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Abstract: Misalignment is one of the common faults for the doubly-fed wind turbine (DFWT), and the
normal operation of the unit will be greatly affected under this state. Because it is difficult to obtain a
large number of misaligned fault samples of wind turbines in practice, ADAMS and MATLAB are
used to simulate the various misalignment conditions of the wind turbine transmission system to
obtain the corresponding stator current in this paper. Then, the dual-tree complex wavelet transform
is used to decompose and reconstruct the characteristic signal, and the dual-tree complex wavelet
energy entropy is obtained from the reconstructed coefficients to form the feature vector of the fault
diagnosis. Support vector machine is used as classifier and particle swarm optimization is used
to optimize the relevant parameters of support vector machine (SVM) to improve its classification
performance. The results show that the method proposed in this paper can effectively and accurately
classify the misalignment of the transmission system of the wind turbine and improve the reliability
of the fault diagnosis.
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1. Introduction

In recent years, doubly-fed wind turbines (DFWT) have become the main units for large-capacity
wind farms. It has attracted wide attention to reduce the failure frequency and maintenance costs
of DFWT by applying state monitoring technology [1,2]. Misalignment is a common fault of DFWT.
Because the transmission chain is long and being installed in tens of meters, or even hundreds of
meters high altitude cabin, the exact alignment of the crew is very difficult. Moreso, the unit starts
and stops frequently because of the fluctuations of wind speed. As time goes on, there will be a
shift or deformation in some components, resulting in misalignment between the generator and the
gearbox [3]. When misalignment happens, heavy dynamic load will be produced between the gearbox
high-speed shaft and the generator bearings. These will lead to the increasing axial and radial vibration.
Also, it will cause bearing oil leakage, high temperature and the fastening bolts loosening, affecting
the power generation seriously, resulting in huge economic losses. The accumulation of eccentric error
even causes damage to bearings of the high-speed end and generator. Because misalignment is an
important cause of early failure of large DFWT and may cause damage to two core parts including the
gearbox and generator, it is necessary to study the misalignment fault diagnosis methods to ensure
longst anding and stable running of the DFWT.
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At present, the vibration-based monitoring is the main mean to detect misalignment failure.
For example, in literature [4], the vibration test system is used to monitor the abnormal working of
the wind turbine, the misalignment fault signal of the rotor is obtained, which provides the basis
for the rotor misalignment fault diagnosis of the wind turbine. However, the fault alarm rate and
equipment costs of this method are high and the sensor installation is inconvenient. By analyzing
the generator stator current to diagnose the fault, it can overcome these shortcomings. Now, some
scholars have conducted research in this area. For example, MATLAB/Simulink was used to establish
an electromechanical coupling model of the asynchronous motor to simulate misalignment, imbalance
and other failures by Hou et al. [5], and the characteristics of the stator current were analyzed,
which provided a new theoretical basis for improving the rotor system dynamics and fault diagnosis.
However, the traditional simulation model of the wind turbine transmission system established
in the MATLAB environment cannot reflect the real operating conditions. Of course, many fault
parts models cannot be established in MATLAB [6]. In view of the three-dimensional simulation
model of the transmission system established by ADAMS, it can better reflect the actual physical
model and MATLAB has some advantages in establishing the control simulation model of wind
turbine. In this paper, the 3D model of 1.5 MW wind turbine is established using Solidworks, and the
model is then imported into ADAMS, where the normal working condition, parallel misalignment,
angle misalignment and comprehensive misalignment are simulated. The wind turbine models and its
control system are established by MATLAB. The mechanical input of the wind turbine models is the
mechanical output of the high-speed shaft of the transmission system. The advantages of MATLAB
and ADAMS are combined together in this way. The corresponding stator current can be obtained for
analysis. Because the fault signals contained in the stator current have the characteristics of nonlinear
and non-stationary, the complex transmission path and the strong on-site noise have caused great
difficulty in extracting the fault characteristic information [7]. Therefore, how to remove the strong
background noise while preserving the weak fault information is the key to the fault feature extraction
and diagnosis of the transmission system. At present, the main methods of processing stator currents
are traditional Fourier transform, wavelet transform [8] and dual-tree complex wavelet transform
(DTCWT) [9]; the comparison of these is shown in Table 1.

Table 1. Comparison of stator currents processing methods.

Item Methods Characteristic

Traditional Signal Processing Fourier Transform Not applicable to time-varying signals and
non-stationary signals

Modern Signal Processing
Wavelet Transform

Using variable size windowing technology, with
strong local analysis ability of frequency band;
prone to frequency aliasing and energy leaking

Dual-Tree Complex
Wavelet Transform

With the advantages of wavelet transform,
little frequency aliasing and energy leaking

Among them, the DTCWT is a new type of wavelet transform, which has the advantages of little
frequency aliasing, approximate shift invariance and so on, compared with wavelet transform [10].
In this paper, the DTCWT is used to extract the energy entropy of the stator current, and then the support
vector machine (SVM) is used as the diagnostic tool. As a more and more widely used diagnostic tool,
SVM have prominent advantages compared with other diagnostic tools [11–14]. The characteristics
are shown in Table 2. For SVM, the choice of parameters is important. The commonly used methods
of parameters selection are grid search, genetic algorithm (GA), particle swarm optimization (PSO)
and so on. Grid search is to arrange the possible values of the various parameters in a row and list
all possible combinations of results to generate a “grid”. The combinations are then used for SVM
training and the performance is evaluated using cross validation. After the fitting function tries all the
combinations of parameters, it returns a suitable classifier with the best combination of parameters.
GA, also known as evolutionary algorithm, is a heuristic search algorithm proposed based on the
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biological evolution process. Compared with grid search and GA, PSO has the merits of high search
speed, high efficiency, easy to find the optimal solution, less set parameters, etc. It has been widely
utilized due to its simple structure [15]. In this paper, PSO algorithm is used to optimize the relevant
parameters of SVM to get better classification performance and improve the accuracy of diagnosis.
The results show that the method can effectively identify the misalignment fault types.

Table 2. Comparison of diagnostic methods.

Methods Characteristic

Neural network The adjustment methods of weight coefficients of neural network are limited; easy to get into local
optimum; over-reliance on learning samples and requiring a lot of samples

Fuzzy Determining the membership and corresponding laws based on experience and experiment, which
has certain limitations

Expert system With expert knowledge and experience; but the knowledge acquisition and development are difficult

SVM Good generalization ability; suitable for a few samples; with global optimality

2. The Related Theories

2.1. Dual-Tree Complex Wavelet Transform

DTCWT was first proposed by Kingsburyf in 1998. It is composed of two parallel discrete
wavelet transforms using different low-pass and high-pass filters, which are called real-tree and
imaginary-tree [16,17]. DTCWT is not only with the excellent properties of real wavelet, but also in
the form of dual-tree filter, which ensures the complete reconstruction of the signals. Meanwhile, it
also solves the problems of shift variance and low directional selectivity in two and higher dimensions
found with the commonly used discrete wavelet transform [18]. Therefore, DTCWT has the advantages
of approximate shift invariance, good directional selectivity (for two-dimensional image processing)
and explicit phase information. The frequency response of the filter has approximate analyticity, that is,
there is almost no negative frequency component in the frequency response of the dual-tree complex
wavelet filter. Compared with real wavelet transform, it has low computational complexity and can be
used for on-line monitoring and mechanical fault diagnosis. Especially, it is suitable for the feature
extraction of weak faults in mechanical equipment [19].

The wavelet function of the dual-tree complex wavelet is a complex, as shown in Equation (1):

ψ(t) = ψh(t) + iψg(t) (1)

where ψh(t) and ψg(t) represent two real wavelets, i is the complex unit, ψh(t) and ψg(t) are required
to be a Hilbert transform pair [20].

Different from complex wavelet transform, the real and imaginary portions of the dual-tree
complex wavelet transform are performed independently, i.e., using two parallel and independent real
wavelet transform, 1/2 sampling interval is required between those two transform. While avoiding a
large number of calculations, the translation invariance of the complex wavelet transform can be easily
obtained [21]. Decomposition and reconstruction process of the dual-tree complex wavelet transform
is shown in Figure 1. The two wavelet transform is respectively called the real tree and imaginary tree.
h0 and h1 are low-pass filter and high-pass filter corresponding to the real tree, respectively, and g0 and
g1 are corresponding to the imaginary tree, respectively.
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Figure 1. Decomposition and reconstruction process of the dual-tree complex wavelet transform (DTCWT).

2.2. The Principles of SVM

The principle of SVM can be briefly described as: giving l sets of training samples (xn, yn),
where n = 1, 2, ..., l; the input xn ∈ Rn; the output yn ∈ {1,−1}. For linearly inseparable
problems, the samples can be mapped to the hyper plane by the kernel function K(xi, xj) to realize
linear separability.

The SVM optimization problem is defined as follows [22,23]:

W(a) =
l

∑
i=1

ai −
1
2

l

∑
i=1

l

∑
j=1

aiajyiyjK(xi, xj), s.t.
l

∑
i=1

aiyi = 0, 0 ≤ ai ≤ C (2)

where ai is the Lagrange operator; C is the penalty factor; K(xi, xj) is the kernel function that satisfies
Mercer’s condition [24]. The commonly used kernel functions are polynomials, RBF, Sigmoid and so
on. The parameter of the RBF kernel function is easy to choose. The complexity of the space will not
become more serious when the kernel parameter is changed within the effective range. Moreover, it is
easy to implement and the identification effect is also good. Thus, the RBF kernel function is selected
in this paper.

K(xi, xj) = exp[−
∣∣xi − xj

∣∣2/(2σ2)] (3)

where σ is the kernel width, which reflects the radius enclosed by the boundary.
SVM was originally designed for binary classification problems. When dealing with multiple

kinds of problems, it is necessary to construct a suitable classifier. At present, there are two main ways
to construct multiple kinds SVM classifier: one-against-all and one-against-one. One-against-all is to
take a kind of samples as a category, the other remaining samples into another category, so k SVM
classifiers are constructed. The unknown sample will be classified as the kind with the largest
classification function values. This classification is not very practical. One-against-one is to recombine
any two classes among multiple classes, and then design a binary classifier for each combination, thus
for M categories need to construct M(M− 1)/2 binary classifies. After that, the voting method is used
to screen those classifiers, and the majority of them is the class of the sample to be classified [25,26].
One-against-one algorithm is adopted in this paper.

For SVM system, the selection of kernel function parameter σ and penalty factor C have a
significant influence on the establishment of the model. The traditional parameter selection method
is based on experience and trial practice; accuracy and speed of calculation cannot be guaranteed.
In order to make the model a better result, the particle swarm optimization algorithm is adopted to
optimize the SVM parameters in this paper.
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2.3. Particle Swarm Optimization

Particle swarm optimization is a swarm intelligence optimization algorithm, proposed by Eberhart
and Kennedy in 1995 [27]. The feasible solution space is firstly set and a certain scale of particle swarm
are initialized in PSO algorithm, then a set of possible solutions can be represented by the coordinate
vector of each particle. Position, velocity, and fitness value are shared among particles, and the particle
iterates and updates its position and velocity information by tracking individual and group extreme
value to find the optimal solution in the solution space [28].

Assuming the number of particles is M, dimension of the solution space is D, the initial position
vector of the ith particle is P0

i = (p0
i1, p0

i2, · · · , p0
iD), its velocity vector is V0

i = (v0
i1, v0

i2, · · · , v0
iD),

its historical optimal position vector is P0
besti = (p0

best1, p0
best2, · · · , p0

bestD), and the historical optimal
position vector of the particle swarm is G0

besti = (g0
best1, g0

best2, · · · , g0
bestD).

In the process of optimization, the position and velocity information of the particles are updated
based on the current individual extremum Pbest and the group extremum Gbest. The particle velocity
vector Vk

i is determined by three parts: the current velocity vector of the particle, the own cognitive
part and the group cognitive part. The three parts determine the global searching ability of the particle.

Vk
i = Vk−1

i + c1r1(Pbest − Pk−1
i ) + c2r2(Gbest − Gk−1

i ) (4)

Pk
i = Pk−1

i + Vk
i (5)

where Vk
i is the velocity vector of ith particle at k iteration; Pk

i is the position vector of ith particle
at k iteration. c1, c2 are learning factors, they are generally taken as constant values according to
experience [29], usually, let c1 = c2 = 2 [30,31]. r1, r2 are random values between 0 and 1 [32].

To prevent the particle from blind searching, the position and speed are generally limited to a
certain range [−Pmax, Pmax] and [−Vmax, Vmax].

Particle swarm optimization algorithm sets the condition to end the search. That is, when the
number of iterations achieves the setting or the searching results achieve the performance indexes, the
group extreme value Gbest is the global optimal solution.

3. The Establishment of DFWT Model

3.1. Transmission System Modeling by ADAMS

The 3D model was established by Solidworks for a 1.5 MW doubly-fed wind turbine in this paper,
and then the model is imported into ADAMS, where the normal working, the parallel misalignment,
the angle misalignment and the comprehensive misalignment of the system are simulated, which can
be referred in literature [11], not repeated here.

3.2. Doubly-Fed Generator and Its Control System Modeling by MATLAB

The doubly-fed generator is similar to the winding asynchronous induction generator in structure.
Its stator side is directly connected to the three-phase power network, and the rotor side is connected
to the power grid through the rectifying inverter. Compared with the general asynchronous generator,
the speed of doubly-fed wind turbine generator is allowed to fluctuate in a certain range. Since the
magnitude and frequency of the current in the rotor side can be adjusted by the rectifying inverter,
the constant output power frequency of the stator side can be maintained when the rotational speed
changes. The structure of doubly-fed wind turbine system is shown in Figure 2.
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Figure 2. The structure of doubly-fed wind turbine (DFWT) system.

3.2.1. Mathematical Model of Doubly-Fed Induction Generator (DFIG)

The doubly-fed induction generator is actually a wound induction generator after removing the
converter. Taking the direction of the current that flows into the circuit as the positive current direction
and the direction of the electromagnetic torque that is in accordance with the generator rotation as the
positive torque direction, the dynamic model of DFIG can be established in a synchronous rotating
coordinate system.

Stator and rotor voltage equations:{
uds = Rsids +

dψds
dt
−ω1ψqs

uqs = Rsiqs +
dψqs

dt
+ ω1ψds

(6)

{
udr = Rridr +

dψdr
dt
−ωsψqr

uqr = Rriqr +
dψqr

dt
+ ωsψdr

(7)

Stator and rotor flux linkage equations:{
ψds = Lsids + Lmidr
ψqs = Lsiqs + Lmiqr

(8)

{
ψdr = Lridr + Lmids
ψqr = Lriqr + Lmiqs

(9)

Stator output power equations: {
Ps =

3
2 (udsids + uqsiqs)

Qs =
3
2 (uqsids − udsiqs)

(10)

Electromagnetic torque equation:

Te = 1.5npLm(iqsidr − idsiqr) (11)



Entropy 2017, 19, 587 7 of 14

where Te is the electromagnetic torque of DFIG; u, i, R, ψ, L, P, Q represent voltage, current, resistance,
flux linkage, inductance, active power, reactive power, respectively; subscript s and r represent stator
and rotor, respectively; subscript d and q represent the d and q axis components of the d–q coordinate
system, respectively; Lm is the mutual inductance; ω1 is the synchronous angular velocity; ωr is the
angular velocity of the rotor; s is the slip; ωs = ω1−ωr = sω1 is the rotation angular velocity of the d–q
coordinate system relative to the rotor, that is, the slip angular velocity; np is the number of pole pairs.

3.2.2. Double-PWM Control Strategy

The AC-DC-AC converter is mainly composed of grid-side converter, rotor-side converter and
energy storage capacitor. The grid voltage oriented vector control technique is adopted in the grid-side
converter, and the basic control target is to ensure the stability of DC voltage and the decoupling
control of active and reactive power. The main control target of the rotor-side converter is to control the
rotor speed and reactive power (active power and power factor) of DFIG independently by the d-axis
and q-axis components of the rotor current to realize the variable speed constant frequency operation
of the generator. In order to achieve the control target, the stator voltage orientation vector control is
adopted in the rotor-side converter to realize the decoupling control of active and reactive power of
the stator. This can be seen in reference [33], not repeated here.

The model of DFIG and its control system established in MATLAB is shown in Figure 3.

Figure 3. The model of doubly-fed induction generator (DFIG) and its control system.

3.2.3. Model Validation

Step speeds are input into the system; the curves of grid-side current, active and reactive power
and DC voltage are shown in Figures 4–7, respectively.

From these figures, it can be seen that the grid-side current and active power can change with the
input speeds of the system. The reactive power can be maintained around zero when the wind turbine
is running at the maximum power point tracking stage. The decoupling control of active and reactive
power on the grid-side is realized. In addition, the DC voltage can also be maintained near the given
value of 1200 V. The control purpose is achieved, which shows that the model is established correctly.
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Figure 4. The varying of input speed.

Figure 5. The varying of grid-side current.

Figure 6. The varying of grid-side active and reactive power.

Figure 7. The varying of DC voltage.

3.3. The Joint Simulation of ADAMS and MATLAB

The established ADAMS model and MATLAB model are very large and complex. To realize the
joint simulation between them, taking into account the simulation efficiency, the method of importing
data is used. By inputting speed to the ADAMS model to simulate the normal working, parallel
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misalignment, angle misalignment and comprehensive misalignment of the system, taking the speed
of high-speed shaft of the gearbox as the input of the generator model in MATLAB, the corresponding
stator currents can be obtained.

4. Fault Diagnosis Based on DTCWT Energy Entropy and SVM

4.1. Dual-Tree Complex Wavelet Energy Entropy Feature Extraction

When misalignment occurs in DFWT, the fault information will be mapped into the stator current,
and the energy of each frequency component in the current will be changed accordingly and so will
the energy distribution. Therefore, after performing the DTCWT on the stator current, the energy of
each sub-band signal, which is called DTCWT energy entropy, can be calculated. The energy entropy
can reflect the characteristics of the stator current. It is defined as follows:

Assuming

Ei =
∫
|ci(t)|

2
dt =

n

∑
k=1

∣∣∣x2
ik

∣∣∣, E =
n

∑
i=1

Ei, pi =
Ei
E

(12)

where i = 1, 2, 3, . . . , n; xik is the amplitude of each discrete point.
Then, the energy entropy is the following:

Pi = −
n

∑
i=1

pilgpi (13)

Five frequency bands can be obtained through four-level dual-tree complex wavelet decomposition
of the stator current, then they are reconstructed and the reconstructed signals contain the information
of the fault from low to high frequency, respectively. The DTCWT energy entropy under four conditions
(normal condition, parallel misalignment, angle misalignment and comprehensive misalignment) of the
simulated transmission system is extracted, and the partial data are shown in Table 3.

Table 3. The partial data of DTCWT energy entropy of stator current in different working conditions.

Fault Type P1 (×10−5) P2 (×10−5) P3 (×10−5) P4 (×10−5) P5 (×10−5)

Normal Condition

6.9166 12.0458 0.006 0.0441 1.6267
6.9187 12.0495 0.0061 0.0451 1.6273
6.9196 12.0511 0.0059 0.0436 1.6274
6.9199 12.0515 0.0058 0.0428 1.6274
6.9254 12.0611 0.006 0.0445 1.629

Parallel Misalignment

5.9174 10.3131 0.0046 0.0371 1.3723
5.9314 10.3375 0.0046 0.037 1.3758
5.9437 10.3589 0.0047 0.0371 1.3789
5.9529 10.3748 0.0047 0.0371 1.3813
5.9712 10.4066 0.0047 0.0375 1.3859

Angle Misalignment

7.1076 11.5805 2.8627 0.2311 1.8312
7.134 12.0723 1.3482 0.1344 1.7517

7.1454 11.8373 2.225 0.2062 1.8049
7.1698 11.4662 3.59 0.2938 1.8913
7.2189 11.5697 3.5182 0.2481 1.8964

Comprehensive Misalignment

10.7387 16.5385 7.3899 1.4555 3.1362
10.8266 16.4356 8.1625 1.7814 3.2307
10.832 17.0982 6.1198 0.757 3.0325
10.8764 17.1712 6.1879 1.5956 3.1145
10.9098 14.4996 14.4082 2.7266 3.7177
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4.2. Fault Diagnosis Method Based on PSO-SVM

The process of PSO optimization algorithm is as follows:

1. Initialize the size of the particle swarm, the acceleration factor, the maximum iterative number,
the initial velocity and position of each particle;

2. Initialize the fitness values of each particle according to the fitness function for all the particles in
the whole population;

3. Calculate the new velocity of the particle according to Formula (4) and limit the new velocity of
each particle to the interval [−Vmax, Vmax];

4. Calculate the new position of the particle according to Formula (5) and limit the new position of
each particle to the interval [−Pmax, Pmax];

5. For each particle, update the best position Pbest;
6. Update the group extreme value Gbest;
7. If the termination condition is satisfied, the solution can be gotten. Otherwise, return to step (3)

to continue the search until the termination condition is satisfied.

After extracting the DTCWT energy entropy of the current, the samples are divided into two
groups; one is the training set, the other is the testing set. The sample number of the training set is
100 (the number of each kind is 25), the testing sample number is also 100 (the number of each kind is
also 25). PSO algorithm is used to optimize the penalty factor C and kernel function parameter σ of
SVM. The specific implementation process is shown in Figure 8.

Figure 8. The particle swarm optimization (PSO)-support vector machine (SVM) fault diagnosis mode.

The value of C1 and C2 is important to the PSO algorithm. According to literature [30,31],
some simulation results comparisons of other values of C1 and C2 are shown in Table 4 and the fitness
curves corresponding to each group’s values are shown in Figure 9.
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Figure 9. Fitness curves. (a) C1 = C2 = 3; (b) C1 = C2 = 2.2; (c) C1 = C2 = 2; (d) C1 = C2 = 1.8;
(e) C1 = C2 = 1.

Table 4. Simulation results comparison of the values of C1 and C2.

C1 C2
Evolution Algebra of

Convergence (Reach 100%)
Optimal
Fitness

Accuracy of
Training Set

Accuracy of
Testing Set

3 3 - 99% 99% (99/100) 94% (94/100)
2.2 2.2 18 100% 100% (100/100) 96% (96/100)
2 2 4 100% 100% (100/100) 96% (96/100)

1.8 1.8 5 100% 100% (100/100) 96% (96/100)
1 1 - 99% 100% (100/100) 96% (96/100)

From the above results, it can be seen that when C1 = C2 = 2, the fitness function converges
fastest, and the optimal fitness, accuracy of training set and accuracy of testing set are the highest.
So in this paper, let c1 = c2 = 2.
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The testing set classification results are shown in Figure 10, where the category label “0”
indicates normal working condition, “1” means parallel misalignment, “2” means angle misalignment,
“3” means comprehensive misalignment.

Figure 10. PSO-SVM testing results.

It can be seen from Figures 9c and 10 that the optimal fitness is 100%, the optimal parameters
are C = 57.2716, σ = 3.7786 and the testing accuracy is 96%, which shows that the accuracy of fault
classification is high.

In order to illustrate the advantages of the proposed PSO-SVM algorithm in this paper,
SVM optimized by grid search and SVM optimized by genetic algorithm are also used to identify
the faults of the same data, the specific recognition results of each diagnostic method are shown in
Figure 11 and Table 5. It can be seen from the results that the training accuracy of GridSearch-SVM
and GA-SVM is also high, but their promotion ability is less than PSO-SVM. Thus, it can be said that
PSO-SVM algorithm is better in diagnostic performance.

Figure 11. Diagnostic results of other algorithms. (a) GridSearch-SVM testing results; (b) Genetic
algorithm (GA)-SVM testing results.

Table 5. Comparison of PSO-SVM with other commonly used classifiers.

Item C σ Accuracy of Training Set Accuracy of Testing Set

GridSearch-SVM 16 4 100% (100/100) 93% (93/100)
GA-SVM 25.558 243.242 100% (100/100) 93% (93/100)
PSO-SVM 57.2716 3.7786 100% (100/100) 96% (96/100)
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5. Conclusions

For actual situations where the monitoring equipment cost is high and the sensor installation
is inconvenient when studying the misalignment of the transmission system of wind turbines
based on traditional vibration signals, the joint simulation method of ADAMS and MATLAB is
adopted to simulate the working conditions of the wind turbine transmission system in this paper.
The corresponding stator current is firstly obtained; then the DTCWT is used to extract DTCWT energy
entropy as the fault features; the SVM, which is good at a few samples learning, is used as classifier,
and the parameters of SVM are optimized by PSO algorithm. The results show that the method is
effective to diagnose the misalignment fault of the wind turbine transmission system, which is better
than other commonly used algorithms. In the future, practical signals will be considered to verify the
accuracy of the algorithm further.
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