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1. Introduction

The spectral analysis of operators associated with dynamical systems is of considerable importance.
In particular, in the series of articles [1–6], a relation between t-entropy and spectral radii of the
corresponding operators has been established. Here, the authors have uncovered a new dynamical
invariant—t-entropy—that is related to the Legendre transform of the spectral exponent of the
operators in question. The t-entropy plays a significant role in various nonlinear phenomena. In particular,
it serves as a principal object in thermodynamical formalism (see [2,6,7], and the sources quoted therein).
The description of t-entropy is not elementary and its calculation is rather sophisticated. In the present
article, we give a new definition of t-entropy that makes it more explicit and essentially simplifies the
process of its calculation.

The article consists of two sections. In Section 2, we consider t-entropy for the model example.
Here, Theorem 2 gives a new definition of t-entropy, that simplifies its calculation. The general situation
of arbitrary C∗-dynamical system is discussed in Section 3. To illustrate similarity and difference
between the objects considered in the model and general situations, we present here a number of
examples and finally introduce the general new definition of t-entropy in Theorem 3.

2. A New Definition of t-Entropy for Continuous Dynamical Systems

In this Section, we consider a model example. Here, we use definitions, notation, and results
from [4,5]. We denote by X a Hausdorff compact space, and by C(X) we denote the algebra of
continuous functions on X taking real values and equipped with the max-norm. Consider an arbitrary
continuous mapping α : X → X. The corresponding dynamical system will be denoted by (X, α).

The main object under investigation is a transfer operator A : C(X) → C(X), associated with a
given dynamical system. Its definition is given in the following way:

(a) A is a positive operator (that is it maps nonnegative functions to nonnegative) and
(b) the following homological identity for A is valid:

A
(

g ◦ α · f
)
= gA f , g, f ∈ C(X). (1)
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The set of linear positive normalized functionals on C(X) will simply be denoted by M. The Riesz
theorem states that elements of M can be identified with regular Borel probability measures on X and
henceforth we assume this identification and, therefore, elements of M will be called probability measures.

Let us recall the classical definition of an invariant measure: µ ∈ M is α-invariant if µ(g) = µ(g ◦ α)

for g ∈ C(X). The family of α-invariant probability measures on X is denoted by Mα.
A continuous partition of unity in C(X) is a finite set G = {g1, . . . , gk} consisting of nonnegative

functions gi ∈ C(X) satisfying the identity g1 + · · ·+ gk ≡ 1.
According to [5], t-entropy is the functional τ(µ) on M which is defined in three steps.
Firstly, for a given µ ∈ M, each partition of unity G = {g1, . . . , gk}, and any n ∈ N we set

τn(µ, G) := sup
m∈M

∑
gi∈G

µ(gi) ln
m(Angi)

µ(gi)
. (2)

Here, if µ(gi) = 0 for some gi ∈ G then the corresponding summand in (2) is assumed to be zero
regardless of the value m(Angi); if Angi = 0 for some gi ∈ G and at the same time µ(gi) > 0, then
τn(µ, G) = −∞.

Secondly, we put
τn(µ) := inf

G
τn(µ, G), (3)

here, the infimum is taken over all partitions of unity G in C(X).
Finally, the t-entropy τ(µ) is defined as

τ(µ) := inf
n∈N

τn(µ)

n
. (4)

Let A be a given transfer operator in C(X). In what follows, we denote by Aϕ the family of
transfer operators in C(X), where ϕ ∈ C(X), given by the formula

Aϕ f = A(eϕ f ).

Next, we denote by λ(ϕ) the spectral potential of Aϕ, namely,

λ(ϕ) = lim
n→∞

1
n

ln
∥∥∥An

ϕ

∥∥∥ .

The principal importance of t-entropy is clearly demonstrated by the following Variational Principle.

Theorem 1. ([5], Theorem 5.6) Let A : C(X) → C(X) be a transfer operator for a continuous mapping
α : X → X of a compact Hausdorff space X. Then,

λ(ϕ) = max
µ∈Mα

(
µ(ϕ) + τ(µ)

)
, ϕ ∈ C(X).

The next principal result of the article presents a new definition of t-entropy.

Theorem 2. For α-invariant measures µ ∈ Mα, the following formula is true

τ(µ) = inf
n,G

1
n ∑

g∈G
µ(g) ln

µ(Ang)
µ(g)

. (5)

In other words, in the definition of t-entropy, one should not calculate the supremum in (2) but
can simply put m = µ there. Thus, expression (2) is changed for

τ′n(µ, G) = ∑
g∈G

µ(g) ln
µ(Ang)

µ(g)
. (6)
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Remark 1. In connection with Theorem 2, it is worth mentioning the results of [7], where for a special case of
transfer operator similar formulae are obtained and their relation to thermodynamical formalism is studied.

To prove Theorem 2, we need the next

Lemma 1. Let G be a partition of unity in C(X). Then, for any pair of numbers n ∈ N, ε > 0 there exists a
partition of unity E in C(X) such that for each pair of functions g ∈ G and h ∈ E the oscillation of Ang over
supp h := {x ∈ X | h(x) > 0} is less than ε:

sup
{

Ang(x)
∣∣ h(x) > 0

}
− inf

{
Ang(x)

∣∣ h(x) > 0
}
< ε. (7)

Proof. For any g ∈ G and n ∈ N, the function Ang belongs to C(X). Therefore, its range is contained
in a certain segment [a, b].

Evidently, there exists a partition of unity { f1, . . . , fk} in C[a, b] such that the support of every
one of its elements is contained in a certain interval of the length less than ε. Then, the family
Eg = { f1 ◦Ang, . . . , fk ◦Ang} forms a partition of unity in C(X) and the oscillation of Ang is less
than ε on the support of each of its elements. Now all the products ∏g∈G hg, where hg ∈ Eg, form the
desired partition of unity E.

Now let us prove Theorem 2. Comparing (2) and (6), one sees that

τ′n(µ, G) ≤ τn(µ, G).

Therefore, to prove (5), it is enough to verify the inequality

τn(µ) ≤ τ′n(µ, G).

Since in the case when τn(µ) = −∞ the latter inequality is trivial, in what follows we assume that
τn(µ) > −∞.

Let us fix some n ∈ N, a partition of unity G in C(X) and ε > 0. For these objects, there exists a
continuous partition of unity E mentioned in Lemma 1. Consider one more partition of unity in C(X)

that consists of the functions g · h ◦ αn, here g ∈ G and h ∈ E. For this partition, by the definition of
τn(µ) (see (2) and (3)), there exists a probability measure m ∈ M for which the next inequality holds:

τn(µ)− ε ≤ ∑
g∈G

∑
h∈E

µ(g · h ◦ αn) ln
m
(

An(g · h ◦ αn)
)

µ(g · h ◦ αn)
.

From the homological identity, it follows that An(g · h ◦ αn) = hAng. Therefore, the latter inequality is
equivalent to

τn(µ)− ε ≤ ∑
g∈G

∑
h∈E

µ(g · h ◦ αn) ln
m(hAn(g))
µ(g · h ◦ αn)

. (8)

Now for each pair g ∈ G, h ∈ E choose a number ygh satisfying two conditions

m(hAng) = m(h)ygh, (9)

inf
{

Ang(x)
∣∣ h(x) > 0

}
≤ ygh ≤ sup

{
Ang(x)

∣∣ h(x) > 0
}

. (10)

Then, inequality (8) takes the form

τn(µ)− ε ≤ ∑
g∈G

∑
h∈E

µ(g · h ◦ αn) ln
m(h)ygh

µ(g · h ◦ αn)
, (11)
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which is equivalent to

τn(µ)− ε ≤ ∑
g∈G

∑
h∈E

µ(g · h ◦ αn) ln
ygh

µ(g · h ◦ αn)
+ ∑

g∈G
∑
h∈E

µ(g · h ◦ αn) ln m(h). (12)

Let us consider separately the second summand in the right-hand side of (12):

∑
g∈G

∑
h∈E

µ(g · h ◦ αn) ln m(h) = ∑
h∈E

µ(h ◦ αn) ln m(h) = ∑
h∈E

µ(h) ln m(h). (13)

Here, in the left-hand equality, we have exploited the fact that G is a partition of unity and in the
right-hand equality we have used α-invariance of µ. If we treat m(h) in (13) as independent nonnegative
variables satisfying the condition ∑h∈E m(h) = 1, then the routine usage of the Lagrange multipliers
principle shows that the function ∑h∈E µ(h) ln m(h) attains its maximum when m(h) = µ(h). Evidently,
the same is true for the right-hand sides in (12) and (11). Therefore,

τn(µ)− ε ≤ ∑
g∈G

∑
h∈E

µ(g · h ◦ αn) ln
µ(h)ygh

µ(g · h ◦ αn)
. (14)

Observe that estimates (7) and (10) imply

µ(h)ygh ≤ µ
(
h(Ang + ε)

)
. (15)

Observing that the logarithm is a concave function, and using (14), (15), and the fact that E is a partition
of unity in C(X), we conclude that

τn(µ)− ε ≤ ∑
g∈G

∑
h∈E

µ(g · h ◦ αn) ln
µ
(
h(Ang + ε)

)
µ(g · h ◦ αn)

= ∑
g∈G

µ(g) ∑
h∈E

µ(g · h ◦ αn)

µ(g)
ln

µ
(
h(Ang + ε)

)
µ(g · h ◦ αn)

≤ ∑
g∈G

µ(g) ln ∑
h∈E

µ
(
h(Ang + ε)

)
µ(g)

= ∑
g∈G

µ(g) ln
µ(Ang + ε)

µ(g)
.

By the arbitrariness of ε, this implies

τn(µ) ≤ ∑
g∈G

µ(g) ln
µ(Ang)

µ(g)
= τ′n(µ, G)

and finishes the proof of Theorem 2.
Now let us proceed to the general C∗-dynamical setting.

3. The General Case of C∗-Dynamical Systems

The general notion of t-entropy involves the so-called base algebra and a transfer operator for a
C∗-dynamical system. Let us recall definitions of these objects (see [5]).

Let B be a commutative C∗-algebra with an identity 1 and C be its selfadjoint part, that is,

C = { b ∈ B | b∗ = b }.

In this situation, we call C a base algebra.
A C∗-dynamical system is a pair (C, δ), where δ is an endomorphism of C satisfying the equality

δ(1) = 1.
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Definition of a transfer operator A (for (C, δ)) is given in the following way:

(a) A is a linear positive operator in C and
(b) the homological identity for A is valid:

A
(
(δg) f

)
= gA f , g, f ∈ C. (16)

Let M(C) be the family of all linear positive normalized functionals on C. A functional µ ∈ M(C)
is δ-invariant if µ(δ f ) = µ( f ) for all f ∈ C. By Mδ(C), we denote the family of all δ-invariant functionals
from M(C).

By a partition of unity in the algebra C, we mean any finite collection G = {g1, . . . , gk} consisting
of nonnegative elements gi ∈ C satisfying the identity g1 + · · ·+ gk = 1.

The formulae (2)–(4) from the previous section naturally lead to a definition of t-entropy for
C∗-dynamical systems. Namely, the t-entropy τ(µ) for µ ∈ M(C) is defined in three steps as follows:

τn(µ, G) := sup
m∈M(C)

∑
g∈G

µ(g) ln
m(Ang)

µ(g)
, (17)

τn(µ) := inf
G

τn(µ, G), (18)

and

τ(µ) := inf
n∈N

τn(µ)

n
. (19)

The infimum in (18) is taken over all the partitions of unity G in C.
The t-entropy just defined is of principal importance in spectral analysis of abstract transfer and

weighted shift operators in Lp-type spaces (see [5], Theorems 6.10, 11.2, 13.1 and 13.6).
The similarity and essential difference between the objects considered in this and the previous

sections are discussed in ([5], Section 7).
We now present the C∗-dynamical analogue to Theorem 2.

Theorem 3. For δ-invariant functionals µ ∈ Mδ(C), the following formula is true

τ(µ) = inf
n,G

1
n ∑

g∈G
µ(g) ln

µ(Ang)
µ(g)

. (20)

Proof. This theorem can be derived from Theorem 2.
By means of the Gelfand transform, one can establish an isomorphism between the algebra C

and the algebra C(X) of continuous functions on X with real values (where X is the compact space of
maximal ideals in C).

Moreover, under the identification of C and C(X) the endomorphism δ mentioned in the definition
of the C∗-dynamical system (C, δ) takes the form[

δ f
]
(x) = f (α(x))

(for details, see [5], Theorem 6.2). Thus, the C∗-dynamical system (C, δ) is completely defined by the
corresponding dynamical system (X, α).

In terms of (X, α), the homological identity (16) for the transfer operator A can be rewritten as (1).
By the Riesz theorem, the identification between measures µ on X and functionals µ ∈ C is given by

µ(g) =
∫

X
g dµ, g ∈ C = C(X). (21)



Entropy 2017, 19, 573 6 of 6

Finally, if µ ∈ Mδ(C) is a δ-invariant functional, then the corresponding measure µ in (21) is
α-invariant, that is

µ(g) = µ(g ◦ α), g ∈ C(X).

In this manner, one identifies the set Mδ(C) with Mα mentioned in Section 2.
Under all these identifications, the desired result follows from Theorem 2.
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