΣL| ∑

σ∈ΣL

E[r(σ̂, σ)]

= inf
σ̂

1
|ΣL| ∑

σ∈ΣL

E[r1(σ̂, σ)],

where r1 is the local loss function defined with respect to node 1, which is the fraction of optimal
permutations of community assignments that incorrectly classify node 1. The next step is to lower-bound
the local risk (uniformly over all choices of σ ∈ ΣL) using the minimum risk of a binary hypothesis
testing problem, where the two hypotheses correspond to the possible assignments of node 1 as a
member of the first or second community. In particular, we have the following inequality, which holds
for each σ:

E[r1(σ̂, σ)] ≥ c P
(

n/2

∑
i=1

Xi ≥
n/2

∑
j=1

Yj

)
,

where Xi
i.i.d.∼ Bernoulli

(
b
n

)
and Yj

i.i.d.∼ Bernoulli
( a

n
)

are independent random variables. Standard
techniques involving large deviation inequalities allow us to lower-bound the latter probability, thus
yielding the overall lower bound appearing in the theorem.

As demonstrated by Zhang and Zhou [18], the lower bound on the risk appearing in Theorem 2
may be achieved using a form of penalized likelihood estimation. A computationally feasible procedure
was subsequently provided in Gao et al. [19].

Remark 1. The quantity I appearing in Equation (5) is the Renyi divergence of order 1
2 between a Bernoulli

( a
n
)

and Bernoulli
(

b
n

)
distribution. In fact, these results generalize to the case of non-binary edge weights, and

the Renyi divergence of order 1
2 also appears in the minimax rates for estimation in weighted stochastic block

models [20]. Furthermore, if the communities are not all of equal size, alternative divergence functions appear in
the error exponent [21,22]. Finally, note that the regime where p = a

n and q = b
n , with a, b = Θ(1), corresponds

to the threshold at which giant components emerge in the network [23]. Theorem 2 allows a and b to scale
arbitrarily with n, provided nI

K → ∞, which will not hold if a, b� n.

3.2. Exact Recovery

Information-theoretic arguments may also be used to establish lower bounds for exact recovery
in stochastic block models, which corresponds to correct classification of every single node (up to
permutation the of community labels). We present a result, due to Abbe et al. [24], that provides lower
bounds for exact recovery in the case of two equal-sized communities.

We have the following result:

Theorem 3. Let p =
a log n

n and b =
q log n

n , where a > b ≥ 0. If
(√

a−
√

b
)2

< 2, then for sufficiently large
n, the maximum likelihood estimator fails in recovering the communities with probability bounded away from 0:

lim inf
n→∞

P (r(σ̂MLE, σ) 6= 0) > 0.

Proof (sketch). We denote the two communities by A and B. Let F be the event that the maximum
likelihood estimator fails in performing exact recovery, and let

FA = {∃i ∈ A : i is connected to more nodes in B than in A} ,

FB = {∃j ∈ B : j is connected to more nodes in A than in B} .
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By symmetry, we have P(FA) = P(FB). Furthermore, note that

FA ∩ FB ⊆ F,

since if both FA and FB were to occur simultaneously, swapping the labels of the nodes i and j would
lead to a higher value of the likelihood than in the case of correct labeling. In particular, this implies that

P(F) ≥ P(FA ∩ FB) ≥ P(FA) + P(FB)− 1 = 2P(FA)− 1. (6)

Let H ⊆ A denote a fixed subset with |H| =
⌊

n
log3(n)

⌋
, and define the event

FH =

{
∃j ∈ H s.t. E(j, A\H) +

log n
log log n

≤ E(j, B)
}

,

where E(j, C) denotes the number of edges between j and the nodes in C. Note that, if event FH

occurs and all nodes in H are connected to at most log n
log log n other nodes in H, then event FA must occur.

Furthermore, one can show that, with high probability, every node in H is connected to at most log n
log log n

other nodes in H. Hence,
P(FA) ≥ P(FH) + o(1). (7)

It remains to derive a lower bound on P(FH). For j ∈ H, let

F(j)
H =

{
E(j, A\H) +

log n
log log n

≤ E(j, B)
}

,

and note that the F(j)
H ’s are independent. Hence,

P(FH) = P

⋃
j∈H

F(j)
H

 = 1−∏
j∈H

(
1− P(F(j)

H )
)

.

Straightforward techniques for bounding sums of independent Bernoulli random variables show that

P(F(j)
H ) >

log(4) log3(n)
n for each j, from which we can conclude that

P(FH) ≥ 1−
(

1− log(4) log3(n)
n

)⌊ n
log3(n)

⌋
= 1− 1

4
+ o(1). (8)

Combining inequalities (6)–(8) then yields the desired result.

Note that for any other estimator σ̂, we have

P (r(σ̂MLE, σ) = 0) ≥ P (r(σ̂, σ) = 0) .

Hence, Theorem 3 also implies that

lim inf
n→∞

P (r(σ̂, σ) 6= 0) ≥ P (r(σ̂MLE, σ) 6= 0) ≥ 0.

In fact, a converse of Theorem 3 holds, as well:



Entropy 2017, 19, 617 10 of 17

Theorem 4. Under the same conditions as in Theorem 3, suppose instead that
(√

a−
√

b
)2

> 2. Then,
the maximum likelihood estimator succeeds in recovering the communities with probability tending to 1:

lim
n→∞

P (r(σ̂MLE, σ) = 0) = 1.

Since the focus of this paper is to establish lower bounds, we refer the reader to Abbe [24] for
the proof of Theorem 4, which proceeds by direct calculation. An extension of Theorems 3 and 4 for
weighted stochastic block models may be found in Jog and Loh [25].

Remark 2. The threshold behavior described in Theorems 3 and 4 is perhaps not surprising in light of known
threshold behavior in Shannon coding theory, and the connections between each of the statistical learning
tasks and the problem of decoding on a discrete alphabet after passage through a noisy channel. Indeed,
the community recovery problem has been cast in information-theoretic terminology as decoding in a “graphical
channel" [26]. On the other hand, the coding scheme is fixed according to the stochastic block model, whereas
Shannon theory allows one to design an optimal encoding scheme to achieve channel capacity. See also the paper
by Chen et al. [27], and the derivation of similar types of sharp threshold behavior in submatrix localization
problems [28,29]. Finally, we note that the scaling p =

a log n
n and q =

b log n
n , when a, b = Θ(1), corresponds

to the threshold for the graph to have isolated vertices with probability tending to 1 [23]. Indeed, it would
be impossible to perform exact recovery with high probability in the presence of isolated vertices: flipping the
community assignments of two isolated vertices belonging to the two different communities would not change
the value of the likelihood.

4. Online Learning

We now shift our focus to sequential allocation problems. The setup we consider involves a
series of actions taken by a player, using limited feedback about the environment based on his/her
past actions. We study the setting of a multi-armed bandit, where each potential action of the player
is associated with a reward distribution, but the player only observes the reward corresponding to
his/her action on successive rounds. In the following two subsections, we will consider the cases of
stochastic and adversarial bandits and obtain bounds on a quantity known as regret. More details on the
setting and results may be found in Bubeck and Cesa-Bianchi [30] or Cesa-Bianchi and Lugosi [31].

4.1. Stochastic Bandits

We first analyze the setting of stochastic multi-armed bandits. On each round, the player may
choose one of k different arms. Associated to arm j is a reward distribution Pθj , where θj ∈ Θ belongs

to some parameter space. Furthermore, we assume that the reward distributions {Pθj}
k
j=1 remain

fixed across all rounds. We use the notation µ(θ) to denote the mean of the distribution Pθ , and let
µ∗ = max1≤j≤k µ(θj) denote the maximum expected reward.

Denote the sequence of actions chosen by the player as (I1, . . . , In), where It ∈ {1, . . . , k} is the
arm played at time t, and let XIt ,t ∼ PθIt

denote the observed reward, which is an i.i.d. drawn from
the distribution PθIt

. Note that It may be a function of the previously observed reward sequence
(XI1,1, . . . , XIt−1,t) and may also involve additional randomization. We are interested in bounding a
quantity known as the pseudo-regret, defined as

Rn = nµ∗ −E
[

n

∑
t=1

XIt ,t

]
,

where we may also write Rn(θ1, . . . , θk) to make the dependence on the reward distributions explicit.
If the player employs a random strategy, the expectation is computed with respect to randomness
in the sequence of actions (I1, . . . , In), as well as randomness generated by draws from the reward
distributions. In other words, the pseudo-regret measures the difference between the expected reward
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incurred by the player’s strategy and the expected reward incurred by playing the arm with maximum
expected reward on every round.

Lai and Robbins [32] prove the following result. We omit some technical regularity conditions on
the parameter space, such as denseness of the parameter space and continuity with respect to the KL
divergence, in order to avoid cluttering the presentation.

Theorem 5. Suppose that, for all pairs θ1, θ2 ∈ Θ such that µ(θ1) > µ(θ2), we have 0 < DKL(Pθ2‖Pθ1) < ∞.
Suppose a strategy satisfies Rn(θ1, . . . , θk) = o(nα), for all θ1, . . . , θk ∈ Θ and all α > 0. Then, for any
(θ1, . . . , θk) ∈ Θ, we have

lim inf
n→∞

Rn(θ1, . . . , θk)

log n
≥ ∑

j:µj<µ∗

µ∗ − µj

DKL(Pθj‖Pθ∗)
,

where θ∗ ∈ arg minθ∈Θ µ(θ) and µj = µ(θj).

Proof (sketch). We may write

Rn =
k

∑
j=1

E[Tj(n)]∆j,

where ∆j = µ∗ − µj and Tj(n) = ∑n
t=1 1{It = j}. The main step is to show that the inequality

E[Tj(n)] ≥
log n

DKL(Pθj‖Pθ∗)
, ∀j : µj < µ∗ (9)

holds for any strategy. Inequality (9) provides a lower bound on the expected number of pulls to any
suboptimal arm (note that, as Pθj becomes further from Pθ∗ , the two arms are easier to distinguish, so the
expected number of pulls to the suboptimal arm can be smaller). We focus on proving inequality (9)
for j = 2; the other cases are similar.

Consider two parameter vectors θ = (θ1, θ2, . . . , θk) and θ′ = (θ1, θ′2, . . . , θk), which differ only in
the second coordinate. We further choose the parameters such that

µ1 > µ2 ≥ µ3 ≥ · · · ≥ µk,

µ′2 ≥ µ1 > µ3 ≥ · · · ≥ µk,

so the second arm is suboptimal in the first setting but optimal in the second. We will choose θ′2 close
to θ1, so

DKL(Pθ2‖Pθ′2
) ≈ DKL(Pθ2‖Pθ1) = DKL(Pθ2‖Pθ∗).

(The regularity conditions on the parameter space and reward distributions ensure that such a choice
is possible.) The idea is that, since Pθ and Pθ′ are close, any strategy should pick roughly the same
sequence of arms in both scenarios, but a strategy that performs well on θ will behave relatively poorly
on θ′ (and vice versa), since the ordering of arms according to optimality is different in the two settings.
In particular, we will derive the following bound, relating the probabilities of pulling the second arm
in each of the parameter settings:

Pθ(T2(n) < an) ≤ c′n Pθ′(T2(n) < an) + bn, (10)

where an =
(1−3α) log n

DKL(Pθ2
‖Pθ′2

)
, and we take α < 1

3 . We can show that bn = o(1) since Pθ and Pθ′ are close, and

that the right-hand probability is also o(1), since arm 2 is optimal under θ′.
For a fixed strategy, let {Xj,s} 1≤j≤k

1≤s≤n
denote the rewards corresponding to various arm pulls.

For A ⊆ {T2(n) = n2}, we have
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Pθ′(A) =
∫

A
dPθ′(x) =

∫
A

dPθ′(x)
dPθ(x)

· dPθ(x)

=
∫

A

n2

∏
s=1

dPθ′2
(x2,s)

dPθ2(x2,s)
dPθ(x)

=
∫

A
e−L2(x)dPθ(x),

where we define L2(x) = ∑
T2(n)
s=1 log

dPθ2
(x2,s)

dPθ′2
(x2,s)

. In particular, if A ⊆ {T2(n) = n2, L2(X) ≤ cn}, we have

Pθ′(A) ≥ e−cn Pθ(A),

where we will take cn = (1− 2α) log n. We may therefore write

Pθ(T2(n) < an) = Pθ(T2(n) < an, L2(X) ≤ cn) + Pθ(T2(n) < an, L2(X) > cn)

≤ ecn Pθ′(T2(n) < an, L2(X) ≤ cn) + Pθ(T2(n) < an, L2(X) > cn)

≤ ecn Pθ′(T2(n) < an) + Pθ(T2(n) < an, L2(X) > cn),

which is inequality (10) with c′n = ecn and bn = Pθ(T2(n) < an, L2(X) > cn). Note that if T2(n) < an,

we have L2(X) < ∑an
s=1 log

dPθ2
(X2,s)

dPθ′2
(X2,s)

, so

bn ≤ Pθ

(
an

∑
s=1

log
dPθ2(X2,s)

dPθ′2
(X2,s)

> cn

)
= o(1),

where the last equality follows from the fact that the rewards {X2,s}an
s=1 are i.i.d. and

1
an

an

∑
s=1

log
dPθ2(X2,s)

dPθ′2
(X2,s)

a.s.−→ Eθ

[
log

dPθ2(X2,s)

dPθ′2
(X2,s)

]
= DKL(Pθ2‖Pθ′2

).

Finally, we bound Pθ′(T2(n) < an) using Markov’s inequality:

Pθ′(T2(n) < an) = Pθ′(n− T2(n) ≥ n− an) ≤
Eθ′ [n− T2(n)]

n− an
= o(nα−1),

where the last equality follows from the fact that an = o(n) and the assumption on Rn(θ′). Altogether,
we conclude that the right-hand side of inequality (10) is o(1).

By another application of Markov’s inequality, we conclude that

Eθ [T2(n)] ·
DKL(Pθ2‖Pθ′2

)

log n
≥ Pθ

(
T2(n) ≥

log n
DKL(Pθ2‖Pθ′2

)

)
> Pθ(T2(n) > an)→ 1.

Hence,
Eθ [T2(n)]

log n
≥ 1

DKL(Pθ2‖Pθ′2
)
≈ 1

DKL(Pθ2‖Pθ∗)
,

as wanted.

Note that the assumption Rn(θ1, . . . , θk) = o(nα) implies that a sufficiently good player strategy
exists for all choices of reward parameters. In particular, such a condition may be verified when the
reward distributions are Bernoulli (e.g., Pθ ∼ Bernoulli(θ)). Then, we have

DKL(Pθ1‖Pθ2) = θ1 log
θ1

θ2
+ (1− θ1) log

1− θ1

1− θ2
,
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and combined with Theorem 5, we obtain the lower bound

lim inf
n→∞

Rn(θ1, . . . , θk)

log n
≥ µ∗(1− µ∗) ∑

j:µj<µ∗

1
µ∗ − µj

.

A player strategy known as the Upper Confidence Bound (UCB) strategy may be shown to achieve
this lower bound, up to constant factors [32,33].

Finally, we mention a non-asymptotic lower bound on the pseudo-regret that comes from the
probably approximately correct (PAC) literature on bandits [34–36]:

Theorem 6. In the case of Bernoulli reward distributions, there exist positive constants {ci}5
i=1 such that for

all k ≥ 2 and n ≥ 1, the pseudo-regret of any strategy satisfies

sup
θ1,...,θk∈[0,1]

Rn(θ1, . . . , θk) ≥ min
{

c1n, c2k + c3n, c4k(log n− log k + c5)
}

. (11)

Proof (sketch). For a detailed proof of Theorem 6, we refer the reader to Mannor and Tsitsiklis [36].
The main idea is to construct a collection of k vectors {θ1, . . . , θk} ⊆ [0, 1]k corresponding to the
parameters of the reward distributions on arms. For each 2 ≤ i ≤ k, we define the vector
θi = (θi

1, . . . , θi
k) such that

θi
1 =

1
2
+

ε

2
, θi

i =
1
2
+ ε, θi

j =
1
2

, for j /∈ {1, i},

and we define the vector θ1 such that

θ1
1 =

1
2
+

ε

2
, θ1

j =
1
2

, for j > 1.

In other words, the reward distribution of arm 1 is the same for all k parameter settings, but in the
case of vector θi, the reward distribution for arm i is slightly better than the reward distributions of the
other arms. We then compute a weighted sum of the regret incurred in each parameter setting, where
θ1 is given weight 1

2 and all other θi’s are given weight 1
2(n−1) . We may show that this weighted regret

is lower-bounded by the quantity appearing in inequality (11), implying the existence of at least one
parameter setting that satisfies the desired bound. Computing the lower bound for the weighted regret
is similar to the procedure adopted in the proof of Theorem 5, in that we compute a lower bound on
the expected number of arm pulls of each suboptimal arm in each parameter setting in terms of ε.

Theorem 6 is a type of minimax result, stating that, for any player strategy, a distribution of
Bernoulli rewards exists for which the problem incurs Ω(log n) regret. The same UCB strategies of
Auer et al. [33] may be used to obtain O(log n) upper bounds on the minimax regret even for the
worst-case reward distribution, showing that the bound stated in Theorem 6 is tight.

4.2. Adversarial Bandits

In the adversarial setting, we allow the reward distributions to vary arbitrarily over time. Thus,
we assume that the reward distributions are chosen by an “adversary”, where the class of permissible
adversarial strategies is denoted by P . For a player strategy S and an adversarial strategy P ∈ P ,
we define the pseudo-regret analogously to the stochastic case:

Rn(S, P) = max
1≤j≤k

EP

[
n

∑
t=1

Xj,t

]
−ES,P

[
n

∑
t=1

XIt ,t

]
,
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where the first expectation is taken with respect to possible randomization in the adversarial strategy,
and the second expectation is taken with respect to randomization in the strategies of both the player
and adversary.

The following result provides a lower bound for the minimax pseudo-regret, where the supremum
is taken over PBer, the set of all Bernoulli reward distributions over the k time steps, and the infimum
is taken over all player strategies [30,37]:

Theorem 7. The minimax pseudo-regret satisfies the bound

inf
S∈S

sup
P∈PBer

Rn(S, P) ≥ 1
18
·min{

√
nk, n},

where the infimum is taken over all (possibly randomized) player strategies.

Proof (sketch). Note that it suffices to prove the bound when the infimum is taken over deterministic
player strategies, since the pseudo-regret for a randomized strategy will be a convex combination
of the pseudo-regret of deterministic strategies. Fix a deterministic player strategy, and consider the
reward distributions P1, . . . ,Pk ∈ PBer, where Pj corresponds to the distribution where the reward

of each arm i 6= j is i.i.d. Bernoulli
(

1
2

)
, and the reward of arm j is i.i.d. Bernoulli

(
1
2 + ε

)
. Note that

this construction bears some similarity to the proof outline for Theorem 6 provided above, in that the
reward distribution Pj slightly favors arm j. We will also compute a lower bound for the weighted
regret, this time allocating uniform weights to each parameter setting, in order to conclude the existence
of at least one assignment of reward distributions satisfying the desired lower bounds. Let Ej denote
the expectation with respect to the reward distribution Pj.

We may compute

1
k

k

∑
j=1

Rn(S,Pj) =
1
k

k

∑
j=1

Ej

[
∑
i 6=j

εTi(n)

]
=

ε

k

k

∑
j=1

Ej
[
n− Tj(n)

]
= ε

(
n− 1

k

k

∑
j=1

Ej[Tj(n)]

)
, (12)

where Ti(n) denotes the number of pulls of arm i.
Let P denote the reward distribution where all arms have a Bernoulli

(
1
2

)
distribution. We may

obtain the following bound:

Ej[Tj(n)]
(a)
≤ EP[Tj(n)] + n

√
1
2

DKL(P‖Pj)
(b)
= EP[Tj(n)] +

n
2

√
log
(

1
1− 4ε2

)
E[Tj(n)], (13)

where inequality (a) may be derived by first relating the difference in expectations for bounded
random variables to total variation distance and then applying Pinsker’s inequality, and equality (b)
follows from a direct computation. Combining inequalities (12) and (13), we then obtain

1
k

k

∑
j=1

Rn(S,Pj) ≥ ε

(
n− n

k
− n

2k

√
log
(

1
1− 4ε2

) k

∑
j=1

√
E[Tj(n)]

)

= εn

(
1− 1

k
− 1

2

√
log
(

1
1− 4ε2

)
1
k

k

∑
j=1

√
E[Tj(n)]

)

≥ εn

(
1− 1

k
− 1

2

√
log
(

1
1− 4ε2

)√
n
k

)
,
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using the concavity of the square root function. Choosing ε = 1
4n min{

√
kn, n} then yields the inequality

sup
P∈PBer

Rn(S, P) ≥ 1
k

k

∑
j=1

Rn(S,Pj) ≥
1

18
min{

√
kn, n},

and taking an infimum over all player strategies produces the desired result.

Note that the lower bound provided in Theorem 7 clearly also holds when the supremum is taken
over any class of adversarial strategies containing PBer. In particular, one topic of study is that of
oblivious adversaries, which are allowed to perform any strategy that is non-adaptive to the actions
of the player (i.e., it is chosen before the start of the first round). The Exp3 algorithm provides an
upper bound on the minimax pseudo-regret for oblivious adversaries that matches the lower bound in
Theorem 7 up to a factor of

√
log k [37]. The study of non-oblivious adversaries refers to the setting

where the adversary’s actions may be chosen in response to the player’s sequential choices, as well,
and is also an active area of research [31,38].

5. Discussion

In this article, we have presented several distinct approaches for deriving lower bounds in various
statistical learning problems. In each of the settings described—statistical estimation, community
recovery, and online learning—we have shown how to simplify the problem to one involving channel
decoding, and leverage information-theoretic bounds on the hardness of the decoding problem to
bound the hardness of the corresponding statistical problem. It is worth reflecting on the similarities
between the techniques employed in each of the approaches. Although the specific interpretation
involving channel decoding looks quite different in each of the settings, the trick is to find an
appropriate discretization of parameter space so that pairs of parameters are relatively far apart,
but the corresponding data-generating distributions are close. In the context of statistical estimation,
this means that we construct a packing of parameter space. In the community recovery setting, we
consider pairs of community partitions that differ only in the assignment of a single node. In the
multi-armed bandit setting, we consider pairs of arm parameters that flip the assignment of the optimal
arm, while perturbing the parameter values as little as possible.

On a more applied note, information-theoretic tools have made an appearance in various
machine learning algorithms involving maximizing independence between observed quantities. Some
examples include decision tree learning via information gain [39]; independent component analysis by
mutual information minimization [40]; causal inference algorithms maximizing independence [41];
minimal-redundancy-maximal-relevance (mRMR) methods for feature selection [42]; and image
registration via mutual information maximization in medical imaging [43]. As a result, quantities
such as mutual information have become increasingly mainstream in data science applications. Note,
however, that such applications of information theory to machine learning have no connection to
the channel decoding techniques or hardness results discussed in this article. In terms of statistical
theory, these applications have created a renewed interest in deriving efficient estimators of entropy
and other related information measures based on finite samples [44–47], but a detailed discussion of
such methods is somewhat orthogonal to the main topic of this survey.
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