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Abstract: A new measure based on the tripartite information diagram is proposed for identifying
quantum discord in tripartite systems. The proposed measure generalizes the mutual information
underlying discord from bipartite to tripartite systems, and utilizes both one-particle and two-particle
projective measurements to reveal the characteristics of the tripartite quantum discord. The feasibility
of the proposed measure is demonstrated by evaluating the tripartite quantum discord for systems with
states close to Greenberger–Horne–Zeilinger, W, and biseparable states. In addition, the connections
between tripartite quantum discord and two other quantum correlations—namely genuine tripartite
entanglement and genuine tripartite Einstein–Podolsky–Rosen steering—are briefly discussed.
The present study considers the case of quantum discord in tripartite systems. However, the proposed
framework can be readily extended to general N-partite systems.
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1. Introduction

Quantum correlation plays an important role in investigating quantum physics and its associated
behaviors and applications, such as quantum critical phenomena [1], quantum evolution under
decoherence [2], and quantum technology [3,4]. Many tools have been proposed for investigating the
extent to which quantum mechanics can describe the rationale behind observed phenomena and ensure
that key procedures are reliably performed in the quantum regime. Among these tools, entanglement [5],
Bell nonlocality [6], and quantum discord [7–9] are the most commonly used. These measures adopt
different standpoints to evaluate the quantum characteristics. For example, the quantum discord is
based on the concept of mutual information. Notably, the quantum discord is capable of capturing
quantum correlations not only in entangled states, but also in separable states for bipartite systems.

The main principle of quantum discord is to characterize and evaluate the difference between
two expressions of the mutual information in bipartite systems. However, various approaches have
also been proposed for evaluating quantum discord in systems involving more than two parties.
For example, the study uses the monogamy relation [10] to expresses entanglement of formation
in terms of different discord in multipartite systems [11]. Another study based on the relative
entropy [12] allows the measure of multipartite quantum discord to be nonnegative for arbitrary
states. In addition, the quantum discord has been directly generalized by using multivariate mutual
information [13] to reveal various correlation features under the mutual information described in
different ways. In the present study, tripartite quantum correlations are characterized and certified
using a tripartite information diagram conditioned on one circle, where each circle represents a different
variable. Using the proposed measure, tripartite correlations are demonstrated for states close
to Greenberger–Horne–Zeilinger, W, and biseparable states. Furthermore, a comparison is made
between the multipartite discord correlation considered in this study and two other important
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quantum correlations—namely genuine multipartite entanglement [14] and genuine multipartite
Einstein–Podolsky–Rosen steerability [15].

2. Quantum Discord

In classical information theory [16], the Shannon entropy for an unknown random variable X
is given as H(X) = −∑i P(xi) log2 P(xi), where P(xi) is the probability of variable xi. Moreover,
the correlation between two random variables X and Y is measured by their mutual information; i.e.,

J(X; Y) = H(X)− H(X|Y), (1)

where H(X|Y) ≡ ∑j P(yj)H(X|Y=yj) is the conditional entropy of X conditioned on the value yj
of Y. Applying the Bayes rule [17], the conditional entropy H(X|Y) can be rewritten in terms of
the entropy H(X) and joint entropy H(X, Y) = −∑i ∑j P(xi, yj) log2 P(xi, yj), where P(xi, yj) is the
joint probability of variables xi and yj. In other words, the conditional entropy H(X|Y) is equal
to H(X, Y) − H(Y). Consequently, the following classically equivalent expression for the mutual
information can be obtained:

I(X; Y) = H(X) + H(Y)− H(X, Y). (2)

Thus, the mutual information I(X; Y) and J(X; Y) are equal in classical systems.
In the quantum regime, a composite system AB consisting of subsystems A and B is described by

the density operator ρAB. Furthermore, when tracing out a subsystem, the reduced density operators
for subsystems A and B are represented by ρA and ρB, respectively. The von Neumann entropy for the
system expressed in the form of the density operator is S(ρ) = −Tr[ρ log2 ρ]. For instance, the entropy
of subsystem A is S(A) = S(ρA), while that of the composite system AB is S(A, B) = S(ρAB).
Moreover, the conditional entropy of A conditioned on the states of B is S(A|B) = ∑j PjS(ρA|Πj

B
),

where Πj
B is the j projector set for subsystem B and Pj is the probability of measuring state j. The mutual

informations I(A; B) and J(A; B) are then given as [7]:

I(A; B) = S(A) + S(B)− S(A, B),

J(A; B) = S(A)− S(A|B).
(3)

As shown in Equation (3), the conditional entropy S(A|B) is not equal to the entropy S(A, B)− S(B)
for quantum systems in general. The difference between the two expressions for the mutual information,
I(A; B) and J(A; B), is referred to as the quantum discord [7,8], and is defined as

δ(A; B) = min
Πj

B

[I(A; B)− J(A; B)]. (4)

The value of function I(A; B) − J(A; B) may increase due to projective measurements on B.
This increase causes an uncorrelated system to show a false signal of quantum discord. In order to
eliminate such measurement-induced disturbance (MID) [18], it is necessary to find the projector
Πj

B which minimizes the discord. The quantum discord [7,8] can be applied to general bipartite
systems, such as multi-qubit systems partitioned into two groups. However, it does not allow the
correlations between each qubit to be described very clearly. Accordingly, the following section
presents an approach for certifying and characterizing the quantum discord in multipartite systems by
means of a tripartite information diagram (TID).

3. Revealing Tripartite Quantum Discord with Tripartite Information Diagram

Consider the TID shown in Figure 1, in which the three circles represent the entropies of three
different variables, X, Y, and Z. As shown, the color block corresponding to the multivariate mutual



Entropy 2017, 19, 602 3 of 10

information H(X; Y; Z) can be described by more than two sets of combinations of the other color
blocks. Consequently, more than two expressions for the multivariate mutual information exist; i.e.,

H(X; Y; Z) = H(X) + H(Y) + H(Z)− H(X, Y)− H(Y, Z)− H(X, Z) + H(X, Y, Z)

= H(X, Y)− H(Y|X)− H(X|Y)− H(X|Z)− H(Y|Z) + H(X, Y|Z)
= H(X) + H(Y) + H(Z)− H(X, Y)− H(X, Z) + H(X|Y, Z).

(5)

It is noted that all of these expressions are equal in classical systems.

Figure 1. Tripartite information diagram (TID). The three circles represent the individual entropies of
variables X, Y, and Z. The mutual information among the variables is represented by the overlapping
region of the circles. The conditional entropies are represented by the circles of the corresponding
variable excluding the overlaps of the circles corresponding to the conditioned variables. For instance,
the mutual information of variables X and Z is represented by the cyan block, which is the overlap
between the green circle and the blue circle. Similarly, the conditional entropy of X conditioned on Y
and Z is the green block excluding the yellow block and the cyan block.

In the present study, the tripartite quantum discord is defined as the difference between two
expressions of the mutual information derived from the TID. Furthermore, the variables X, Y, and Z
are treated as subsystems A, B, and C, and their entropies are described as von Neumann entropy.
Since many different expressions for classical mutual information exist, tripartite quantum discord
can also be described in many formats. For instance, quantum dissension [13] can be described by
the quantum analogue of Equation (5). This study presents a further format for describing tripartite
quantum discord. Specifically, one of the expressions of mutual information I(A; B; C) is defined as
comprising entropies of reduced systems and joint entropies only; that is,

I(A; B; C) = S(A) + S(B) + S(C)− S(A, B)− S(B, C)− S(A, C) + S(A, B, C). (6)

Referring again to Figure 1, the aim for the other expression of mutual information is to construct the
multivariate mutual information without joint entropies in one circle, where each circle represents the
entropy of one variable. For example, H(X; Y; Z) consists of H(X), H(X|Y), H(X|Z), and H(X|Y, Z).
Given a system with three variables, there exist three expressions for the multivariate mutual
information. Let the three expressions be defined as the quantum analogues Jk(A; B; C) with k ∈ {A, B, C}
shown as below:

JA(A; B; C) = S(A)− S(A|B)− S(A|C) + S(A|B, C),

JB(A; B; C) = S(B)− S(B|A)− S(B|C) + S(B|A, C),

JC(A; B; C) = S(C)− S(C|B)− S(C|A) + S(C|A, B).

(7)
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The mutual information Jk(A; B; C) comprises entropies of reduced systems and conditional
entropies including one-particle projective measurements and two-particle projective measurements.
For each expression Jk(A; B; C), one specific subsystem is not projected. However, those projective
measurements which are performed may cause MID. Thus, to eliminate potential false signals of
tripartite quantum discord, a search is made for the projectors Πm and Πn, where m, n ∈ {A, B, C}
and m, n 6= k, which minimize the function I(A; B; C)− Jk(A; B; C). As a result, the proposed tripartite
quantum discord measure is defined as

δk(A; B; C) = min
Πm ,Πn

[I(A; B; C)− Jk(A; B; C)]. (8)

For the projectors Πm and Πn, in the present work we concern how discord can be observed by
performing local measurements on spatially separated subsystems. Such scenarios can have direct
connections with the quantum-information tasks such as quantum communication [3] and one-way
quantum computation [4].

It is worth noting that, compared to the discord for bipartite systems [7], δk(A; B; C) can be
negative. The reason is that measurements on subsystems for conditional entropies can make
a pure state of the multipartite system collapse to a mixed state, and can increase the uncertainty
of the remaining subsystems of interest. This typically involves an increase of entropy. Hence,
we have S(α|β) ≥ S(α, β)− S(β) and S(α|β, γ) ≥ S(α, β, γ) − S(β, γ) for α, β, γ ∈ {A, B, C} and
α 6= β 6= γ [7]. Both inequalities have effects on the function δk(A; B; C). As a result, the value of
tripartite quantum discord can be negative for quantum systems. See Section 5 and Figure 2 for
concrete examples. Furthermore, one may consider that the discord can be alternatively defined as:
δ(A; B; C) = mink δk(A; B; C), to describe possible integral correlation of a tripartite system. However,
for biseparable systems as will be illustrated in Section 5.4, the tripartite quantum discord δ(A; B; C)
derived from this definition cannot be detected when the subsystem k is separate from the other two
subsystems, whereas our measure can still show the discord of biseparable systems.

(a) GHZ state

DA

(b) W state

DA

Figure 2. Tripartite quantum discord focused on one subsystem for pure states. (a) For the Greenberger–
Horne–Zeilinger (GHZ) state, the minimum of function DA(θ2, θ3) occurs at θ2 = θ3 = 0; (b) for the W
state, the minimum of function DA(θ2, θ3) occurs at θ2 = θ3 = π/4.

Referring to the framework of the proposed measure, the mutual information I(A; B; C) obeys
the inclusion–exclusion principle. Furthermore, the mutual information J(A; B; C) can be described
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by rewriting the mutual information I(A; B; C) with the concept of Bayes rule [17] used in classical
systems. Therefore, the proposed measure can be extended to general N-partite systems.

4. Tripartite Quantum Discord Focused on One Subsystem for Pure States

In accordance with Equation (7), focusing on one subsystem (e.g., A) means that the mutual
information JA(A; B; C) only comprises entropy of subsystem A and conditional entropies of
subsystem A conditioned on the other subsystems. In order to investigate the discord in tripartite
quantum systems, the following discussions consider two particular pure tripartite states; namely,
the Greenberger–Horne–Zeilinger (GHZ) state [19] and the W state.

4.1. Tripartite Quantum Discord Focused on One Subsystem for GHZ State

Consider a pure tripartite GHZ state [19] of the form

|GHZ〉 = 1√
2
(|0A0B0C〉+ |1A1B1C〉), (9)

where |0〉 and |1〉 are computational basis states and form an orthonormal basis for the vector space.
After tracing out two subsystems, the density operators representing the individual subsystems are
given by

ρA = ρB = ρC =
1
2
(|0〉〈0|+ |1〉〈1|), (10)

where the von Neumann entropies are all equal to one; i.e., S(A) = S(B) = S(C) = 1. Similarly, by tracing
out any one of the three subsystems, the reduced density operators are obtained as

ρAB = ρBC = ρAC =
1
2
(|00〉〈00|+ |11〉〈11|). (11)

The entropies of the three density operators are given by S(A, B) = S(B, C) = S(A, C) = 1, respectively.
Since the GHZ state is a pure state, the joint von Neumann entropy S(A, B, C) is equal to zero.

To define the local measurements, consider the following rotations in the directions of the basis
vectors of subsystems:

|+〉j = cos(θj) |0〉j + eiφj sin(θj) |1〉j , (12)

|−〉j = cos(θj) |1〉j − eiφj sin(θj) |0〉j , (13)

where j = 1, 2, and 3 for subsystems A, B, and C, respectively. The conditional entropies of one
subsystem conditioned on another subsystem for the GHZ state can then be represented by

S(α|β) = −(
1 + cos(2θj)

2
) log2

1 + cos(2θj)

2
− (

1− cos(2θj)

2
) log2

1− cos(2θj)

2
, α 6= β, (14)

for α, β ∈ {A, B, C}. Furthermore, the conditional entropies of one subsystem given the other two
subsystems is reduced to zero. Referring to Equation (14), and taking δA(A; B; C) for illustration
purposes, the tripartite quantum discord δA(A; B; C) can be obtained by minimizing function
DA(θ2, θ3) over the angles θ2 and θ3. The function to be minimized is given by

DA(θ2, θ3) = [−1−(1 + cos(2θ2)

2
) log2

1 + cos(2θ2)

2
− (

1− cos(2θ2)

2
) log2

1− cos(2θ2)

2

−(1 + cos(2θ3)

2
) log2

1 + cos(2θ3)

2
− (

1− cos(2θ3)

2
) log2

1− cos(2θ3)

2
].

(15)

As seen in Figure 2a, by minimizing over the angles θ2 and θ3, the tripartite quantum discord
is obtained as δA(A; B; C) = −1. In other words, unlike the original quantum discord, the tripartite
quantum discord measure can have a negative value.



Entropy 2017, 19, 602 6 of 10

4.2. Tripartite Quantum Discord Focused on One Subsystem for W State

The state vector of W state has the form

|W〉 = 1√
3
(|1A0B0C〉+ |0A1B0C〉+ |0A0B1C〉). (16)

By tracing out two subsystems, the individual subsystems are obtained as

ρA = ρB = ρC =
1
3
(2 |0〉〈0|+ |1〉〈1|). (17)

The von Neumann entropies of three subsystems are all equal to 0.918. By tracing out any one of the
three subsystems, the reduced density operators of the W state are obtained as

ρAB = ρBC = ρAC =
1
3
(|00〉〈00|+ |01〉〈01|+ |01〉〈10|+ |10〉〈01|+ |10〉〈10|). (18)

Hence, the von Neumann entropies of the reduced two subsystems, S(A, B), S(B, C), and S(A, C),
are 0.918 and the joint entropy S(A, B, C) is equal to zero for the purity of W state (Equation (16)).

The conditional entropies based on local measurements for the W state are given as

S(α|β) = ∑
j

PjS(ρα|Πj
β

) = −∑
j
(λj log2 λj), α 6= β, (19)

for α, β ∈ {A, B, C}, where λj are the eigenvalues of subsystem α after subsystem β is projected with
the j projector and Pj is the probability of measuring state j. The conditional entropy of one subsystem
conditioned on the other two subsystems is obviously reduced to zero, Referring to Equations (17)–(19),
and taking δA(A; B; C) for illustration purposes, the function I(A; B; C)− JA(A; B; C) can be described
by the function DA(θ2, θ3). The tripartite quantum discord δA(A; B; C) is then obtained via the
minimization of function DA(θ2, θ3).

As shown in Figure 2b, the tripartite quantum discord focused on subsystem A is equal to 0.182.
The interference of the MID is similar to that of the pure tripartite GHZ state. However, for the pure W
state, the tripartite quantum discord is nonnegative for arbitrary projectors.

5. Tripartite Quantum Discord Focused on One Subsystem for the Mixed States

In reality, the states of a system are not pure, but contain noise induced by environment.
Accordingly, this section takes the mixed states in the form of Werner state [20] to evaluate the effect of
the state purity on the performance of the proposed tripartite quantum discord measure. In addition,
the connection between tripartite quantum discord and two other types of quantum correlation—namely
genuine tripartite entanglement (GTE) and genuine tripartite Einstein–Podolsky–Rosen steering
(GTEPRS)—are briefly discussed.

5.1. Tripartite Quantum Discord Focused on One Subsystem for the Werner-GHZ States

Consider the following Werner-GHZ state:

ρGHZ =
1− µ

8
I + µ |GHZ〉〈GHZ| , (20)

where µ is the purity of the Werner-GHZ state (0 ≤ µ ≤ 1) and I is the identity operator. As in the
case of pure tripartite GHZ state, S(A) = S(B) = S(C) = 1, since ρA, ρB, and ρC are all half of identity
operator. By tracing out a single subsystem, the reduced subsystems are obtained as

ρAB = ρBC = ρAC =
1 + µ

4
(|00〉〈00|+ |11〉〈11|) + 1 + µ

4
(|01〉〈01|+ |10〉〈10|). (21)
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Let local measurements be taken in the bases which minimize the function DA(θ2, θ3) for the pure
tripartite GHZ state. The conditional entropies of one subsystem conditioned on another subsystem
for the Werner-GHZ state can then be represented as

S(A|B) = S(A|C) = −(1 + µ

2
) log2 (

1 + µ

2
)− (

1− µ

2
) log2 (

1− µ

2
). (22)

Similarly, the conditional entropy of one subsystem conditioned on the other two subsystems is
obtained as

S(A|B, C) =
1− µ

2
− (

1− µ

4
) log2 (

1− µ

2(1 + µ)
)− (

1 + 3µ

4
) log2 (

1 + 3µ

2(1 + µ)
). (23)

The tripartite quantum discord δA(A; B; C) can then be obtained by substituting Equations (22) and (23)
into Equation (8).

Figure 3a plots δA(A; B; C) as a function of the state purity µ. As shown, the tripartite quantum
discord approaches zero as the state purity reduces, and vanishes at µ = 0 (i.e., ρGHZ is a completely
mixed state).

0.0 0.2 0.4 0.6 0.8 1.0
-1.0

-0.8

-0.6

-0.4

-0.2

0.0

μ

δ
A

(a) Werner-GHZ state

GTE GTE & 
GTEPRS

0.0 0.2 0.4 0.6 0.8 1.0
-0.2

-0.1

0.0

0.1

0.2

μ

δA

(b) Werner-W state

GTE GTE & 
GTEPRS

Figure 3. Tripartite quantum discord focused on one subsystem for Werner states. (a) δA(A; B; C)
for Werner-GHZ state as function of µ; (b) δA(A; B; C) for Werner-W state as function of µ. With the
boundaries derived from [14,15], the orange line shows the boundary of genuine tripartite entanglement
(GTE) while the blue line shows the boundary of genuine tripartite Einstein–Podolsky–Rosen
steering (GTEPRS).

5.2. Tripartite Quantum Discord Focused on One Subsystem for the Werner-W States

The Werner-W state has the form

ρW =
1− µ

8
I + µ |W〉〈W| , (24)

where µ is the purity of the W state (0 ≤ µ ≤ 1). The reduced density operators of the single subsystems
are given by

ρA = ρB = ρC =
3 + µ

6
|0〉〈0|+ 3− µ

6
|1〉〈1| . (25)

Similarly, the density operators of the two subsystems obtained by tracing out a single subsystem are
given as

ρAB = ρBC = ρAC =
3 + µ

12
(|00〉〈00|+ |01〉〈01|+ |10〉〈10|)

+
1− µ

4
|11〉〈11|+ µ

3
(|01〉〈10|+ |10〉〈01|).

(26)



Entropy 2017, 19, 602 8 of 10

The set of local measurement bases originates from the tripartite quantum discord for the pure
W state. The conditional entropies of one subsystem conditioned on another subsystem for the
Werner-W state are expressed as

S(A|B) = S(A|C) = −(3−
√

5µ

6
) log2 (

3−
√

5µ

6
)− (

3 +
√

5µ

6
) log2 (

3 +
√

5µ

6
). (27)

Similarly, the conditional entropy of one subsystem conditioned on the other two subsystems is
obtained as

S(A|B, C) = −(1− µ

4
) log2 (

3(1− µ)

3 + 2µ
)− (

3 + 7µ)

12
) log2 (

3 + 7µ)

2(3 + 2µ)
)

−(1− µ

4
) log2 (

3(1− µ)

2(3− 2µ)
)− (

3− µ

12
) log2 (

3− µ

2(3− 2µ)
).

(28)

Inserting Equations (27) and (28) into Equation (8), we can find the value of δA(A : B : C).
Figure 3b plots δA(A; B; C) as a function of µ. As shown, the tripartite quantum discord is equal to

zero not only in the completely mixed state, but also in a close-to-pure state. The reason is that the value of
S(A|B)− S(A, B)+ S(B)+ S(A|C)− S(A, C)+ S(C) is equal to that of S(A|B, C)− S(A, B, C) + S(B, C).

5.3. Relation with Genuine Tripartite Entanglement and Einstein–Podolsky–Rosen (EPR) Steering

This section briefly reviews the genuine multipartite entanglement (GME) [14] and genuine
multipartite Einstein–Podolsky–Rosen steering (GMEPRS) [15], and discusses their applications in
tripartite quantum systems for the purpose of comparison with the proposed tripartite quantum discord.

For GME, a witness operatorW that detects the GME for states close to |ψ〉 is given by [14]

WGME ≡ αGMEI − |ψ〉〈ψ| , (29)

where αGME is the maximum overlap between the biseparable state and the pure state |ψ〉. Given the
witness operator, all biseparable states ρbi satisfy Tr(WGMEρbi) ≥ 0. If a state ρ that Tr(WGMEρ) < 0,
the state is identified as GTE.

In tripartite system, the maximum overlap αGME for GHZ state and W state are 1/2 and 2/3,
respectively. Referring to Figure 3, and representing the witness operator by the purity µ, the boundary
for Werner-GHZ state is 3/7 while that for the Werner-W state is 13/21. It can further be shown that
if the tripartite quantum discord δA(A; B; C) is less than −0.261 the Werner-GHZ state shows GTE.
However, the tripartite quantum discord for the Werner-W state may have the same value on both
sides of the boundary, in which case δA(A; B; C) cannot indicate the boundary of GME.

Regarding the GMEPRS, assume that a system contains N parties and a source is capable of
creating N-particles. Assume further that each party can receive a particle from the source whenever
an N-particle state is created. Let the system be divided into two groups, As and Bs, where As is
responsible for sending particles from the source to every party. After receiving particles, the parties
measure their respective parts and communicate classically. Since Bs does not trust As, As need to
convince Bs that the state shared between them is entangled. As performs this task if and only if it
can prepare different ensembles of quantum states for Bs by steering Bs’s state. The N-particle state is
genuine N-partite EPR steering if As can achieve the task for all bipartitions As and Bs of the N-particle
system. Given full information about a target state |ψ〉, the witness has the form [15]:

WEPR ≡ αEPRI − |ψ〉〈ψ| , (30)

with critical witness kernel αEPR ≡ max
v
(m1)
1 ,...,v

(mN )
N

∑
v
(m1)
1 ...v

(mN )
N

c(v(m1)
1 ...v(mN)

N )P(v(m1)
1 , . . . , v(mN)

N ),

where c(v(m1)
1 ...v(mN)

N ) are derived from the tomographic decomposition of state |ψ〉 and the joint

probability P(v(m1)
1 , . . . , v(mN)

N ) satisfies that one group has a preexisting-state scenario while the
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other group performs quantum measurements on preexisting quantum states. If a state ρ that
Tr(WEPRρ) < 0, the state is identified as GMEPRS.

In tripartite systems, the critical witness kernel αEPR for GHZ state and W state are 0.683 and
0.8047, respectively. Let the GMEPRS witness be represented by the purity parameter µ in Figure 3.
It is observed that if the tripartite quantum discord δA(A; B; C) = −0.484 and the purity is greater
than 0.6377, the Werner-GHZ state shows GTEPRS. For the Werner-W state, the boundary lies at
µ = 0.7768. Since δA(A; B; C) can have the same value on both sides of the boundary, the tripartite
quantum discord cannot definitely identify GTEPRS based on the state purity. However, a state ρ can
absolutely show GTEPRS when δA(A; B; C) is greater than zero.

5.4. Tripartite Quantum Discord Focused on One Subsystem for Biseparable States

Unlike Werner-GHZ states or Werner-W states, the structure of biseparable states may be
asymmetric for subsystems A, B, and C. Thus, the tripartite quantum discord δk(A; B; C) for
a biseparable state may be different from that of subsystem focused on. For example, a biseparable
state is expressed as

ρbi = a |0〉A〈0| ⊗
∣∣ϕ+

〉
BC

〈
ϕ+

∣∣+ b |1〉A〈1| ⊗
∣∣ψ−〉BC

〈
ψ−

∣∣ , (31)

where a + b = 1, |ϕ+〉 = (|00〉 + |11〉)/
√

2, and |ψ−〉 = (|01〉 − |10〉)/
√

2. It is easily shown that
δA(A; B; C) is equal to zero, but δB(A; B; C) and δC(A; B; C) do not vanish. Indeed, due to its focus on
just one subsystem, the proposed measure is able to distinguish which particular subsystem is separate
from the others.

6. Comparison with Other Measures

This section briefly compares the multipartite quantum discord proposed in this study with
two other measures, namely global quantum discord [12] and quantum dissension [13]. The former is
based on the relative entropy, and is a symmetric measure with a nonnegative value for an arbitrary
state. By contrast, the quantum dissension and the present measure are based on the original mutual
information concept proposed in [7] and are asymmetric measure. That is, both measures retain the
characteristics of the original quantum discord for bipartite systems, in which projective measurements
project on specific subsystems. However, the two measures are proposed for different purposes.
In particular, the quantum dissension is used to detect a system with a specific number of projective
measurements, while that proposed in this study focus on one subsystem, and is thus suitable for the
analysis of systems in which the projective measurements do not project on one specific subsystem.

7. Conclusions

This study has proposed a new measure for the identification of tripartite quantum correlations
based on the tripartite information diagram and focused on just one subsystem. The feasibility of the
proposed measure has been demonstrated for both Werner-GHZ states and Werner-W states. Moreover,
the tripartite quantum correlation has been compared with the genuine multipartite nonseparability
and steerability. Finally, it has been shown that the measure is capable of revealing the characteristics
of biseparable states. Notably, the measure proposed in this study for revealing tripartite quantum
discord can be readily extended to certify multipartite quantum discord focused on one subsystem by
the Bayes rule [17] and the inclusion–exclusion principle.
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