

Communication A New Definition of *t***-Entropy for Transfer Operators**

Victor I. Bakhtin ^{1,2,*} and Andrei V. Lebedev ^{2,3}

- ¹ Faculty of Mathematics, Informatics and Landscape Architecture, John Paul II Catholic University of Lublin, 20-708 Lublin, Poland
- ² Faculty of Mechanics and Mathematics, Belarusian State University, 220030 Minsk, Belarus; lebedev@bsu.by
- ³ Institute of Mathematics, University of Bialystok, 15-089 Bialystok, Poland
- * Correspondence: bakhtin@tut.by

Received: 7 September 2017; Accepted: 22 October 2017; Published: 25 October 2017

Abstract: This article presents a new definition of *t*-entropy that makes it more explicit and simplifies the process of its calculation.

Keywords: transfer operator; variational principle; *t*-entropy

MSC: 37A35; 47B37; 47C15

1. Introduction

The spectral analysis of operators associated with dynamical systems is of considerable importance. In particular, in the series of articles [1–6], a relation between *t*-entropy and spectral radii of the corresponding operators has been established. Here, the authors have uncovered a new dynamical invariant—*t*-entropy—that is related to the Legendre transform of the spectral exponent of the operators in question. The *t*-entropy plays a significant role in various nonlinear phenomena. In particular, it serves as a principal object in thermodynamical formalism (see [2,6,7], and the sources quoted therein). The description of *t*-entropy is not elementary and its calculation is rather sophisticated. In the present article, we give a new definition of *t*-entropy that makes it more explicit and essentially simplifies the process of its calculation.

The article consists of two sections. In Section 2, we consider *t*-entropy for the model example. Here, Theorem 2 gives a new definition of *t*-entropy, that simplifies its calculation. The general situation of arbitrary C^* -dynamical system is discussed in Section 3. To illustrate similarity and difference between the objects considered in the model and general situations, we present here a number of examples and finally introduce the general new definition of *t*-entropy in Theorem 3.

2. A New Definition of *t*-Entropy for Continuous Dynamical Systems

In this Section, we consider a model example. Here, we use definitions, notation, and results from [4,5]. We denote by *X* a Hausdorff compact space, and by C(X) we denote the algebra of continuous functions on *X* taking real values and equipped with the max-norm. Consider an arbitrary continuous mapping $\alpha : X \to X$. The corresponding dynamical system will be denoted by (X, α) .

The main object under investigation is a *transfer operator* $A : C(X) \to C(X)$, associated with a given dynamical system. Its definition is given in the following way:

- (a) A is a positive operator (that is it maps nonnegative functions to nonnegative) and
- (b) the following *homological identity* for A is valid:

$$A(g \circ \alpha \cdot f) = gAf, \qquad g, f \in C(X). \tag{1}$$

The set of linear positive normalized functionals on C(X) will simply be denoted by M. The Riesz theorem states that elements of M can be identified with regular Borel probability measures on X and henceforth we assume this identification and, therefore, elements of M will be called *probability measures*.

Let us recall the classical definition of an invariant measure: $\mu \in M$ is α -invariant if $\mu(g) = \mu(g \circ \alpha)$ for $g \in C(X)$. The family of α -invariant probability measures on X is denoted by M_{α} .

A continuous *partition of unity* in C(X) is a finite set $G = \{g_1, ..., g_k\}$ consisting of nonnegative functions $g_i \in C(X)$ satisfying the identity $g_1 + \cdots + g_k \equiv 1$.

According to [5], *t-entropy* is the functional $\tau(\mu)$ on *M* which is defined in three steps.

Firstly, for a given $\mu \in M$, each partition of unity $G = \{g_1, \dots, g_k\}$, and any $n \in \mathbb{N}$ we set

$$\tau_n(\mu, G) := \sup_{m \in M} \sum_{g_i \in G} \mu(g_i) \ln \frac{m(A^n g_i)}{\mu(g_i)}.$$
 (2)

Here, if $\mu(g_i) = 0$ for some $g_i \in G$ then the corresponding summand in (2) is assumed to be zero regardless of the value $m(A^n g_i)$; if $A^n g_i = 0$ for some $g_i \in G$ and at the same time $\mu(g_i) > 0$, then $\tau_n(\mu, G) = -\infty$.

Secondly, we put

$$\tau_n(\mu) := \inf_{C} \tau_n(\mu, G), \tag{3}$$

here, the infimum is taken over all partitions of unity G in C(X).

Finally, the *t*-entropy $\tau(\mu)$ is defined as

$$\tau(\mu) := \inf_{n \in \mathbb{N}} \frac{\tau_n(\mu)}{n}.$$
(4)

Let *A* be a given transfer operator in *C*(*X*). In what follows, we denote by A_{φ} the family of transfer operators in *C*(*X*), where $\varphi \in C(X)$, given by the formula

$$A_{\varphi}f = A(e^{\varphi}f).$$

Next, we denote by $\lambda(\varphi)$ the *spectral potential* of A_{φ} , namely,

$$\lambda(\varphi) = \lim_{n \to \infty} \frac{1}{n} \ln \left\| A_{\varphi}^n \right\|.$$

The principal importance of *t*-entropy is clearly demonstrated by the following Variational Principle.

Theorem 1. ([5], Theorem 5.6) Let $A : C(X) \to C(X)$ be a transfer operator for a continuous mapping $\alpha : X \to X$ of a compact Hausdorff space X. Then,

$$\lambda(arphi) = \max_{\mu \in M_{lpha}} ig(\mu(arphi) + au(\mu)ig), \qquad arphi \in C(X).$$

The next principal result of the article presents a new definition of *t*-entropy.

Theorem 2. For α -invariant measures $\mu \in M_{\alpha}$, the following formula is true

$$\tau(\mu) = \inf_{n,G} \frac{1}{n} \sum_{g \in G} \mu(g) \ln \frac{\mu(A^n g)}{\mu(g)}.$$
(5)

In other words, in the definition of *t*-entropy, one should not calculate the supremum in (2) but can simply put $m = \mu$ there. Thus, expression (2) is changed for

$$\tau'_n(\mu,G) = \sum_{g \in G} \mu(g) \ln \frac{\mu(A^n g)}{\mu(g)}.$$
(6)

Remark 1. In connection with Theorem 2, it is worth mentioning the results of [7], where for a special case of transfer operator similar formulae are obtained and their relation to thermodynamical formalism is studied.

To prove Theorem 2, we need the next

Lemma 1. Let *G* be a partition of unity in *C*(*X*). Then, for any pair of numbers $n \in \mathbb{N}$, $\varepsilon > 0$ there exists a partition of unity *E* in *C*(*X*) such that for each pair of functions $g \in G$ and $h \in E$ the oscillation of $A^n g$ over supp $h := \{x \in X \mid h(x) > 0\}$ is less than ε :

$$\sup\{A^{n}g(x) \mid h(x) > 0\} - \inf\{A^{n}g(x) \mid h(x) > 0\} < \varepsilon.$$
(7)

Proof. For any $g \in G$ and $n \in \mathbb{N}$, the function $A^n g$ belongs to C(X). Therefore, its range is contained in a certain segment [a, b].

Evidently, there exists a partition of unity $\{f_1, \ldots, f_k\}$ in C[a, b] such that the support of every one of its elements is contained in a certain interval of the length less than ε . Then, the family $E_g = \{f_1 \circ A^n g, \ldots, f_k \circ A^n g\}$ forms a partition of unity in C(X) and the oscillation of $A^n g$ is less than ε on the support of each of its elements. Now all the products $\prod_{g \in G} h_g$, where $h_g \in E_g$, form the desired partition of unity E. \Box

Now let us prove Theorem 2. Comparing (2) and (6), one sees that

$$\tau'_n(\mu,G) \leq \tau_n(\mu,G).$$

Therefore, to prove (5), it is enough to verify the inequality

$$\tau_n(\mu) \leq \tau'_n(\mu, G).$$

Since in the case when $\tau_n(\mu) = -\infty$ the latter inequality is trivial, in what follows we assume that $\tau_n(\mu) > -\infty$.

Let us fix some $n \in \mathbb{N}$, a partition of unity G in C(X) and $\varepsilon > 0$. For these objects, there exists a continuous partition of unity E mentioned in Lemma 1. Consider one more partition of unity in C(X) that consists of the functions $g \cdot h \circ \alpha^n$, here $g \in G$ and $h \in E$. For this partition, by the definition of $\tau_n(\mu)$ (see (2) and (3)), there exists a probability measure $m \in M$ for which the next inequality holds:

$$\tau_n(\mu) - \varepsilon \leq \sum_{g \in G} \sum_{h \in E} \mu(g \cdot h \circ \alpha^n) \ln \frac{m(A^n(g \cdot h \circ \alpha^n))}{\mu(g \cdot h \circ \alpha^n)}.$$

From the homological identity, it follows that $A^n(g \cdot h \circ \alpha^n) = hA^ng$. Therefore, the latter inequality is equivalent to

$$\tau_n(\mu) - \varepsilon \le \sum_{g \in G} \sum_{h \in E} \mu(g \cdot h \circ \alpha^n) \ln \frac{m(hA^n(g))}{\mu(g \cdot h \circ \alpha^n)}.$$
(8)

Now for each pair $g \in G$, $h \in E$ choose a number y_{gh} satisfying two conditions

$$m(hA^ng) = m(h)y_{gh},\tag{9}$$

$$\inf\{A^{n}g(x) \mid h(x) > 0\} \le y_{gh} \le \sup\{A^{n}g(x) \mid h(x) > 0\}.$$
(10)

Then, inequality (8) takes the form

$$\tau_n(\mu) - \varepsilon \le \sum_{g \in G} \sum_{h \in E} \mu(g \cdot h \circ \alpha^n) \ln \frac{m(h) y_{gh}}{\mu(g \cdot h \circ \alpha^n)} , \qquad (11)$$

Entropy 2017, 19, 573

which is equivalent to

$$\tau_n(\mu) - \varepsilon \le \sum_{g \in G} \sum_{h \in E} \mu(g \cdot h \circ \alpha^n) \ln \frac{y_{gh}}{\mu(g \cdot h \circ \alpha^n)} + \sum_{g \in G} \sum_{h \in E} \mu(g \cdot h \circ \alpha^n) \ln m(h).$$
(12)

Let us consider separately the second summand in the right-hand side of (12):

$$\sum_{g \in G} \sum_{h \in E} \mu(g \cdot h \circ \alpha^n) \ln m(h) = \sum_{h \in E} \mu(h \circ \alpha^n) \ln m(h) = \sum_{h \in E} \mu(h) \ln m(h).$$
(13)

Here, in the left-hand equality, we have exploited the fact that *G* is a partition of unity and in the right-hand equality we have used α -invariance of μ . If we treat m(h) in (13) as independent nonnegative variables satisfying the condition $\sum_{h \in E} m(h) = 1$, then the routine usage of the Lagrange multipliers principle shows that the function $\sum_{h \in E} \mu(h) \ln m(h)$ attains its maximum when $m(h) = \mu(h)$. Evidently, the same is true for the right-hand sides in (12) and (11). Therefore,

$$\tau_n(\mu) - \varepsilon \le \sum_{g \in G} \sum_{h \in E} \mu(g \cdot h \circ \alpha^n) \ln \frac{\mu(h) y_{gh}}{\mu(g \cdot h \circ \alpha^n)} \,. \tag{14}$$

Observe that estimates (7) and (10) imply

$$\mu(h)y_{gh} \le \mu\big(h(A^ng + \varepsilon)\big). \tag{15}$$

Observing that the logarithm is a concave function, and using (14), (15), and the fact that *E* is a partition of unity in C(X), we conclude that

$$\begin{aligned} \tau_n(\mu) - \varepsilon &\leq \sum_{g \in G} \sum_{h \in E} \mu(g \cdot h \circ \alpha^n) \ln \frac{\mu(h(A^n g + \varepsilon))}{\mu(g \cdot h \circ \alpha^n)} \\ &= \sum_{g \in G} \mu(g) \sum_{h \in E} \frac{\mu(g \cdot h \circ \alpha^n)}{\mu(g)} \ln \frac{\mu(h(A^n g + \varepsilon))}{\mu(g \cdot h \circ \alpha^n)} \\ &\leq \sum_{g \in G} \mu(g) \ln \sum_{h \in E} \frac{\mu(h(A^n g + \varepsilon))}{\mu(g)} = \sum_{g \in G} \mu(g) \ln \frac{\mu(A^n g + \varepsilon)}{\mu(g)}. \end{aligned}$$

By the arbitrariness of ε , this implies

$$\tau_n(\mu) \le \sum_{g \in G} \mu(g) \ln \frac{\mu(A^n g)}{\mu(g)} = \tau'_n(\mu, G)$$

and finishes the proof of Theorem 2.

Now let us proceed to the general *C**-dynamical setting.

3. The General Case of C*-Dynamical Systems

The general notion of *t*-entropy involves the so-called base algebra and a transfer operator for a C^* -dynamical system. Let us recall definitions of these objects (see [5]).

Let \mathcal{B} be a commutative C^* -algebra with an identity **1** and \mathcal{C} be its selfadjoint part, that is,

$$\mathcal{C} = \{ b \in \mathcal{B} \mid b^* = b \}.$$

In this situation, we call C a *base algebra*.

A *C*^{*}-*dynamical system* is a pair (C, δ), where δ is an endomorphism of C satisfying the equality $\delta(\mathbf{1}) = \mathbf{1}$.

Definition of a *transfer operator* A (for (C, δ)) is given in the following way:

- (a) A is a linear positive operator in C and
- (b) the homological identity for *A* is valid:

$$A((\delta g)f) = gAf, \qquad g, f \in \mathcal{C}.$$
(16)

Let $M(\mathcal{C})$ be the family of all linear positive normalized functionals on \mathcal{C} . A functional $\mu \in M(\mathcal{C})$ is δ -invariant if $\mu(\delta f) = \mu(f)$ for all $f \in \mathcal{C}$. By $M_{\delta}(\mathcal{C})$, we denote the family of all δ -invariant functionals from $M(\mathcal{C})$.

By a *partition of unity* in the algebra C, we mean any finite collection $G = \{g_1, \ldots, g_k\}$ consisting of nonnegative elements $g_i \in C$ satisfying the identity $g_1 + \cdots + g_k = \mathbf{1}$.

The formulae (2)–(4) from the previous section naturally lead to a definition of *t*-entropy for C^* -dynamical systems. Namely, the *t*-entropy $\tau(\mu)$ for $\mu \in M(\mathcal{C})$ is defined in three steps as follows:

$$\tau_n(\mu, G) := \sup_{m \in M(\mathcal{C})} \sum_{g \in G} \mu(g) \ln \frac{m(A^n g)}{\mu(g)}, \qquad (17)$$

$$\tau_n(\mu) := \inf_G \tau_n(\mu, G), \tag{18}$$

and

$$\tau(\mu) := \inf_{n \in \mathbb{N}} \frac{\tau_n(\mu)}{n} \,. \tag{19}$$

The infimum in (18) is taken over all the partitions of unity G in C.

The *t*-entropy just defined is of principal importance in spectral analysis of abstract transfer and weighted shift operators in L^p -type spaces (see [5], Theorems 6.10, 11.2, 13.1 and 13.6).

The similarity and essential difference between the objects considered in this and the previous sections are discussed in ([5], Section 7).

We now present the C^* -dynamical analogue to Theorem 2.

Theorem 3. For δ -invariant functionals $\mu \in M_{\delta}(\mathcal{C})$, the following formula is true

$$\tau(\mu) = \inf_{n,G} \frac{1}{n} \sum_{g \in G} \mu(g) \ln \frac{\mu(A^n g)}{\mu(g)}.$$
 (20)

Proof. This theorem can be derived from Theorem 2.

By means of the Gelfand transform, one can establish an isomorphism between the algebra C and the algebra C(X) of continuous functions on X with real values (where X is the compact space of maximal ideals in C).

Moreover, under the identification of C and C(X) the endomorphism δ mentioned in the definition of the C^* -dynamical system (C, δ) takes the form

$$[\delta f](x) = f(\alpha(x))$$

(for details, see [5], Theorem 6.2). Thus, the C^{*}-dynamical system (C, δ) is completely defined by the corresponding dynamical system (X, α).

In terms of (X, α) , the homological identity (16) for the transfer operator *A* can be rewritten as (1). By the Riesz theorem, the identification between measures μ on *X* and functionals $\mu \in C$ is given by

$$\mu(g) = \int_X g \, d\mu, \qquad g \in \mathcal{C} = \mathcal{C}(X). \tag{21}$$

Finally, if $\mu \in M_{\delta}(\mathcal{C})$ is a δ -invariant functional, then the corresponding measure μ in (21) is α -invariant, that is

$$\mu(g) = \mu(g \circ \alpha), \qquad g \in C(X).$$

In this manner, one identifies the set $M_{\delta}(\mathcal{C})$ with M_{α} mentioned in Section 2.

Under all these identifications, the desired result follows from Theorem 2. \Box

Author Contributions: All the results were obtained in collaboration of the authors.

Conflicts of Interest: The authors declare no conflict of interest.

References

- Antonevich, A.B.; Bakhtin, V.I.; Lebedev, A.V. Thermodynamics and Spectral Radius. Nonlinear Phenom. Complex Syst. 2001, 4, 318–321.
- 2. Antonevich, A.B.; Bakhtin, V.I.; Lebedev, A.V.; Sarzhinsky, D.S. Legendre analysis, thermodynamic formalizm and spectra of Perron–Frobenius operators. *Dokl. Math.* **2003**, *67*, 343–345.
- Antonevich, A.B.; Bakhtin, V.I.; Lebedev, A.V. Spectra of Operators Associated with Dynamical Systems: From Ergodicity to the Duality Principle. In *Twenty Years of Bialowieza: A Mathematical Anthology*; World Scientific Monograph Series in Mathematics; World Scientific Publishing Company: Singapore, 2005; Volume 8, Chapter 7, pp. 129–161.
- 4. Bakhtin, V.I. On *t*-entropy and variational principle for the spectral radius of weighted shift operators. *Ergod. Theory Dyn. Syst.* **2010**, *30*, 1331–1342.
- 5. Antonevich, A.B.; Bakhtin, V.I.; Lebedev, A.V. On *t*-entropy and variational principle for the spectral radii of transfer and weighted shift operators. *Ergod. Theory Dyn. Syst.* **2011**, *31*, 995–1045.
- Antonevich, A.B.; Bakhtin, V.I.; Lebedev, A.V. A road to the spectral radius of transfer operators. *Contemp. Math.* 2012, 567, 17–51.
- 7. Lopes, A.; Mengue, J.; Mohr, J.; Souza, R. Entropy and variational principle for one-dimensional lattice systems with a general *a priori* probability: Positive and zero temperature. *Ergod. Theory Dyn. Syst.* **2015**, *35*, 1925–1961.

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).