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Abstract: Discovering a correlation from one variable to another variable is of fundamental scientific
and practical interest. While existing correlation measures are suitable for discovering average
correlation, they fail to discover hidden or potential correlations. To bridge this gap, (i) we postulate
a set of natural axioms that we expect a measure of potential correlation to satisfy; (i) we show that
the rate of information bottleneck, i.e., the hypercontractivity coefficient, satisfies all the proposed
axioms; (iii) we provide a novel estimator to estimate the hypercontractivity coefficient from samples;
and (iv) we provide numerical experiments demonstrating that this proposed estimator discovers
potential correlations among various indicators of WHO datasets, is robust in discovering gene
interactions from gene expression time series data, and is statistically more powerful than the
estimators for other correlation measures in binary hypothesis testing of canonical examples of
potential correlations.

Keywords: correlation analysis; potential correlation; information bottleneck; hypercontractivity

1. Introduction

Measuring the strength of an association between two random variables is a fundamental topic of
broad scientific interest. Pearson’s correlation coefficient [1] dates from over a century ago and has been
generalized seven decades ago as maximal correlation (mCor) to handle nonlinear dependencies [2—-4].
Novel correlation measures to identify different kinds of associations continue to be proposed in the
literature; these include maximal information coefficient (MIC) [5] and distance correlation (dCor) [6].
Despite the differences, a common theme of measurement of the empirical average dependence unites
the different dependence measures. Alternatively, these are factual measures of dependence and
their relevance is restricted when we seek a potential dependence of one random variable on another.
For instance, consider a hypothetical city with very few smokers. A standard measure of correlation on
the historical data in this town on smoking and lung cancer will fail to discover the fact that smoking
causes cancer, since the average correlation is very small. On the other hand, clearly, there is a potential
correlation between smoking and lung cancer; indeed applications of this nature abound in several
scenarios in modern data science, including a recent one on genetic pathway discovery [7].

Discovery of a potential correlation naturally leads one to ask for a measure of potential
correlation that is statistically well-founded and addresses practical needs. Such is the focus of
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this work, where our proposed measure of potential correlation is based on a novel interpretation
of the Information Bottleneck (IB) principle [8]. The IB principle has been used to address one of the
fundamental tasks in supervised learning: given samples {X;, Y;}! ;, how do we find a compact
summary of a variable X that is most informative in explaining another variable Y. The output of
the IB principle is a compact summary of X that is most relevant to Y and has a wide range of
applications [9,10].

We use this IB principle to create a measure of correlation based on the following intuition: if X is
(potentially) correlated with Y, then a relatively compact summary of X can still be very informative
about Y. In other words, the maximal ratio of how informative a summary can be in explaining Y
to how compact a summary is with respect to X is, conceptually speaking, an indicator of potential
correlation from X to Y. Quantifying the compactness by I(U; X) and the information by I(U;Y) we
consider the rate of information bottleneck as a measure of potential correlation:

y) = [(W;Y)
= R TR o
where U — X — Y forms a Markov chain and the supremum is over all summaries U of X. This intuition
is made precise in Section 2, where we formally define a natural notion of potential correlation
(Axiom 6), and show that the rate of information bottleneck s(X;Y) captures this potential correlation
(Theorem 1) while other standard measures of correlation fail (Theorem 2).

This ratio has only recently been identified as the hypercontractivity coefficient [11]. Hypercontractivity
has a distinguished and central role in a large number of technical arenas including quantum
physics [12,13], theoretical computer science [14,15], mathematics [16-18] and probability theory [19,20].
In this paper, we provide a novel interpretation to the hypercontractivity coefficient as a measure
of potential correlation by demonstrating that it satisfies a natural set of axioms such a measure is
expected to obey.

For practical use in discovering correlations, the standard correlation coefficients are equipped
with corresponding natural sample-based estimators. However, for hypercontractivity coefficient,
estimating it from samples is widely acknowledged to be challenging, especially for continuous
random variables [21-23]. There is no existing algorithm to estimate the hypercontractivity coefficient
in general [21], and there is no existing algorithm for solving IB from samples either [22,23]. We provide
a novel estimator of the hypercontractivity coefficient—the first of its kind—by bringing together
the recent theoretical discoveries in [11,24] of an alternate definition of hypercontractivity coefficient
as ratio of Kullback-Leibler divergences defined in (10), and recent advances in joint optimization
(the max step in Equation (1)) and estimating information measures from samples using importance
sampling [25].

Our main contributions are the following:

e  We postulate a set of natural axioms that a measure of potential correlation from X to Y should
satisfy (Section 2.1).

e  Weshow that 1/s(X;Y), our proposed measure of potential correlation, satisfies all the axioms we
postulate (Section 2.2). In comparison, we prove that existing standard measures of correlation not
only fail to satisfy the proposed axioms, but also fail to capture canonical examples of potential
correlations captured by 1/s(X;Y) (Section 2.3). Another natural candidate is mutual information,
but it is not clear how to interpret the value of mutual information as it is unnormalized, unlike all
other measures of correlation which are between zero and one.

e  Computation of the hypercontractivity coefficient from samples is known to be a challenging
open problem. We in troduce a novel estimator to compute hypercontractivity coefficient from
ii.d. samples in a statistically consistent manner for continuous random variables, using ideas

from importance sampling and kernel density estimation (Section 3).
e  Inaseries of synthetic experiments, we show empirically that our estimator for the hypercontractivity
coefficient is statistically more powerful in discovering a potential correlation than existing correlation
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estimators; a larger power means a larger successful detection rate for a fixed false alarm rate
(Section 4.1).

e  We show applications of our estimator of hypercontractivity coefficient in two important datasets:
In Section 4.2, we demonstrate that it discovers hidden potential correlations among various
national indicators in WHO datasets, including how aid is potentially correlated with the income
growth. In Section 4.3, we consider the following gene pathway recovery problem: we are given
samples of four gene expressions time series. Assuming we know that gene A causes B, that B
causes C, and that C causes D, the problem is to discover that these causations occur in the
sequential order: A to B, and then B to C, and then C to D. We show empirically that the estimator
of the hypercontractivity coefficient recovers this order accurately from a vastly smaller number
of samples compared to other state-of-the art causal influence estimators.

2. Axiomatic Approach to Measure Potential Correlations

We propose a set of axioms that we expect a measure of potential correlation to satisfy. We then
show that hypercontractivity coefficient, first introduced in [19], satisfies all the proposed axioms,
hence propose hypercontractivity coefficient as a measure of potential correlation. We also show
that other standard correlation coefficients and mutual information, on the other hand, violate the
proposed axioms.

2.1. Axioms for Potential Correlation

We postulate that a measure of potential correlation p* : X x Y — [0,1] between two random
variables X € X and Y € Y should satisfy:

p*(X,Y) is defined for any pair of non-constant random variables X and Y.

0<p*(X,Y) <1

p*(X,Y) = 0iff X and Y are statistically independent.

For bijective Borel-measurable functions f,¢: R — R, p*(X,Y) = p*(f(X), g(Y)).

If (X,Y) ~N(u,L), then p*(X,Y) = |p|, where p is the Pearson correlation coefficient.

p*(X,Y) = 1if there exists a subset X, C & such that for a pair of continuous random variables
(X,Y) € X x YV, Y = f(X) for a Borel-measurable and non-constant continuous function f.

AN NS

Axioms 1-5 are identical to a subset of the celebrated axioms of Rényi in [4], which ensure that
the measure is properly normalized and invariant under bijective transformations, and recovers the
Pearson correlation for jointly Gaussian random variables. Rényi’s original axioms for a measure of
correlation in [4] included Axioms 1-5 and also that the measure p* of correlation should satisfy

6". p*(X,Y) = 1if for Borel-measurable functions f or g, Y = f(X) or X = g(Y).
7. p*(XY) =p*(Y; X).

The Pearson correlation violates a subset (3, 4, and 6”) of Rényi’s axioms. Together with recent
empirical successes in multimodal deep learning (e.g., [26-28]), Rényi’s axiomatic approach has been
a major justification of Hirschfeld—Gebelein—-Rényi (HGR) maximal correlation coefficient defined
as mCor(X,Y) := sup .2 E[f(X)g(Y)], which satisfies all Rényi’s axioms [2]. Here, the supremum is
over all measurable functions with E[f(X)] = E[¢(Y)] = 0 and E[f?(X)] = E[¢?(Y)] = 1. However,
maximal correlation is not the only measure satisfying all of Rényi’s axioms, as we show in the following.

Proposition 1. For any function F : [0,1] x [0,1] — [0,1] satisfying F(x,y) = F(y,x), F(x,x) = x,
and F(x,y) = 0 only if xy = 0, the symmetrized F(\/s(X;Y), \/s(Y; X)) satisfies all Rényi’s axioms.

This follows from the fact that the hypercontractivity coefficient \/s(X;Y) satisfies all but the
symmetry in Axiom 7’ (Theorem 1), and it follows that a symmetrized version satisfies all axioms,
e.g., (1/2)(\/s(X;Y) ++/s(Y; X)) and (s(X; Y)s(Y; X))/%. A formal proof is provided in Section 5.1.
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From the original Rényi’s axioms, for a potential correlation measure, we remove Axiom 7’ that
ensures symmetry, as directionality is fundamental in measuring the potential correlation from X to Y.
We further replace Axiom 6’ by Axiom 6, as a variable X has a full potential to be correlated with Y
if there exists a domain A&, such that X and Y are deterministically dependent and non-degenerate
(i.e., not a constant function), as illustrated in Figure 1 for a linear function and a quadratic function.

Linear Quadratic
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Figure 1. A measure of potential correlation should capture the rare correlation in X € [0, 1] in these
examples which satisfy Axiom 6 for a linear and a quadratic function, respectively.

2.2. The Hypercontractivity Coefficient Satisfies All Axioms

We show that the hypercontractivity coefficient defined in Equation (1) satisfies all Axioms 1-6.
Intuitively, s(X;Y) measures how much potential correlation X has with Y. For example, if X and Y are
independent, then s(X;Y) = 0 as X has no correlation with Y (Axiom 3). By data processing inequality,
it follows that it is a measure between zero and one (Axiom 2) and also invariant under bijective
transformations (Axiom 4). For jointly Gaussian variables X and Y with the Pearson correlation
p, we can show that s(X;Y) = s(Y; X) = p2. Hence, the squared-root of s(X;Y) satisfies Axiom 5.
In fact, \/s(X;Y) satisfies all desired axioms for potential correlation, and we make this precise in the
following theorem whose proof is provided in Section 5.2.

Theorem 1. Hypercontractivity coefficient \/s(X;Y') satisfies Axioms 1-6.

In particular, the hypercontractivity coefficient satisfies Axiom 6 for potential correlation,
unlike other measures of correlation (see Theorem 2 for examples). If there is a potential for X in
a possibly rare regime in X" to be fully correlated with Y such that Y = f(X), then the hypercontractivity
coefficient is maximum: s(X;Y) = 1. In the following section, we show that existing correlation
measures, on the other hand, violate the proposed axioms.

2.3. Standard Correlation Coefficients Violate the Axioms

We analyze existing measures of correlations under the scenario with potential correlation
(Axiom 6), where we find that none of the existing correlation measures satisfy Axiom 6. Suppose X
and Y are independent (i.e., no correlation) in a subset X; of the domain &, and allow X and Y to be
arbitrarily correlated in the rest X, of the domain, such that X = &; U &,. We further assume that
the independent part is dominant and the correlated part is rare; let « := P(X € &;) and we consider
the scenario when « is small. A good measure of potential correlation is expected to capture the
correlation in &} even if it is rare (i.e., « is small). To make this task more challenging, we assume that
the conditional distribution of Y|{X € X, } is the same as Y|{X ¢ A, }. Figure 1 illustrates sampled
points for two examples from such a scenario and more examples are in Figure 3. Our main result is the
analysis of HGR maximal correlation (mCor) [2], distance correlation (dCor) [6], maximal information
coefficients (MIC) [5], which shows that these measures are vanishing with « even if the dependence
in the rare regime is very high. Suppose Y|(X € &X;) = f(X), then all three correlation coefficients are
vanishing as a gets small. This in particular violates Axiom 6. The reason is that standard correlation
coefficients measure the average correlation whereas the hypercontractivity coefficient measures the
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potential correlation. The experimental comparisons on the power of these measures confirm our
analytical predictions in Figure 4 in Section 4. The formal statement is below and the proof is provided
in Section 5.3.

Theorem 2. Consider a pair of continuous random variables (X,Y) € X x Y. Suppose X is partitioned as
Xy U Xy = X such that Pyx(S|X € X;) = Py x(S|X € &) forall S C Y, and Y is independent of X for
X € Xy. Let o = P{X € X, }. The HGR maximal correlation coefficient is

mCor(X,Y) = amCor(X,,Y), 2)
the distance correlation coefficient is
dCor(X,Y) = adCor(X,Y), ©)
the maximal information coefficient is upper bounded by
MIC(X,Y) < aMIC(X,,Y), 4)
where X, is the random variable X conditioned on the rare domain X € X.

Under the rare/dominant scenario considered in Theorem 2, s(X;Y) > mCor?(X; Y). It is well
known that this inequality holds for any X and Y [19]. In particular, Theorem 3 in [29] shows that
hypercontractivity coefficient is a natural extension of the popular HGR maximal correlation coefficient
as follows.

Remark 1 (Connection between s(X;Y) and mCor(X,Y) [29]). The squared HGR maximal correlation is
a special case of the hypercontractivity optimization in Equation (10) restricted to searching over a distribution
r(x) in a close neighborhood of p(x).

As s(X;Y) searches over a larger space, it is always larger than or equal to mCor?(X; Y). This gives
an intuitive justification for using s(X;Y') as a measure of potential influence; we allow search over larger
space, but properly normalized by the KL divergence, in a hope to find a potential distribution r(x) that
can influence Y significantly. While hypercontractivity coefficient is a natural extension of HGR maximal
correlation coefficient, there is an important difference between hypercontractivity coefficient and HGR
maximal correlation coefficient (and other correlation measures); hypercontractivity is directional.

Remark 2 (Asymmetry of s(X;Y)). Hypercontractivity coefficient is asymmetric in X and Y while HGR
maximal correlation, distance correlation, and MIC are symmetric.

Under the rare/dominant scenario considered in Theorem 2, the hypercontracitivy coefficient
s(X;Y) is large because it measures the potential correlation from X to Y. On the other hand,
inverse hypercontractivity coefficient s(Y; X), which measures the potential correlation from Y to
X, is small as there is no apparent potential correlation from Y to X. This is made precise in the
following proposition, with its proof in Section 5.4.

Proposition 2. Under the hypotheses of Theorem 2, the hypercontractivity coefficient from'Y to X is
s(Y;X) =as(Y;Xr),

where X, is the random variable X conditioned on the rare domain X € X.
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2.4. Mutual Information Violates the Axioms

Beside standard correlation measures, another measure widely used to quantify the strength of
dependence is mutual information. We can show that mutual information satisfies Axiom 6 if we
replace 1 by co. However there are two key problems:

e  Practically, mutual information is unnormalized, i.e., I(X;Y) € [0,00). Hence, it provides no
absolute indication of the strength of the dependence.

e  Mathematically, we are looking for a quantity that fensorizes, i.e., does not change when there are
many i.i.d. copies of the same pair of random variables.

Remark 3 (Tensorization property of s(X;Y) [30]). Hypercontractivity coefficient tensorizes, i.e.,
(X1, 0 Xu; Y1, Yn) = s(Xq, Y1), foriid. (X;,Y;), i=1,--- ,n.
On the other hand, mutual information is additive, i.e.,
Xy, X Ya, -+, Yy) = nl(Xy; Y1), foriid. (X,Y;), i=1,---,n.

Tensorizing quantities capture the strongest relationship among independent copies while
additive quantities capture the sum. For instance, mutual information could be large because a small
amount of information accumulates over many of the independent components of X and Y (when X
and Y are high dimensional) while tensorizing quantities would rule out this scenario, where there
is no strong dependence. When the components are not independent, hypercontractivity indeed
pools information from different components to find the strongest direction of dependence, which is
a desirable property.

One natural way to normalize mutual information is by the log of the cardinality of the
input/output alphabets [31]. One can interpret a popular correlation measure MIC as a similar effort
for normalizing mutual information and is one of our baselines.

Given that other correlation measures and mutual information do not satisfy our axioms, a natural
question to ask is whether hypercontractivity is a unique solution that satisfies all the proposed axioms.
In the following, we show that the hypercontractivity coefficient is not the only one satisfying all the
proposed axioms—ijust as HGR correlation is not the only measure satisfying Rényi’s original axioms.

2.5. Hypercontractivity Ribbon

We show that a family of measures known as hypercontractivity ribbon, which includes
hypercontractivity coefficient as a special case, satisfy all the axioms. The hypercontractivity
ribbon [19,32] is a class of measures parametrized by a > 0 as

) — D(r()llp(y)) -

et DE@P()) + aD(r(y[0)[p(]x))”

where D(r(x)||p(x)) denotes the KL divergence of r(x) and p(x). An alternative characterization of
hypercontractivity ribbon in terms of mutual information is provided in [24,32];

(u;Y)

(XY) = SO e G YX)

pulxy)

(6)

from which we can see that hypercontractivity coefficient is a special case of hypercontractivity
ribbon [11]:

s(X;Y) = ali_r)rgora(X;Y) = lxlgrgosa(X;Y).
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Proposition 3. The (re-parameterized) hypercontractivity ribbon s (X;Y) := (are(X;Y) —1)/(a — 1),
for o > 1, satisfies Axioms 1-6.

Proof. By definition, s« (X;Y) is defined for any pair of non-constant random variables (Axiom 1)
and is between 0 and 1 by data processing inequality (Axiom 2). We can show that s, (X;Y) satisfies
Axioms 3 and 4, in a similar way to show s(X;Y) satisfies Axioms 3 and 4. Also, s,(X;Y) = p? for
a jointly Gaussian X,Y with Pearson correlation p [24] (Axiom 5). Finally, s, (X;Y) satisfies Axiom 6
because 7, (X;Y) is non-increasing in &, which implies that s, (X;Y) = r,(X;Y) = 1if s(X;Y) =1. O

Although hypercontracitivy ribbon satisfies all axioms, a few properties of the hypercontractivity
coefficient make it more attractive than hypercontractivity ribbon for practical use; hypercontractivity
coefficient can be efficiently estimated from samples (see Section 3). Hypercontractivity coefficient is
a natural extension of the popular HGR maximal correlation coefficient (Remark 1).

2.6. Multidimensional X and Y

In this section, we discuss potential correlation of multidimensional X and Y. While most
of the correlation coefficients, including the hypercontractivity coefficient, are well-defined for
multi-dimensional X and Y, the axioms are specific to univariate X and Y. To bridge this gap,
we propose replacing Axiom 5, as this is the only axiom specific to univariate random variables.

Xx  Xxy

Axiom5 . If (X, Y) ~ N | 1, X =
(X,Y) (V lZYX ¥y

>,thenp*(X, Y) = |25 2 Zxy 2y 2||, where || - |
is the spectral norm of a matrix.

This recovers the original Axiom 5 when restricted to univariate X and Y. This naturally generalizes
both Rényi’s axioms and the proposed potential correlation axioms to multidimensional X and Y.

Proposition 4. Axiom 5, together with original Rényi’s Axioms 1-4, 6°, and 7, recovers maximal correlation
(mCor) as a measure satisfying all Axioms even in this multi-dimensional case. Axiom 5, together with our
proposed Axioms 1—4, and 6, recovers the hypercontractivity coefficient \/s(X;Y) as a measure satisfying
all axioms.

The second statement in the proposition follows from the analyses of the hypercontractivity
coefficient of Gaussian distributions in [33]. A formal proof is provided in Section 5.7.

2.7. Noisy, Discrete, Noisy and Discrete Potential Correlation

In this section, we consider more general scenarios of potential correlation than the one in
Axiom 6. We consider (i) noisy potential correlation where Y = f(X) + Z for a Gaussian noise Z for
(X,Y) € &, x Y, (ii) discrete potential correlation, where X, = {1,---,k}, and (iii) noisy discrete
potential correlation—a random corruption model. For these three examples, we obtain a lower bound
ons(X;Y).

Example 1. Suppose for (X,Y) € X, x Y, (X,Y) ~ N(0,X) for
z = ll p] :
o 1

log 1L + log 1
() @)

10g$+ m

Then

s(X;Y) >
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Proof is in Section 5.5.

We now consider for discrete (X,Y). We start with the case for which X and Y are perfectly
correlated for (X,Y) € A, x ).

Example 2. Suppose that for a pair of discrete random variables (X,Y) € X x Y, there exists a subset
X ={1,2,--- ,k} C X for which P{X € X,} = aand X|{X € X,} ~ Unif[l : k] and Y = X for
X € X,. Then,

. logk
s(XY) = logk +log(1/«)
The inequality holds by considering r(x) = I;x_q; in (10).
We conjecture this lower bound is indeed tight for « < 0.5 based on numerical simulations.
From this lower-bound, we can see the trade-off between k and «. As k — oo, the lower bounds
approaches to 1. As « — 1, the lower bound approaches to 1. As « — 0, the lower bound approaches
to 0. In the following, we consider the case where X and Y are not perfectly correlated in (X, x Y) for

discrete (X, Y). In particular, we consider a random corruption model for (X, x )) and obtain a lower
bound on s(X;Y).

Example 3. Consider a random corruption noise model for (X,Y) € X, x Y, i.e.,

y — Xy w.p.l—k%le,'
Unif[l: k| wp. e
Then
(1—e)logk(l1—¢€)+elogke/(k—1) logk— Hy(e)—elog(k—1)
. > = .
S(X;Y) 2 log(k/a) log(k/ ) ®
On the other hand,
mCor?(X;Y) = 1—Le ’ O<(—:<k;1 )
ori )= k—1°) » == Tk

Proof is in Section 5.6.

In Figure 2, we show plots of lower bounds on s(X;Y) and mCor(X;Y) in Examples 1-3;
from these figures, we can see that s(X;Y) increases as p — 1 and k — oo, and s(X;Y) is larger
than mCor(X;Y) for p ~ 1 and large k.

1 0.8 0.7
— Lower bound on s(X;Y)
2y 0.6
0.8 - = mCor“(X;Y) — Lower bound on s(X;Y))|
0.6 - mGory: 05 — Lower bound on s(X;Y)
mor (2 ’ -~ mCor(X;Y)
06 04
0.4
0.4 0.3
0.2 0.2
0.2
,,,,,,,,,,,,,,,,,,,,,,,,,,, 01 o ______1]
0 0 0
0 0.2 0 100 200 300 400 500 0 100 200 300 400 500
P k k

Figure 2. Lower bound on s(X; Y) and mCor(X;Y) for « = 0.1 in (left) Example 1 (middle) Example 2
(right) Example 3 for € = 0.1.
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3. Estimator of the Hypercontractivity Coefficient from Samples

In this section, we present an algorithm to compute the hypercontractivity coefficient s(X;Y)
from ii.d. samples {X;, Y;}} ;. The computation of the hypercontractivity coefficient from samples is
known to be challenging for continuous random variables [22,23], and to the best of our knowledge,
there is no known efficient algorithm to compute the hypercontractivity coefficient from samples.
Our estimator is the first efficient algorithm to compute the hypercontractivity coefficient, based on
the following equivalent definition of the hypercontractivity coefficient, shown recently in [11]:

D
s(X;Y) = sup (ryllpy)

R (10)
re#px D(rx||px)

There are two main challenges for computing s(X;Y). The first challenge is — given a marginal
distribution r, and samples from py,, how do we estimate the KL divergences D(ry||py) and D (rx||px).
The second challenge is the optimization over the infinite dimensional simplex. We need to combine
estimation and optimization together in order to compute s(X;Y). Our approach is to combine ideas
from traditional kernel density estimates and from importance sampling. Let w; = r(X;)/ px(X;) be
the likelihood ratio evaluated at sample i. We propose the estimation and optimization be solved jointly
as follows:

Estimation: To estimate KL divergence D(ry||px), notice that

D(rx||px) = Ex~p,

Using empirical average to replace the expectation over p,, we propose

= r(Xi) 1T
= — il i
; %8 L5 (x) = w L vilogw

”x||Px =

:\»—\

For D(ry||py), we follow the similar idea, but the challenge is in computing v; = ry(Y;)/py(Y;).
To do this, notice that 7y, = TxPy|xs SO

(X
ry(Yj) = Ex-r, {Py|x(Yj|X)} = Ex~p, [pleC(Y”X)px((X))

Replacing the expectation by empirical average again, we get the following estimator of v;:

5 = 1 ! py\x(yj|xi) Tx(Xi) _ 1 1 ny(XuY]) '
! ni5 Py(Yj) px(Xi) nz 1Pr( )py(Y ) v
A

Ji

We can write this expression in matrix form as v = ATw. We use a kernel density estimator
from [34] to estimate the matrix A, but our approach is compatible with any density estimator of choice.

Optimization: Given the estimators of the KL divergences, we are able to convert the problem of
computing s(X;Y') into an optimization problem over the vector w. Here a constraint of (1/n) Y_/' ; w; =1
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is needed to satisfy E,, [ry/px] = 1. To improve numerical stability, we use logs(X;Y) as the objective
function. Then the optimization problem has the following form:

maxy log ( (wlAlog(ATw) ) —log (wT logw)
1 n
subject to =Y wi=1
iz
w; > O,Vi

where w! logw = Y w; log w; for short. Although this problem is not convex, we apply gradient
descent to maximize the objective. In practice, we initialize w; = 1+ N(0,0?) for ¢ = 0.01.
Hence, the initial ry is perturbed mildly from py. Although we are not guaranteed to achieve the
global maximum, we consistently observe in extensive numerical experiments that we have 50-60%
probability of achieving the same maximum value, which we believed to be the global maximum.
A theoretical analysis of the landscape of local and global optima and their regions of attraction with
respect to gradient descent is an interesting and challenging open question, outside the scope of
this paper.

Consistency of Estimation

While a theoretical understanding of the performance of gradient descent on the optimization
step (where the number of samples is fixed) above is technically very challenging, we can study the
performance of the solution as the number of samples increases. In particular we show below (under
suitable simplifying assumptions to get to the essence of the proof) that the optimal solution to the
finite sample optimization problem is consistent. Suppose that X' is discrete. Further we restrict the
optimization over a quantized and bounded set T, where w € T} is quantized by a gap A and satisfies:
(1) C1 < w; < Cyforalli; (2) (1/n) Y, wilogw; > Cy. We further assume that we have access of
A = Pyy(X;,Y})/Pe(X;)Py(Y}). Define 55 (X;Y) = maxwer, w! Alog(ATw)/w' logw, then with two
further simplifying conditions on the joint distribution (formally stated in Section 5.8), we can prove
consistency of our estimation procedure:

Theorem 3. As n goes to infinity, SA(X;Y) converges to s(X;Y) up to a resolution of quantization in
probability, i.e., for any e > 0, A > 0 and s(A) = O(A), we have

Hm P(|SA(X;Y) —s(X;Y)| >e+s(A))=0. (11)

n—o0

4. Experimental Results

We present experimental results on synthetic and real datasets showing that the hypercontractivity
coefficient (a) is more powerful in detecting potential correlation compared to existing measures;
(b) discovers hidden potential correlations among various national indicators in WHO datasets;
and (c) is more robust in discovering pathways of gene interactions from gene expression time
series data.

4.1. Synthetic Data: Power Test on Potential Correlation

As our estimator (and the measure itself) involves a maximization, it is possible that we are
sensitive to outliers and may capture spurious noise. Via a series of experiments we show that
the hypercontractivity coefficient and our estimator are capturing the true potential correlation.
As shown in Figure 3, we generate pairs of datasets—one where X and Y are independent and
one where there is a potential correlation as per our scenario. We run experiment with eight types
of functional associations, following the examples from [5,35,36]. For the correlated datasets, out of
n samples {(x;,y;)}" ,, an rare but correlated samples are in X = [0,1] and (1 — «)n dominant
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but independent samples are in X € [1,1.1]. The rare but correlated samples are generated as

x; ~ Unif[0,1],y; ~ f(x;) + N'(0,02) for i € [1 : an]. The dominant samples are generated as

x; ~ Unif[1,1.1],y; ~ f(Unif[0,1]) + N(0,0?) fori € [an +1,n].

Table 1 shows the hypercontractivity coefficient and the other correlation coefficients for
correlated and independent datasets shown in Figure 3, along with the chosen value of « and ¢>.
Correlation estimates with the largest separation for each row is shown in bold. The hypercontractivity
coefficient gives the largest separation between the correlated and the independent dataset for most

functional types.

Linear (independent)

Linear (correlated)
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