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Abstract: Markov chain Monte Carlo sampling propagators, including numerical integrators for
stochastic dynamics, are central to the calculation of thermodynamic quantities and determination of
structure for molecular systems. Efficiency is paramount, and to a great extent, this is determined by
the integrated autocorrelation time (IAcT). This quantity varies depending on the observable that is
being estimated. It is suggested that it is the maximum of the IAcT over all observables that is the
relevant metric. Reviewed here is a method for estimating this quantity. For reversible propagators
(which are those that satisfy detailed balance), the maximum IAcT is determined by the spectral gap
in the forward transfer operator, but for irreversible propagators, the maximum IAcT can be far less
than or greater than what might be inferred from the spectral gap. This is consistent with recent
theoretical results (not to mention past practical experience) suggesting that irreversible propagators
generally perform better if not much better than reversible ones. Typical irreversible propagators
have a parameter controlling the mix of ballistic and diffusive movement. To gain insight into the
effect of the damping parameter for Langevin dynamics, its optimal value is obtained here for a
multidimensional quadratic potential energy function.

Keywords: Markov chain Monte Carlo; stochastic dynamics integrators; decorrelation time;
integrated autocorrelation time

1. Summary

Thermodynamic and structural properties of a molecular system can be precisely defined as
ensemble-dependent expectations of functions of its configuration. The calculation of such expectations
is feasible only with the use of Markov chain Monte Carlo (MCMC) methods or approximations thereof.
Considered here are sampling propagators that do not compromise the Markov property. Included are
unbiased samplers that conditionally accept proposed moves and biased samplers that unconditionally
accept such moves, in particular, discretized stochastic dynamics. Many such sampling propagators
are proposed in the literature, and, in virtually all cases, experiments are conducted to substantiate
claims of superiority. Too often though, a good metric is not used to measure the computational cost
of a propagator. The aim of this article is threefold: first, to explore some practicalities related to
measuring the efficiency of a propagator; second, to highlight the superior efficiency of irreversible
propagators, namely, those that do not satisfy detailed balance; and third, to provide some insight into
the optimal mix of diffusive and ballistic movement for Langevin dynamics.

Let ρQ(q), q = [q1, q2, . . . , qν]T denote the probability density function corresponding to the
ensemble of interest. This function is assumed to be known only up to a multiplicative factor.
An observable is an expectation E[u(Q)] =

∫
u(q)ρQ(q)dq for some “preobservable” u(q). This can

be estimated by the mean ŪN = (1/N)∑N−1
n=0 u(Qn), where the random values Qn are obtained from
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a Markov chain Q0 → Q1 → · · · → QN−1 that samples from ρQ(q). Note the use here of upper case
to denote random variables.

In practice, sampling performance is improved if the configuration variables q are augmented
with auxiliary variables p, e.g., momenta, yielding phase space variables z = (q, p). The probablity
density is extended to ρ(q, p) so that ∫

ρ(q, p)dp = ρQ(q),

and an MCMC scheme is constructed to produce a chain Z0 → Z1 → · · · → ZN−1, where Z = (Q, P).
The samples from the chain tend to be highly correlated, and this greatly reduces the convergence

rate as N → +∞. As explained in Section 2, the variance of an estimate for E[u(Z)] is

Var[ŪN ] =
τ

N
Var[u(Z)] +O( 1

N2 ) (1)

where τ is the integrated autocorrelation time (IAcT) for u(z). The effective sample size is therefore N/τ,
and the appropriate metric for evaluating a propagator is the effective sample size divided by the
computing time.

In a great many practical simulations, the effective sample size is probably close to zero. One can
disagree on the significance of such simulations [1]. In any case, for the comparison of sampling
algorithms, it is possible to choose molecular systems, restrained if necessary, for which it is feasible to
attain a decent effective sample size.

Often, the spectral gap is cited as the relevant quantity. To understand its role, it is helpful to
express ideas in a direct way as in Refs. [2,3]. As detailed in Section 2, introduce a forward transfer
operator F to express the ratio ρn/ρ in terms of ρn−1/ρ, where ρn(z) is the probablity density for Zn.
Let F0 = F − E where Eu denote the function with constant value E[u(Z)]. Assume that the operator
F0 has its spectrum strictly inside the unit circle, as it does in practice. The error in (1/N)∑N−1

n=0 ρn(z)
can be shown [1] to be “proportional to” (1−F0)

−1 and therefore to the reciprocal of the spectral gap
|1− λ2|, where λ2 is a nonunit eigenvalue of F nearest 1.

Estimates of the IAcT are obtained by summing the terms of the autocorrelation function, which
is constructed from autocovariances of increasing time lags normalized by the (lag zero) covariance.
Each term contributes a roughly equal statistical error but a signal that decays as the lag time increases.
Therefore, in practice, the terms are weighted by a function called a lag window. The lag window
must be tailored to the autocorrelation function, and choosing a suitable lag window is very difficult,
as mentioned in Section 2.1.

Reliable estimates of the IAcT are impractical in general. Section 3 reviews the concept of
quasi-reliability, which aims to enforce a necessary condition for reliable estimates. Informally, the goal
is to ensure good coverage of those “parts” of phase space that has been explored, to reduce the
possibility of missing an opening to an unexplored part of phase space. More precisely, for an arbitrary
subset of phase space, we ask that the proportion of samples in that subset differ from its expectation
by no more than some tolerance tol, with, say, 95% confidence. This is shown to be true if the IAcT τ

for any preobservable u(z) satisfies τ ≤ tol2N. The maximum IAcT τmax is the greatest eigenvalue of

G = 1− E +F0(1−F0)
−1 +F †

0 (1−F †
0 )
−1, (2)

where † denotes the adjoint with respect to the inner product

〈v, u〉 =
∫

v(z)u(z)ρ(z)dz.

For a reversible propagator, where F † = F , τmax is 1 less than twice the reciprocal of the spectral
gap. However, for an irreversible propagator, it can be much smaller, as demonstrated by a simple
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example in Section 4.1, or larger as in Section 5. As a practical algorithm, it is suggested to estimate
the maximum IAcT by discretizing the space of preobservables. Consideration of a quadratic energy
potential suggests using a linear combination of phase space variables (and possibly quadratic terms
in these variables).

The idea of seeking the preobservable that maximizes the IAcT is suggested already in Ref. [4],
which considers a set of indicator functions as preobservables and uses the greatest IAcT of these to
assess sampling thoroughness. In general, maximizing over a linear combination of preobservables
can lead to a much larger result than taking the maximum of them individually, due to correlations
that might exist between different preobservables. This does not necessarily apply, however, to those
considered in Refs. [1,4].

Section 3.1 notes that that typical irreversible propagators, termed “quasi-reversible” here, have a
forward transfer operator F = RF̄ , where each of F̄ and R is reversible and R2 = 1. For such
propagators, the estimation of τmax simplifies somewhat.

Theoretical results [5] indicate that adding irreversibility reduces the autocorrelation times of
observables. Section 4 gives a couple of very elementary examples illustrating the dramatic increase in
τmax if an irreversible propagator F is replaced by its reversible “counterpart” 1

2 (F +F †).
Discretized Langevin dynamics is a particularly effective general-purpose propagator.

Unfortunately, one must specify a value for the damping coefficient γ. Section 5 analyzes τmax

for a quadratic potential and obtains an optimal value for the coefficient, namely, the value
(3/8)1/2 = 0.612 · · · times the critical damping coefficient for lowest frequency ω1. This value
is such that the lowest frequency mode is moderately underdamped, with higher frequencies
increasingly underdamped.

2. Preliminaries

Assuming that Z0 has probability density ρ(z), the variance of the estimate UN is exactly

Var[UN ] =
1
N

Var[u(Z)]

(
1 + 2

N−1

∑
k=1

(
1− k

N

)
C(k)
C(0)

)

where the autocovariances

C(k) = E [(u(Z0)−E[u(Z0)]) (u(Zk)−E[u(Zk)])] .

The limit N → +∞ gives Equation (1) where the integrated autocorrelation time

τ = 1 + 2
+∞

∑
k=1

C(k)
C(0)

. (3)

As an example of augmenting configuration space, consider ρ(q, p) ∝ exp(−β(V(q)) +
1
2 pTM−1p)), where p = [p1, p2, . . . , pν]T. A good propagator for this is the BAOAB integrator [6] for
Langevin dynamics, whose equations are

dQt = M−1Pt dt, dPt = F(Qt)dt− γPt dt +

√
2γ

β
M1/2 dWt, (4)

where M is a matrix chosen to compress the range of vibrational frequencies, F(q) = −∇V(q),
M1/2MT

1/2 = M, and Wt is a vector of independent standard Wiener processes. Each step of the
integrator consists of the following substeps:

B: P′n = Pn−1 +
1
2 ∆tF(Qn−1),

A: Q′n = Qn−1 +
1
2 ∆tM−1P′n,

O: P′′n = exp(−γ∆t)P′n +
√

1− exp(−2γ∆t)β−1/2M1/2Rn,
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A: Qn = Q′n +
1
2 ∆tM−1P′′n ,

B: Pn = P′′n + 1
2 ∆tF(Qn),

where Rn is a vector of independent standard Gaussian random variables. The samples generated
from this process are shown [7] to be those from a distribution that differs from the correct one by
only O(∆t2). The special choice γ = 1/(2∆t) is the Euler–Leimkuhler–Matthews integrator [6] for
Brownian dynamics with step size δt = ∆t2/2. Remarkably, the invariant density of this integrator
differs from the correct one by only O(δt2). This integrator can be expressed as a Markov chain
Q′1 → Q′2 → · · · → Q′N−1 in configuration space, with propagator

Qn = Q′n +
1
2

√
2δtβ−1/2M−T1/2Rn,

Q′n+1 = Qn + δtM−1F(Qn) +
1
2

√
2δtβ−1/2M−T1/2Rn,

which is a discretization of Brownian dynamics

dQt = M−1F(Qt)dt +

√
2
β

M−T1/2 dWt. (5)

The desired samples {Qn} are available as part of the process (and, as a theoretical observation,
they can be recovered from the Markov chain {Q′n} alone, by eliminating Rn in the two equations
above and solving for Qn).

For any MCMC propagator, the forward transfer operator is defined so that

un = Fun−1

where un(z) = ρn(z)/ρ(z) and ρn(z) is the probability density for Zn. In particular,

Fun−1(z) =
1

ρ(z)

∫
ρ(z|z′)un−1(z′)ρ(z′)dz′

where ρ(z|z′) is the transition probablity for the chain. The operator F has an eigenfunction ϕ1(z) ≡ 1
for eigenvalue λ1 = 1.

A reversible propagator is one that satisfies detailed balance, which means that

ρ(z′|z) ρ(z) = ρ(z|z′) ρ(z′).

Detailed balance is equivalent to F † = F , where the adjoint F † is defined by the condition that
〈Fv, u〉 = 〈v,F †u〉 for arbitrary u(z) and v(z). The BAOAB integrator is not reversible as a sampling
propagator, except for the special case γ = 1/(2∆t); however, a scheme consisting of a fixed number
of BAOAB steps followed by a momenta flip is reversible. The unmodified BAOAB integrator is,
however, in a class of “quasi-reversible” integrators introduced in Section 3.1.

As a model problem for Brownian dynamics, given by Equation (5), consider F(q) = −mω2q. (The
absence of boldface indicates scalar quantities.) Changing variables Qt = (mβ)−1/2Q′t and dropping
the prime gives the simple stochastic differential equation

dQt = −ω2Qt dt +
√

2 dWt, (6)

where W(t) denotes a standard Wiener process. A perfect realization of Q(t) at discrete points is
obtained by the reversible propagator

Qn = exp(−ω2δt)Qn−1 +
√

1− exp(−2ω2δt)
1
ω

Rn. (7)
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The probablity density ρ(q, t) for Q(t) satisfies the Fokker–Planck equation (∂/∂t)ρ =

(∂/∂q)(ω2qρ) + (∂2/∂q2)ρ. Writing ρ(q, t) = u(q, t)ρ(q) gives (∂/∂t)u = −ω2q(∂/∂q)u + (∂2/∂q2)u.
The operator on the right-hand side has eigenfunctions u(q) = Hek(ωq) with eigenvalues −kω2

for k = 0, 1, . . .. The modified version of the Hermite polynomial of degree k is given by Hek(x) =
(−1)k exp(x2/2)(dn/dxn) exp(−x2/2). The forward transfer operatorF for the propagator defined by
Equation (7) has these same eigenfunctions and has eigenvalues λk+1 = exp(−kω2δt) for k = 1, 2, . . ..
The spectral gap is 1− exp(−ω2δt). In the multidimensional case with normal mode frequencies
0 < ω1 ≤ ω2 ≤ · · · ≤ ων, the time step δt is some fraction, say 1

2 , of 1/ω2
ν and the spectral

gap is very nearly 1
2 ω2

1/ω2
ν. To see the applicability to practical numerical integrators, consider the

Euler–Leimkuhler–Matthews discretization of Equation (6):

Q′n = (1−ω2δt)Q′n−1 + (1− 1
2

ω2δt)
√

2ω2δt
1
ω

Rn. (8)

Comparing Equations (8) and (7) and equating the coefficients of the two terms on their right-hand
sides enables Equation (8) to be written in the form of Equation (7) with modified values for ω and
δt. In particular, the modified value of exp(−ω2δt) is 1−ω2δt, so spectral gap is exactly ω2δt. In the
multidimensional case, where ω2

1δt� 1, the spectral gap for the discrete stochastics is very nearly that
of the continuous stochastics.

2.1. Estimating Integrated Autocorrelation Time

Suggested [8] as a covariance estimate is the quantity

CN(k) =
1
N

N−k−1

∑
n=0

(u(zn)−UN)(u(zn+k)−UN),

with justification in Ref. [9] (pp. 323–324).
The use of all possible terms CN(k)/CN(0) in Equation (3) to estimate the IAcT does not converge

in the limit N → +∞, so, in practice, a lag window w(k) is used to increasingly damp terms as the noise
to signal ratio increases:

τ ≈ 1 +
N−1

∑
k=1

w(k)
CN(k)
CN(0)

.

An interesting algorithm called acor for estimating the IAcT is available on the web [10].
Estimating the IAcT can be quite difficult, and acor can give unsatisfactory results. An attempt
to improve it [1] is at best marginally successful. For reversible methods, there are properties of the
autocorrelation function that may be useful for improving estimates of it [8].

3. Quasi-Reliable Estimates of Sampling Thoroughness

The idea of quasi-reliability is to require that the sample size N be large enough that, with say
95% confidence, the estimated probability of any subset Ω of phase space differs by no more than
tol from its correct value. More specifically, for any subset Ω of phase space, an estimate 1Ω ,N of
E[1Ω(Z)] = Pr(Z ∈ Ω) must satisfy

Var[1Ω ,N ] ≤
1
4

tol2.

Because
Var[1Ω ,N ] ≈ τΩ

1
N

Var[1Ω(Z)] ≤ 1
4N

τΩ,

where τΩ is the IAcT for 1Ω, it is enough that

1
4N

τΩ ≤
1
4

tol2 for all Ω. (9)
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For molecular simulations, this requires that only those conformations or clusters of conformations
having a probability greater than tol be sampled.

In practice, molecular systems have many symmetries, which dramatically reduces the amount of
sampling needed. For example, water molecules are generally considered interchangeable as are many
subsets of atoms on a given molecule, e.g., the 2 hydrogen atoms of any water molecule. More formally,
there are permutations P of the variables z such that ρ(Pz) = ρ(z) and that P−1FP = F where
(Pu)(z) = u(Pz). For such symmetries P, the quasi-reliablity requirement considers only those Ω for
which 1Ω(Pz) = 1Ω(z).

It is helpful to express the IAcT in terms of the forward transfer operator. It can be shown that

E[v(Z0)u(Zk)] = 〈F kv, u〉.

and, in particular,

C(k) = E[u(Q0)u(Qk)]−E[u(Q0)]E[u(Qk)] = 〈F ku, u〉 − 〈Eu, u〉

=

{
〈(1− E)u, u〉, for k = 0,
〈F k

0 u, u〉, for k ≥ 1,
(10)

using the fact that EF0 = F0E = 0. The integrated autocorrelation time can be rewritten as

τ =
C(0) + 2 ∑+∞

k=1 C(k)
C(0)

=
〈(1− E + 2 ∑+∞

k=1 F
k
0 )u, u〉

〈(1− E)u, u〉 =
〈Gu, u〉

〈(1− E)u, u〉

where
G = 1− E +F0(1−F0)

−1 + (F0(1−F0)
−1)†,

which is a self-adjoint operator.
For a reversible propagator, for which F and hence F0 is self adjoint, an arbitrary preobservable u

is in many cases expressible as a linear combination of the eigenfunctions ϕk(z) of F0, corresponding
to eigenvalues 1 > λ2 ≥ λ3 ≥ · · · > −1. (For a more rigorous treatment, see Ref. [8] (Section 2).)
The IAcT for u is then simply a weighted average, of the values

1 +
2λk

1− λk
=

1 + λk
1− λk

with weights 〈ϕk, u〉2/(〈ϕk, ϕk〉〈u, u〉). This is maximized for u = ϕ2, since (1 + λ2)/(1− λ2) is the
largest of these values. Note that, for λ2 negative, τ could be much less than 1. Having τ < 1 may
appear paradoxical until it is recognized that Equation (1) is simply an asymptotic approximation for
N → +∞.

For the simple example with F(q) = −ω2q, the eigenfunction ϕ2(q) =
√

2ωq. The indicator
function 1Ω that is richest in ϕ2(q) is the one with Ω = [0,+∞], for which the first weight is 2/π.
This means that the IAcT for 1Ω is at least 2/π of the maximum IAcT. For a multimodal distribution,
the eigenfunction ϕ2(q) corresponding to the subdominant eigenvalue λ2 [2,3] is closer than is the
function

√
2ωq to an indicator function modulo a constant. Therefore, little is lost and simplicity is

gained, if we use the maximun IAcT over all observables satisfying the symmetries instead of just
indicator functions:

τmax = supu∈W
〈Gu, u〉

〈(1− E)u, u〉 (11)

where
W = {u = u(z) | u(Pz) = u(z) for symmetries P}
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is our set of preobservables. This can be simplified to

τmax = supu∈W
〈Gu, u〉
〈u, u〉 . (12)

To see this, note that the same supremum is obtained for both objective functions if the function u
is restricted so that Eu = 0 and that for such a function u the two objective functions are equal.

For the simple example of Equation (8), the IAcT is maximized by u(q) = q. In the case of a
multidimensional Gaussian distribution, the maximum occurs for linear combination aTq of q where a
is the eigenvector of the Hessian of V(q) corresponding to its smallest eigenvalue ω2

1 . For multimodal
distributions in one dimension, it appears that the maximizing preobservable ϕ2(q) is qualitatively
similar to q in the sense that it is monotonic [2,3].

As is customary when seeking an unknown function, one considers a finite linear combination
u(q) = aTu(q) of basis functions ui ∈W where the ai are chosen to maximimize the IAcT. The number
of basis functions is limited by computational cost. The result of Section 5 hints that the ideal number
might be O(ν2). From Equation (10), the autocovariance for such u(q) is

C(k) = aTCka

where

Ck =

{
〈(1− E)u, uT〉, for k = 0,
〈F k

0 u, uT〉, for k ≥ 1.
(13)

Consequently,

τmax ≈ max
a

aTKa
aTC0a

where K = C0 + 2
+∞

∑
k=1

Ck, (14)

which is a solution of the generalized eigenvalue problem

1
2
(K + KT)a = C0aτ. (15)

The approximation of Equation (14) improves with the number of basis functions.
Without information about the actual distribution ρ(z), a general choice for basis functions might

be linear polynomials, which are the “subdominant” eigenfunctions for a Gaussian distribution. Simple
examples in Ref. [1] (consisting of a mixture of two Gaussians, a one-node neural “network”, and
logistic regression) demonstrate that the use of linear basis functions can yield an IAcT much greater
than that of a preobservable of “interest”. For molecular simulation, it is clear that instead of atomic
coordinates, a better choice of a basis function is the distance between two atoms, each of which is
uniquely distinguishable. In particular, for a protein, one might choose α-carbons distributed along the
backbone chain of a protein. For further suggestions, consult Ref. [11], which considers the automatic
construction of indicator functions for estimating τmax, based on the dynamics of the propagator.

3.1. Quasi-Reversible Propagators

As stated above, the BAOAB integrator would be reversible if the final B substep were modified
to include a momenta flip, i.e.,

BR: Pn = −(P′′n + 1
2 ∆tF(Qn)).

However, reversing direction runs counter to intuition. Additionally, empirical evidence [12]
favors irreversible propagators. If the flipped BAOAB integrator is followed by another momenta flip,
the result is the original irreversible BAOAB integrator. More generally, a sampler might be said to be
“quasi-reversible” if its forward transfer operator F = RF̄ where each of F̄ andR is reversible and
R2 = 1. For a momenta flip, the operatorR is defined by (Ru)(q, p) = u(q,−p).
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Quasi-reversible propagators are special in that their covariance matrices satisfy a special property
if basis functions ui are chosen so that

Ru = Du where D = diag(I′,−I′′)

and I′ and I′′ are identity matrices of possibly different dimension. Such basis functions are easy to
construct since any function u can be written as a sum of its “even part” 1

2 (u +Ru) and its “odd part”
1
2 (u−Ru). In particular, using the fact thatRE = ER,

Ck = 〈F ku, uT〉 − 〈Eu, uT〉 = 〈u, (F̄R)kuT〉 − 〈u, EuT〉
= 〈Ru, (RF̄ )kRuT〉 − 〈Ru,REuT〉 = 〈Du,F kuTD〉 − 〈Du, EuTD〉 = DCT

k D.

The matrix Ck thus partitions into four blocks. The symmetric part of Ck consists of the two
diagonal blocks, and the skew-symmetric part consists of the two off-diagonal blocks. Empirical
estimates of Ck lack these symmetry properties. The expected symmetries provides twice as many
samples for estimating the sampling error in the off-diagonal elements. Additionally, since the IAcT
requires only the symmetric part of Ck, it is unnecessary to compute the off-diagonal blocks, and the
eigenvalue problem decouples into two smaller problems. In addition, it follows that the maximizing
linear combination is either a linear combination of the even functions or of the odd functions. For
molecular dynamics at least, velocities “relax” much more quickly than positions, so it seems that
the long time scales are present only in the position coordinates, so only the (1, 1) block might be
computed.

4. Irreversible Samplers and Their Superiority

Uniform sampling—if it could be used—converges like O(1/N), which is superior to the
O(1/

√
N) convergence of random sampling. It would be desirable to combine them by promoting

near-uniform sampling within layers of near-constant energy and using diffusion to move among
energy layers.

4.1. A Very Simple Example

The following very simple example is a discrete analog of Example 2.8 of Ref. [5] and similar to
an example of Ref. [13]. Assuming probabilities are represented as row vectors, let F be an n by n
probability transition matrix given by

Fij =


θ, if i = j,
1− θ, if i = j + 1 mod n,
0, otherwise,

where 0 < θ < 1. The stationary probability vector is (1/n)[1, 1, . . . , 1]. The inner product for two row
vectors uT, vT is 〈vT, uT〉 = vTu, and the adjoint of a transition matrix is its transpose. Since F is a
circulant matrix, both it and its adjoint have as eigenvectors uT

k = [1, ζk−1, . . . , (ζk−1)n−1], where ζ

denotes the nth root of unity exp(2πi/n). A straightforward, though lengthy, calculation shows that

uT
k F0 = (θ + (1− θ)ζk−1)uT

k and uT
k F

T
0 = (θ + (1− θ)ζ1−k)uT

k ,

for k = 2, 3, . . . , n, and

uT
k G =

θ

1− θ
uT

k .

Therefore,
2/|1− λ2| = 2/((1− θ)|1− ζ|) = 1/((1− θ) sin(π/n)),
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but
τmax = θ/(1− θ).

This a most elementary illustration of the assertion [5] that “the asymptotic variance for every
observable can be made as small as desired under large irreversible drift”. If θ � 1, the IAcT is likewise
much less than 1 despite the very strong correlation between successive values of the state j. The reason
for this is that the IAcT is a measure of sample quality not independence. The measure τ simply
says that N samples are as good as N/τ independent random samples. The F operator encourages
a uniform sampling, which is better than uncorrelated random samples. However, as shown in
the example that follows, such a dramatic difference between (one less than twice) the reciprocal of
the spectral gap and the IAcT does not hold when sampling is inhibited more by energy than by
entropy barriers. A reversible propagator can be formed from this simple example by using instead
the symmetric part of its propagator: F rv = 1

2 (F +FT). This time

uT
k F

rv
0 = (θ +

1
2
(1− θ)(ζk−1 + ζ1−k))uT

k , for k = 2, 3, . . . , n,

and

uT
k G

rv =

(
4

(1− θ)(2− ζk−1 − ζ1−k)
− 1
)

uT
k .

Therefore

2/|1− λ2| = 4/((1− θ)(2− ζ − ζ−1)) = 1/((1− θ) sin2(π/n)),

and
τmax = 1/((1− θ) sin2(π/n))− 1.

Clearly, the irreversible propagator is much better for n� 1.

4.2. A Very Simple Example with a Barrier

Consider the 2n by 2n transition matrix given by

F =



0 1− ε ε

1 0
. . . . . .

1 0
ε 0 1− ε

1 0
. . . . . .

1 0


.

If ε were zero, the eigenvalue 1 would have multiplicity 2, with orthogonal eigenvectors given
by the vector of all ones and by fT = [1, 1, . . . , 1,−1,−1, . . . ,−1]. For small ε > 0, it is expected
that the eigenvector corresponding to the subdominant eigenvalue would be a perturbation of fT.
Indeed, it happens that fTFn = (1− 2ε) fT. This also holds for (Fn)T, so the IAcT for Fn is 1/ε− 1.
This suggests a value of about n(1/ε − 1) for the IAcT of F . This is corroborated by numerical
computation, as shown in Table 1a.

The excess IAcT due to making the propagator reversible is given by Table 1b.It appears to
grow quadratically with n, consistent with the diffusive nature of the propagator. Summing pairs of
entries from the two tables shows that for this example the advantage of irreversibility depends on
the relative importance of entropy barriers to energy barriers, which is consistent with intuition from
molecular dynamics.
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Table 1. τmax is the IAcT for F and τrv
max is that for F rv = 1

2 (F +FT).

(a) τmax

n\ε 0.1 0.01 0.001

10 90 990 9990
100 900 9900 99,900

1000 9000 99,000 999,000

(b) τrv
max− τmax

n\ε 0.1 0.01 0.001

10 35 33 33
100 3910 3511 3355

1000 403,612 389,921 351,047

5. Optimal Langevin Damping for a Model Problem

To analyze the effect of the damping parameter γ on the IAcT for Langevin dynamics, given
by Equation (4), consider the standard model problem F(q) = −mω2q. Changing variables
Qt = (βm)−1/2Q′t, Pt = β−1/2m1/2P′t , and dropping the primes gives

dQt = Pt dt, dPt = −ω2Qt dt− γPt dt +
√

2γ dWt.

Assume exact integration with step size ∆t.
The analysis is rather lengthy, so for the benefit of the reader who wishes to omit it, the discussion

and conclusions are given here:

1. Reaching precise conclusions is difficult for most of the analysis unless ω∆t is bounded above by
some constant of order 1, which seems to be satisfied in practice. This assumption underlies the
statements that follow.

2. The spectral gap is an increasing function of ω, so for a multidimensional quadratic potential
energy, the value of γ that maximizes the spectral gap depends on the lowest frequency ω1.

3. The spectral gap is maximized for γ ≤ 2ω, corresponding to an underdamped system, for which
the spectral gap is ω∆t +O(∆t2).

4. The eigenfunctions of the operator G can be partitioned into eigenspaces P′k, k = 0, 1, . . ., where
P′k is a linear combination of k + 1 specific polynomials of degree k in ωq and p. The greatest

eigenvalue of G is τmax = maxk τ
(k)
max where τ

(k)
max is the maximum IAcT over P′k.

5. Figure 1 shows that, for fixed ∆t and γ, the value τ
(k)
max is an increasing function of ω, at least

for k = 1, 2, 3, 4. Hence, as for the spectral gap, it is the lowest frequency ω1 that dictates the
maximum τ.

6. Figure 2 indicates that, for fixed ∆t and ω, the maximizing τ is either τ
(1)
max or τ

(2)
max,

depending on the value of γ. The optimal damping coefficient is γ = (
√

6/2)ω, for which
τ
(1)
max = τ

(2)
max =

√
6/(ω∆t).

7. For the preobservable ωq, and, indeed, for any odd polynomial, the IAcT τ becomes arbitrary
small as γ goes to zero. This does not mean, however that the variance goes to 0, because
Equation (1) is an asymptotic result, and the IAcT is a prefactor for the leading order 1/N term in
the expression for the variance. The next order 1/N2 term would dominate if γ were very small.
An order 1/N2 error is characteristic of uniform sampling, which would be the consequence of
nearly ballistic movement. In addition, odd polynomials are special in that their expectation is
independent of total energy, so it matters not that barely diffusive movement samples different
values of total energy only at a very slow rate.
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8. The eigenfunction for τ
(2)
max is a specific linear combination of ω2q2 − 1 and p2 − 1. For quadratic

polynomials, the total energy does affect its expected value, which is why it is necessary that γ be
large enough to sample different energies on a reasonable time scale.

5.1. The Forward Transfer Operator

The forward transfer operator is

Fu = ρ−1e∆tLK(ρu)

where
ρ(q, p) ∝ exp(−1

2
p2 − 1

2
ω2q2).

and LK is the Fokker–Planck operator [14] (Equations (10.1)–(10.3), (10.9))

LK f = −p
∂

∂q
f + ω2q

∂

∂p
f + γ

∂

∂p
(p f ) + γ

∂2

∂p2 f .

Therefore,
F = e∆tL

where

L f =
1
ρ
LK(ρ f ) = −p

∂

∂q
f + ω2q

∂

∂p
f − γp

∂

∂p
f + γ

∂2

∂p2 f .

Using the relation L f = 1
ρLK(ρ f ), it is easy to show that the adjoint

L† f = p
∂

∂q
f −ω2q

∂

∂p
f − γp

∂

∂p
f + γ

∂2

∂p2 f .

5.2. Gamma for Maximum Spectral Gap

Ref. [14] (Chapter 10, Equations (1), (2), (3b), (9), (22), (52), (60), (71), (72), (74), (77), (78), (82) and
(83)) gives the eigenvalues of LK as

µk,l = −
1
2
(k + l)γ− 1

2
(k− l)δ, k, l = 0, 1, . . . ,

with eigenfunctions

ψk,l = ρ(q, p)1/2(k!l!δk+l)−1/2(
√

γ+B −
√

γ−A)k(−√γ−B +
√

γ+A)lρ(q, p)1/2,

where
γ± =

1
2
(γ± δ) and δ =

√
γ2 − 4ω2,

with the radical sign denoting the principal square root, and operators A, B defined by

A f = −ω−1 ∂

∂q
f +

1
2

ωq f , B f = − ∂

∂p
f +

1
2

p f .

The operator L has eigenfunctions ρ(q, p)−1ψk,l(q, p) and the same eigenvalues; F has these same
eigenfunctions and has eigenvalues exp(∆t µk,l). See Ref. [15] for a more general result.

For k + l = 1, one has µ0,1 = −γ−, µ1,0 = −γ+ and

ϕ0,1 = (γ−/δ)1/2(−p + γ+q)ρ(q, p), ϕ1,0 = (γ+/δ)1/2(p− γ−q)ρ(q, p).
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In the case γ± = 1
2 γ, F has a double eigenvalue λ2 = λ3 = e−ω∆t but one eigenfunction

ϕ2(q, p) = p − ωq and one generalized eigenfunction ϕ3(q, p) = q, satisfying (F − λ2)ϕ3 = ϕ2.
This results in behavior involving a linear combination of e−ωt and te−ωt.

The eigenvalue nearest 1 depends on ∆t. For small enough ∆t, it is exp(−γ−∆t), and the
spectral gap is ω∆t + O(∆t2) for γ ≤ 2ω and ω∆t(2ω/γ)(1 + (1 − (2ω/γ)2)1/2)−1 + O(∆t2)

otherwise. To maximize the spectral gap, choose γ to be no greater than 2ω, corresponding to
an underdamped system.

5.3. Gamma for Maximum IAcT

To obtain τmax, one needs eigenelements for G, given by Equation (2) with F = exp(∆tL).
Note that the subspace of polynomials of degree≤ k is closed under application of L and L†. Moreover,
this holds separately for subspace Pk of odd polynomials of degree ≤ k for k odd and for subspace
Pk of even polynomials of degree ≤ k for k even. It also applies to operators E , F , F †, and G. Hence,
the Pk are eigenspaces for G. These eigenspaces can be further decomposed as follows. Let P′k = Pk
for k < 2, and let P′k = Pk ∩ P⊥k−2 for k ≥ 2. The claim is that P′k is an eigenspace, of dimension k + 1.
To confirm this, it is enough to show that 〈Gu, v〉 = 0 for any u ∈ Pk, v ∈ Pk−2, which follows almost
immediately, since G† = G and Gv ∈ Pk−2. Let u be a basis for P′k chosen so there are even functions of
p followed by odd functions of p. In particular,

u = [ωq, p]T,

u = [ω2q2 − 1, ωqp, p2 − 1]T,

u = [ω3q3 − 3ωq, (ω2q2 − 1)p, ωq(p2 − 1), p3 − 3p]T,

u = [ω4q4 − 6ω2q2 + 3, (ω3q3 − 3ωq)p, (ω2q2 − 1)(p2 − 1), ωq(p3 − 3p), p4 − 6p + 3]T,

for k = 1, 2, 3, 4, respectively. The polynomials in ωq and in p are modified versions Hek of Hermite
polynomials. We have Lu = Au for some matrix of constants A, given by

A =


0 −kω

ω −γ
. . .

. . . . . . −ω

kω −kγ

 . (16)

(cf. Ref. [14], Equations (10.96) and (10.97) for LK.) We have Eu = 0 and F0u = Fu = exp(∆tA)u.
Therefore, from Equations (13) and (14), one has

Ck = 〈F k
0 u, uT〉 = exp(k∆tA)〈u, uT〉,

and
K = coth(−1

2
∆tA)〈u, uT〉 = coth(−1

2
∆tA)C0.

For each value of k, τmax is the maximum eigenvalue of

1
2

(
C−1

0 coth(−1
2

∆tA)C0 + coth(−1
2

∆tA)T
)

. (17)

As explained in Section 3.1, if the basis functions are re-ordered so that those that are even
functions of p precede those that are odd functions of p, the eigenvalue problem splits into two nearly
equal parts.

For k = 1, A = XΛX−1 where Λ = diag(−γ−,−γ+) and
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X =

[
ω ω

γ− γ+

]
.

The covariance matrix C0 = 〈u, uT〉 = diag(1, 1), and matrix (17) is diag(τ+, τ−) where

τ± =
1
δ

(
±γ± coth(

1
2

∆tγ−)∓ γ∓ coth(
1
2

∆tγ+)

)
.

Using the identity coth(x ± y) = (sinh 2x ∓ sinh 2y)/(cosh 2x − cosh 2y), one gets that the
eigenvalues of matrix (17) are

τ± =
sinh( 1

2 ∆tγ)± γ sinh( 1
2 ∆tδ)/δ

cosh( 1
2 ∆tγ)− cosh( 1

2 ∆tδ)
.

The greater of τ± is τ+, and it is a straightforward exercise to show that τ+ is an decreasing
function of ω as long as

(ω∆t)2 ≤ π2 + (γ∆t/2)2. (18)

In practice, a numerical integrator is used, whose step size is chosen so that ∆tL = θ where θ is
some fractional value, e.g., 1

2 , and L is the magnitude of largest eigenvalue of the Jacobian matrix of
the right-hand side of the system of (first-order) stochastic differential equations. In particular,

ω∆t = θ if γ ≤ 2ω; (19)

otherwise, it holds that ω∆t < γ∆t/2. Hence, Inequality (18) is more than satisfied. It is more
complicated to analyze the behavior of values of τ for k > 1, so we exploit the smallness of ω∆t
and γ∆t to do an asymptotic analysis. From Expression (17), one sees that for P′k, its τmax equals

τ
(k)
max +O(∆t) where τ

(k)
max is the greatest eigenvalue of

− 1
∆t

(C−1
0 A−1C0 + A−T). (20)

For k = 1, one has C0 = diag(1, 1) and τ
(1)
max = 2γ/(ω2∆t), corresponding to the eigenfunction

ωq. For k = 2, one has

A−1 =
1

2γω2

 −γ2 −ω2 2γω −ω2

−γω 0 0
−ω2 0 −ω2

 ,

C0 = diag(2, 1, 2), and the largest eigenvalue for Expression (20) is

τ
(2)
max =

1
2∆t

(
γ

ω2 +
2
γ
+

√
γ2

ω4 +
4

γ2

)
,

corresponding to an eigenfunction that is some linear combination of ω2q2 − 1 and p2 − 1. Again τ
(k)
max

is a decreasing function of ω for small enough ∆t. For general k, the size of the elements of A in
Equation (16) increase with ω, which suggests that for practical values of ∆t, the largest eigenvalue
for Expression (20) decreases with ω. This can be confirmed numerically. To reduce the number of
parameters, write A = −ωB(γ/ω), and rewrite Expression (20) as

1
ω∆t

(C−1
0 B(γ/ω)−1C0 + B(γ/ω)−T). (21)
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The value τ
(k)
max is the largest eigenvalue of Matrix (21), so γ∆t τ

(k)
max is a function only of the ratio

ω/γ. Figure 1 plots this quantity for k = 1, 2, 3, 4, confirming that τ
(k)
max is decreasing function of ω for

fixed values of γ and ∆t.

10-1

100

101

102

103

0 0.5 1 1.5 2

∆
t
γτ
m
a
x

ω/γ

k=1
k=2
k=3
k=4

Figure 1. γ∆t τ
(k)
max vs. ω/γ for k = 1, 2, 3, 4.

Therefore, for a multidimensional quadratic potential, τmax is very likely to be determined by the
lowest frequency mode. (This is readily established for the spectral gap for reasonable values of ∆t.)

Having established that the lowest frequency mode is most likely responsible for τmax, let ω

denote the lowest frequency ω1, and consider the optimal choice of γ. From Matrix (21), observe
that ω∆t τ

(k)
max is a function only of γ/ω. Accordingly, we choose γ/ω to minimize maxk ω∆t τ

(k)
max.

However, ∆t may depend on γ, but only if γ > 2ων, according to Equation (19). Let us initially ignore
this possibility and revisit it after determining the optimal γ.

Assuming that the maximum of ω∆t τ
(k)
max is attained for k = 1 or k = 2, there are two possible

locations for the best γ. One is the choice γ =
√

2ω, for which ω∆t τ
(2)
max = 1+

√
2 and ω∆t τ

(1)
max = 2

√
2.

The other is the choice γ = (
√

6/2)ω where ω∆t τ
(k)
max =

√
6 for both k = 1 and k = 2. The latter is the

better choice. This and the assumption that the maximum occurs for k < 3 is supported by Figure 2,
which plots τmax as a function of γ for fixed values of ω and ∆t. Since (

√
6/2)ω1 < 2ων, we see from

Equation (19) that there is no concern about ∆t limiting the value of γ.
Note that for the optimal γ, the dynamics is underdamped in every mode.
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Figure 2. ω∆t τ
(k)
max vs. γ/ω for k = 1, 2, 3, 4.
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6. Discussion and Conclusions

It is asserted in the literature [1,4] that, for comparing MCMC propagators and for ensuring
reasonably reliable simulation results, it is of great value to estimate the maximum autocorrelation
time over all possible observables. Certainly, this would seem desirable for comparing propagators,
since it is best to assume as little as possible about the actual observables that are to be estimated from
the Markov chain. In addition, the longest IAcT would be more reliably estimated than any other IAcT,
because its accurate estimation would call for a greatest number of samples; moreover, the accuracy of
estimates of other IAcTs might be influenced by the longest IAcT. Unfortunately, estimating IAcTs and
assessing such estimates is a difficult task, which can benefit greatly from further research.

In this article, it is suggested that the maximum IAcT be estimated by considering an arbitrary
linear combination of basis functions chosen to capture the lowest frequency motions of the dynamics
of the MCMC chain. It is also worth considering the approach based on a set of well chosen indicator
functions [11].

Another quantity for measuring performance of an MCMC propagator is the spectral gap. It is
related to equilibration time, but as a predictor of IAcTs, it can be arbitrarily too pessimistic or it can be
too optimistic. Such is the case for irreversible propagators, especially for energy landscapes where
entropy barriers dominate energy barriers.

Shorter integrated autocorrelation times are thus a primary consideration in the design of
MCMC propagators. Simple examples are constructed to explain how irreversibility might help,
though their relevance to practical propagators is unclear. Nonetheless, it is advantageous not to
insist on reversibility. In particular, the ballistic component of propagators like hybrid Monte Carlo
and Langevin dynamics may offer dramatic speedups for overcoming entropy barrriers, though no
advantage for energy barriers.

Irreversible propagators typically have a parameter that determines the extent of diffusive
behavior. For discrete Langevin dynamics applied to a multidimensional quadratic potential,
the optimal value corresponds to slightly underdamped dynamics for the lowest frequency mode,
with other modes experiencing even lighter dampling. However, this conclusion is not necessarily
indicative of the optimal damping for the usual situation, in which there a multiplicity of energy
minima, and further studies are needed.

In a nutshell, general-purpose sampling benefits greatly from the use of irreversible propagators
in extended state space, with “diffusion parameter(s)” chosen to minimize the maximum integrated
autocorrelation time, which for a quadratic potential energy corresponds to moderately underdamped
dynamics in the lowest frequency mode.
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