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Abstract: The multiterminal secret key agreement problem by public discussion is formulated
with an additional source compression step where, prior to the public discussion phase, users
independently compress their private sources to filter out strongly correlated components in order to
generate a common secret key. The objective is to maximize the achievable key rate as a function of
the joint entropy of the compressed sources. Since the maximum achievable key rate captures the total
amount of information mutual to the compressed sources, an optimal compression scheme essentially
maximizes the multivariate mutual information per bit of randomness of the private sources, and can
therefore be viewed more generally as a dimension reduction technique. Single-letter lower and upper
bounds on the maximum achievable key rate are derived for the general source model, and an explicit
polynomial-time computable formula is obtained for the pairwise independent network model. In
particular, the converse results and the upper bounds are obtained from those of the related secret
key agreement problem with rate-limited discussion. A precise duality is shown for the two-user
case with one-way discussion, and such duality is extended to obtain the desired converse results in
the multi-user case. In addition to posing new challenges in information processing and dimension
reduction, the compressed secret key agreement problem helps shed new light on resolving the
difficult problem of secret key agreement with rate-limited discussion by offering a more structured
achieving scheme and some simpler conjectures to prove.

Keywords: secret key agreement; source compression; rate-limited discussion; communication
complexity; dimension reduction; multivariate mutual information

1. Introduction

In information-theoretic security, the problem of secret key agreement by public discussion
concerns a group of users discussing in public to generate a common secret key that is independent of
their discussion. The problem was first formulated by Maurer [1] and Ahlswede and Csiszár [2] under
a private source model involving two users who observe some correlated private sources. Rather
surprisingly, public discussion was shown to be useful in generating the secret key; i.e., it strictly
increases the maximum achievable secret key rate, called the secrecy capacity. This phenomenon was
also discovered in [3] in a different formulation. Furthermore, the secrecy capacity was given an
information-theoretically appealing characterization—it is equal to Shannon’s mutual information [4]
between the two private sources, assuming the wiretapper can listen to the entire public discussion
but not observe any other side information of the private sources. It was also shown that the capacity
can be achieved by one-way public discussion (i.e., with only one of the users discussing in public).

As a simple illustration, let X0, X1, and J be three uniformly random independent bits, and suppose
user 1 observes Z1 := (X0,X1) privately while user 2 observes Z2 := (XJ, J), where XJ = X0 when
J = 0 but XJ = X1 when J = 1. If user 2 reveals J in public, then user 1 can recover XJ and therefore
Z2. Furthermore, since XJ is independent of J, it can serve as a secret key bit that is recoverable by
both users but remains perfectly secret to a wiretapper who observes only the public message J. This

Entropy 2017, 19, 545; doi:10.3390/e19100545 www.mdpi.com/journal/entropy

http://www.mdpi.com/journal/entropy
http://www.mdpi.com
http://dx.doi.org/10.3390/e19100545
http://www.mdpi.com/journal/entropy


Entropy 2017, 19, 545 2 of 19

scheme achieves a secrecy capacity equal to the mutual information I(Z1 ∧ Z2) = 1 roughly because
user 2 reveals H(Z2|Z1) = 1 bit in public so there is H(Z2)−H(Z2|Z1) = I(Z1 ∧Z2) bits of randomness
left for the secret key. However, if no public discussion is allowed, it follows from the work of Gác and
Körner [5] that no common secret key bit can be extracted from the sources. In particular, XJ cannot be
used as a secret key because user 1 does not know whether XJ is X0 or X1. X0 andX1 cannot be used as
a secret key either because they may not be observed by user 2 when J = 1 and J = 0, respectively.
It can be seen that while the private sources are clearly statistically dependent, public discussion is
needed to consolidate the mutual information of the sources into a common secret key.

The secret key agreement formulation was subsequently extended to the multi-user case by
Csiszár and Narayan [6]. Some users are also allowed to act as helpers who can participate in the public
discussion but need not share the secret key. The designated set of users who need to share the secret
key are referred to as the active users. In contrast to the two-user case, one-way discussion may not
achieve the secrecy capacity when there are more than two users. Instead, an omniscience strategy was
considered in [6] in which the users first communicate minimally in public until omniscience; that is,
the users discuss in public at the smallest total rate until every active user can recover all the private
sources. The scheme was shown to achieve the secrecy capacity in the case when the wiretapper
only listens to the public discussion. However, this assumes that the public discussion is lossless and
unlimited in rate, and the sources take values from finite alphabet sets. If the sources are continuous or
if the public discussion is limited to a certain rate, it may be impossible to attain omniscience.

This work is motivated by the search for a better alternative to the omniscience strategy for
multiterminal secret key agreement. A prior work of Csiszár and Narayan [7] considered secret key
agreement under rate-limited public discussion. The model involves two users and a helper observing
correlated discrete memoryless sources. The public discussion of the users is conducted in a particular
order and direction. While the region of achievable secret key rate and discussion rates remains
unknown, single-letter characterizations involving two auxiliary random variables were given for
many special cases, including the two-user case with two rounds of interactive public discussion,
where each user speaks once in sequence, with the last public message possibly depending on the first.
By further restricting to one-way public discussion, the characterization involves only one auxiliary
random variable and was extended to continuous sources by Watanabe and Oohama in [8], where
they also gave an explicit characterization without any auxiliary random variable for scalar Gaussian
sources in [8]. For vector Gaussian sources, the characterization by the same authors in [9] involving
some matrix optimization was further improved in [10] to a more explicit formula. However, if the
discussion is allowed to be two-way and interactive, Tyagi [11] showed with a concrete two-user
example that the minimum total discussion rate required—called the communication complexity—can be
strictly reduced. Using the technique of Kaspi [12], multi-letter characterizations were given in [11] for
the communication complexity, and similarly by Liu et al. in [13] for the region of achievable secret key
rate. The characterization was further simplified in [13] using the idea of convex envelope using the
technique by Ma et al. [14]. While these characterizations provide many new insights and properties,
they are not considered computable compared to the usual single-letter and explicit characterizations.
Further extension to the multi-user case also appears difficult, as the converse can be seen to rely on
the Csiszár sum identity [2] (Lemma 4.1), which does not appear to extend beyond the two-user case.

Nevertheless, partial solutions under more restrictive public discussion constraints were possible.
By simplifying the problem to the right extent, new results were discovered in the multi-user case,
which has led to the formulation in this work. For instance, Gohari and Anantharam [15] characterized
the secrecy capacity in the multi-user case under the simpler vocality constraint where some users
have to remain silent throughout the public discussion. Using this result, simple necessary and
sufficient conditions can be derived as to whether a user can remain silent without diminishing the
maximum achievable key rate [16–18]. This is a simpler result than characterizing the achievable rate
region because it does not say how much discussion is required if a user must discuss. Another line
of work [19–22] follows [11] to characterize the communication complexity, but in the multi-user
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case. Courtade and Halford [19] characterized the communication complexity under a special
non-asymptotic hypergraphical source model with linear discussion. A multi-letter lower bound
was obtained in [21] for the communication complexity for the asymptotic general source model.
It also gave a precise and simple condition under which the omniscience strategy for secret key
agreement is optimal for a special source model called the pairwise independent network (PIN) [23],
which is a special hypergraphical source model [24]. In [22,25], some single-letter and more easily
computable explicit lower bounds were also derived. These bounds also lead to conditions for the
omniscience strategy to be optimal under the hypergraphical source model, which covers the PIN
model as a special case. The more general problem of characterizing the multiterminal secrecy capacity
under rate-limited public discussion was considered in [26]. In particular, an objective of [26] is to
characterize the constrained secrecy capacity, defined as the maximum achievable key rate as a function
of the total discussion rate. This covers the communication complexity as a special case when further
increase in the public discussion rate does not increase the secrecy capacity. While only single-letter
bounds were derived for the general source model, a surprisingly simple explicit formula was derived
for the PIN model [26]. The optimal scheme in [26] follows the tree-packing protocol in [27]. It turns
out to belong to the more general approach of decremental secret key agreement in [28,29] inspired by
the achieving scheme in [19] and the notion of excess edge in [24]. More precisely, the omniscience
strategy is applied after some excess or less-useful edge random variables are removed (decremented)
from the source. Because the entropy of the decremented source is smaller, the discussion required
to attain omniscience of the decremented source is also less. Such decremental secret key agreement
approach applies to hypergraphical sources more generally, and it results in one of the best upper
bounds in [20] for communication complexity. However, for more general source models that are not
necessarily hypergraphical, the approach does not directly apply.

The objective of this work is to formalize and extend the idea of decremental secret key agreement
beyond the hypergraphical source model. More precisely, the secret key agreement problem is
considered with an additional source compression step before public discussion, in which each user
independently compresses their private source component to filter away less correlated randomness
that does not contribute much to the achievable secret key rate. The compression is such that the
entropy rate of the compressed sources is reduced to under a certain specified level. In particular,
the edge removal process in decremental secret key agreement can be viewed as a special case of
source compression, and the more general problem is referred to as compressed secrecy key agreement.
The objective is to characterize the achievable secret key rate maximized over all valid compression
schemes. For simplicity, this work will focus on the case without helpers—that is, when all users are
active and want to share a common secret key. A closely related formulation is given by Nitinawarat
and Narayan [30], which characterized the maximum achievable key rate for the two-user case under
the scalar Gaussian source model where one of the users is required to quantize the source to within
a given rate. The formulation and techniques in [30] was also extended in [31] to the multi-user
case where every user can quantize their sources individually to a certain rate. The compression
considered in this work is more general than quantizations for Gaussian sources, and the new results
are meaningful beyond continuous sources.

The compressed secret key agreement problem is also motivated by the study of multivariate
mutual information (MMI) [32]—that is, an extension of Shannon’s mutual information to the
multivariate case involving possibly more than two random variables. The unconstrained secrecy
capacity in the no-helper case has been viewed as a measure of mutual information in [32,33], not only
because of its mathematically appealing interpretations such as the residual independence relation
and data processing inequalities in [32], but also because of its operational significance in undirected
network coding [34,35], data clustering [36], and feature selection [37] (cf. [38]). The optimal source
compression scheme that achieves the compressed secrecy capacity can be viewed more generally as
an optimal dimension reduction procedure that maximizes the MMI per bit of randomness, which is
an extension of the information bottleneck problem [39] to the multivariate case. However, different
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from the multivariate extension in [40], the MMI is used instead of Watanabe’s total correlation [41],
and so it captures only the information mutual to all the random variables rather than the information
mutual to any subsets of the random variables. Furthermore, the compression is on each random
variable rather than subsets of random variables.

The paper is organized as follows. The problem of compressed secret key agreement is formulated
in Section 2. Preliminary results of the secret key agreement are given in Section 3. The main results are
motivated in Section 4 and presented in Section 5, followed by the conclusion and some discussions on
potential extensions in Section 6.

2. Problem Formulation

Similarly to the multiterminal secret key agreement problem [6] without helpers or wiretappers’
side information, the setting of the problem involves a finite set V of |V| > 1 users, and a discrete
memoryless multiple source:

ZV := (Zi|i ∈ V) ∼ PZV taking values from

ZV := ∏i∈V Zi (not necessarily finite).

Note that letters in sans serif font are used for random variables and the corresponding capital letters
in the usual math italic font denote the alphabet sets. PZV denotes the joint distribution of Zi’s.

A secret key agreement protocol with source compression can be broken into the following phases:

• Private observation: Each user i ∈ V observes an n-sequence:

Zn
i := (Zit|t ∈ [n]) = (Zi1,Zi2, . . . ,Zin)

i.i.d. generated from the source Zi for some block length n. For convenience, [n] denotes the set of
positive integers up to n (i.e., {1, . . . , n}).

• Private randomization: Each user i ∈ V generates a random variable Ui independent of the private
source; i.e.,

H(UV |ZV) = ∑
i∈V

H(Ui). (1)

• Source compression: Each user i ∈ V computes

Z̃i = ζi(Ui,Zn
i ) (2)

for some function ζi that maps to a finite set. Z̃V is referred to as the compressed source.

• Public discussion: Using a public authenticated noiseless channel, a user it ∈ V is chosen in

round t ∈ [`] to broadcast a message

F̃t := f̃t(Z̃it , F̃
t−1) where (3a)

` is a positive integer denoting the number of rounds and F̃t−1 denotes all the messages broadcast in
the previous rounds. If the dependency on F̃t−1 is dropped, the discussion is said to be non-interactive.
The discussion is said to be one-way (from user i) if ` = 1 (and i1 = 1). For convenience,

Fi := (F̃t|t ∈ [`], it = i)

F := F̃` = FV

(3b)

(3c)
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denote the aggregate message from user i ∈ V and the aggregation of the messages from all users,
respectively.

• Key generation: A random variable K, called the secret key, is required to satisfy the recoverability

constraint that
lim

n→∞
Pr(∃ i ∈ V,K 6= θi(Z̃i,F)) = 0, (4)

for some function θi, and the secrecy constraint:

lim
n→∞

1
n
[log|K| − H(K|F)] = 0, (5)

where K denotes the finite alphabet set of possible key values.

Note that, unlike [11], non-interactive discussion is considered different from one-way discussion
in the two-user case, since both users are allowed to discuss even though their messages cannot depend
on each other. In contrast to [42], there is an additional source compression phase, after which the
protocol can only depend on the original sources through the compressed sources.

The objective is to characterize the maximum achievable secret key rate for a continuum of
different levels of source compression:

Definition 1. The compressed secrecy capacity with a joint entropy limit α ≥ 0 is defined as

C̃S(α) := sup lim inf
n→∞

1
n

log|K| (6)

where the supremum is over all possible compressed secret key agreement schemes satisfying

lim sup
n→∞

1
n

H(Z̃V)− α ≤ 0. (7)

This constraint limits the joint entropy rate of the compressed source.

Note that instead of the joint entropy limit, one may also consider entropy limits on some subset
B ⊆ V that

lim sup
n→∞

1
n

H(Z̃B)− α ≤ 0. (8)

If multiple entropy limits are imposed, C̃S will be a higher-dimensional surface instead of a
one-dimensional curve. For example, in the two-user case under the scalar Gaussian source model,
the entropy limit was imposed on only one of the users in [30]. In [31], the multi-user case under the
Gaussian Markov tree model was considered under the symmetric case where the entropy limit is
imposed on every user.

However, for simplicity, the joint entropy constraint (7) will be the primary focus in this work. It
will be shown that C̃S(α) is closely related to the constrained secrecy capacity CS(R) defined as [26]:

CS(R) := sup lim inf
n→∞

1
n

log|K| for R ≥ 0, (9)

with Z̃i := (Ui,Zn
i ) instead of (2) (i.e., without compression), and the entropy limit (7) replaced by the

constraint on the total discussion rate:

R ≥ lim sup
n→∞

1
n

log|F| = lim sup
n→∞

1
n ∑

i∈V
log|Fi|. (10)
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It follows directly from the result of [6] that C̃S(α) remains unchanged whether or not the discussion is
interactive. Indeed, the relation between C̃S(α) and CS(R) to be shown in this work will not be affected
either. Therefore, for notational simplicity, CS(R) may refer to the case with or without interaction,
even though CS(R) may be smaller with non-interactive discussion.

It is easy to show that CS(R) is continuous, non-decreasing, and concave in R [26] (Proposition 3.1).
As R goes to ∞, the secrecy capacity

CS(∞) := lim inf
R→∞

CS(R) (11)

is the usual unconstrained secrecy capacity defined in [6] without the discussion rate constraint (10).
The smallest discussion rate that achieves the unconstrained secrecy capacity is the communication
complexity denoted by

RS := inf{R ≥ 0 | CS(R) = CS(∞)}. (12)

Similar to CS(R), the following basic properties can be shown for C̃S(α):

Proposition 1. C̃S(α) is continuous, non-decreasing, and concave in α ≥ 0. Furthermore,

CS(∞) = lim inf
α→∞

C̃S(α), (13)

achieving the unconstrained secrecy capacity in the limit.

Proof. Continuity, monotonicity, and (13) follow directly from the definition of C̃S(α). Concavity
follows from the usual time-sharing argument; i.e., for any λ ∈ [0, 1], α′, α′′ > 0, a secret key rate of
λC̃S(α

′) + (1− λ)C̃S(1− α′) is achievable with the entropy limit α := λα′ + (1− λ)α′′ by applying the
optimal scheme that achieves C̃S(α

′) for the first n′ := bλnc samples of Zn
V and applying the optimal

scheme that achieves C̃S(α
′′) for the remaining n′′ := n− n′ samples.

Because of (13), a quantity playing the same role of RS for CS can be defined for C̃S(α) as follows.

Definition 2. The smallest entropy limit that achieves the unconstrained secrecy capacity is defined as

αS := inf{α | C̃S(α) = CS(∞)} (14)

and referred to as the minimum admissible joint entropy.

One may also consider both the entropy limit (7) and discussion rate constraint (10)
simultaneously, and define the secrecy capacity as a function of α and R. However, for simplicity, we
will not consider this case but instead focus on the relationship between C̃S(α) and CS(R).

The following example illustrates the problem formulation. It will be revisited at the end of
Section 5 (Example 3) to illustrate the main results.

Example 1. Consider V := {1, 2, 3} and

Z1 := (Xa,Xb), Z2 := (Xa,Xb,Xc), and Z3 := (Xa,Xc), (15)

where Xa,Xb, and Xc are uniformly random and independent bits. It is easy to argue that

C̃S(α) ≥ α for α ∈ [0, 1]. (16a)

To see this, notice that Xa is observed by every user. Any choice of K = θ(Xn
a ) can therefore be recovered by

every user without any discussion, satisfying the recoverability constraint (4) trivially. Since there is no public
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discussion required, the secrecy constraint (5) also holds immediately by taking a portion of the bits from Xn
a to

be the key bits in K. Finally, setting Z̃i = ζi(X
n
a ) = θ(Xn

a ) for all i ∈ V ensures H(Z̃V) ≤ H(K), satisfying
the entropy limit (7) with α equal to the key rate. Hence, C̃S(α) ≥ α, as desired. Indeed, we will show (by
Proposition 5) that the reverse inequality holds in general, and so we have equality for α ∈ [0, 1] for this example.

For α = H(ZV) = H(Xa,Xb,Xc) = 3, every user can simply retain their source without compression;
that is, with Z̃i = Zi for i ∈ V while satisfying the entropy limit (7). Now, with K = (Xn

a ,Xn
b ) and

F = F2 = Xn
b ⊕ Xn

c where ⊕ is the elementwise XOR, it can be shown that both the recoverability (4) and
secrecy (5) constraints hold. This is because user 3 can recover Xb from the XOR Xb ⊕ Xc with the side
information Xc. Furthermore, the XOR bit is independent of (Xa,Xb) and therefore does not leak any information
about the key bits. With this scheme, C̃S(3) ≥ 2. By the usual time-sharing argument, we have

C̃S(α) ≥
{

1+α
2 for α ∈ [1, 3]

2 for α ≥ 3.
(16b)

Indeed, the reverse inequality can be argued using one of the main results (Theorem 1) and so the minimum
admissible joint entropy will turn out to be αS = 3.

3. Preliminaries

In this section, a brief summary of related results for the secrecy capacity and communication
complexity will be given. The results for the two-user case are introduced first, followed by the more
general results for the multi-user case, and the stronger results for the special hypergraphical source
model. An example will also be given at the end to illustrate some of the results.

3.1. Two-User Case

As mentioned in the introduction, no single-letter characterization is known for CS(R) and
C̃S(α), even in the two-user case where V := {1, 2}. Furthermore, while multi-letter characterizations
for RS and CS(R) were given in [11] and [13], respectively, in the two-user case under interactive
discussion, no such multi-letter characterization is known for the case with non-interactive discussion.
Nevertheless, if one-way discussion from user 1 is considered, then the result of [7] (Theorem 2.4) and
its extension [8] to continuous sources gave the following characterization of CS(R):

CS,1(R) := sup I(Z′1 ∧ Z2) where

I(Z′1 ∧ Z1)− I(Z′1 ∧ Z2) ≤ R

I(Z′1 ∧ Z2|Z1) = 0.

(17a)

(17b)

(17c)

The last constraint (17c) corresponds to the Markov chain Z′1 − Z1 − Z2 and so the supremum is
taken over the choices of the conditional distribution PZ′1|Z1

= PZ′1|Z1,Z2
. Using the double Markov

property as in [11], it follows that CS(0) can be characterized more explicitly by the Gács–Körner
common information

JGK(Z1 ∧ Z2) := sup{H(U) | H(U|Z1) = H(U|Z2) = 0} (18)

where U is a discrete random variable. If (18) is finite, a unique optimal solution U exists and is called the
maximum common function of Z1 and Z2 because any common function of Z1 and Z2 must be a function
of U. The communication complexity also has a more explicit characterization [11] (Equation (44))

RS,1 = JW,1(Z1 ∧ Z2)− I(Z1 ∧ Z2) where (19)

JW,1(Z1 ∧ Z2) := inf{H(W) | H(W|Z1) = 0, I(Z1 ∧ Z2|W) = 0} (20)
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and W is a discrete random variable. If JW,1(Z1 ∧ Z2) is finite, a unique optimal solution W exists and
is called the minimum sufficient statistics of Z1 for Z2 since Z2 can only depend on Z1 through W.

In Section 4, the expression CS,1(R) will be related to the compressed secret key agreement
restricted to the two-user case when the entropy limit is imposed only on user 1. This duality
relationship in the two-user case will serve as the motivation of the main results for the multi-user case.
Indeed, the desired characterization of C̃S(α) for the two-user case has appeared in [30] (Lemma 4.1)
for the scalar Gaussian source model:

C̃S,1(α) := sup I(Z′1 ∧ Z2) where

I(Z′1 ∧ Z1) ≤ α

I(Z′1 ∧ Z2|Z1) = 0.

(21a)

(21b)

(21c)

For the general source model, the expression (21) has also appeared before with other
information-theoretic interpretations, as mentioned in [43]. In particular, the Lagrangian dual of
(21) reduces to the dimension reduction technique called the information bottleneck method in [39],
where Z1 is an observable used to predict the target Z2, and Z′1 is a feature of Z1 that captures as
much mutual information with the target variable as possible per bit of mutual information with the
observable. Interestingly, the principal of the information bottleneck method was also proposed in
[44,45] as a way to understand deep learning, since the best prediction of Z2 from Z1 is nothing but a
particular feature of Z1 sharing a lot of mutual information with Z2.

3.2. General Source with Finite Alphabet Set

Consider the multi-user case where |V| ≥ 2. If ZV takes values from a finite set, then the
unconstrained secrecy capacity was shown in [6] to be achievable via communication for omniscience
(CO) and equal to

CS(∞) = H(ZV)− RCO, (22)

where RCO is the smallest rate of CO [6] characterized by the linear program

RCO = min
rV

r(V) such that

r(B) ≥ H(ZB|ZV\B) ∀B ( V,

(23a)

(23b)

where r(B) denotes the sum ∑i∈B ri. Further, RCO can be achieved by non-interactive discussion. It
follows that

RS ≤ RCO, or equivalently

CS(R) = CS(∞) R ≥ RCO.

(24a)

(24b)

It was also pointed out in [6] that private randomization does not increase CS(∞). Hence, if ZV is
finite, we have

αS ≤ H(ZV) (25)

because CS(∞) can be achieved with Z̃i = Zi. While it seems plausible that randomization does not
decrease RS nor increase CS(R) for any R ≥ 0, a rigorous proof remains elusive. Similarly, it appears
plausible that neither αS nor C̃S(α) are affected by randomization, but, again, no proof is known yet.
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An alternative characterization of CS(∞) was established in [24,33] by showing that the divergence
bound in [6] is tight in the case without helpers. More precisely, with Π′(V) defined as the set of
partitions of V into at least two non-empty disjoint sets, then

CS(∞) = I(ZV) := min
P∈Π′(V)

IP (ZV), where

IP (ZV) :=
1

|P| − 1
D

(
PZV

∥∥∥∥∥ ∏
C∈P

PZC

)

=
1

|P| − 1

[
∑C∈P H(ZC)− H(ZV)

]
.

(26a)

(26b)

In the bivariate case for which V = {1, 2}, I(ZV) reduces to Shannon’s mutual information I(Z1∧Z2). It
was further pointed out in [32] that I(ZV) is the minimum solution γ to the residual independence relation

H(ZV)− γ = ∑
C∈P

[H(ZC)− γ] (27)

for some P ∈ Π′(V). To get an intuition of the above relation, notice that γ = 0 is a solution when the
joint entropy H(ZV) on the left is equal to the sum of entropies H(ZC)’s on the right for some partition
P . In other words, the MMI is the smallest value of γ removal of which leads to an independence
relation; i.e., the total residual randomness on the left is equal to the sum of individual residual
randomness on the right according to some partitioning of the random variables. It was further shown
in [32] that there is a unique finest optimal partition to (26a) with a clustering interpretation in [36].
The MMI is also computable in polynomial time, following the result of Fujishige [46].

In the opposite extreme with R→ 0, it is easy to argue that

CS(0) ≥ JGK(ZV) (28)

where JGK(ZV) is the multivariate extension of the Gács–Körner common information in (18)

JGK(ZV) := sup{H(U) | H(U|Zi) = 0 ∀i ∈ V} (29)

with U again chosen as a discrete random variable. Note that even without any public discussion,
every user can compress their source independently to Un where U is the maximum common function
if JGK(ZV) is finite. Hence, it is easy to achieve a secret key rate of H(U) = JGK(ZV) without any
discussion. The reverse inequality of (28) seems plausible, but has not yet been proven, except in the
two-user case. The technique in [7] which relies on the Csiszár sum identity does not appear to extend
to the multi-user case to give a matching converse.

3.3. Hypergraphical Sources

Stronger results have been derived for the following special source model:

Definition 3 (Definition 2.4 of [24]). ZV is a hypergraphical source w.r.t. a hypergraph (V, E, ξ) with edge
functions ξ : E→ 2V \ {∅} iff, for some independent edge variables Xe for e ∈ E with H(Xe) > 0,

Zi := (Xe | e ∈ E, i ∈ ξ(e)) for i ∈ V. (30)

In the special case for which the hypergraph is a graph (i.e., |ξ(e)| = 2), the model reduces to the pairwise
independent network (PIN) model in [23]. The hypergrahical source can also be viewed as a special case of the
finite linear source considered in [47] if the edge random variables take values from a finite field.
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For hypergraphical sources, various bounds on RS and CS(R) have been derived in [20–22,26].
The achieving scheme makes use of the idea of decremental secret key agreement [28,29], where the
redundant or less useful edge variables are removed or reduced before public discussion. This is a
special case of the compressed secret key agreement, where the compression step simply selects the
more useful edge variables up to the joint entropy limit.

For the PIN model, it turns out that decremental secret key agreement is optimal, leading to a
single-letter characterization of RS and CS(R) in [26]:

RS = (|V| − 2)CS(∞).

CS(R) = min
{

R
|V| − 2

, CS(∞)

}
for R ≥ 0.

(31a)

(31b)

It can be verified that (31a) is the smallest value of R such that CS(R) = CS(∞) using (31b). While the
proof of the converse (i.e., ≤ for (31b)) is rather involved, the achievability is by a simple tree packing
protocol, which belongs to the decremental secret key agreement approach that removes excess edges
unused for the maximum tree packing. In other words, the achieving scheme is a compressed secret
key agreement scheme. This connection will lead to a single-letter characterization of C̃S(α) for the
PIN model (in Theorem 2).

To illustrate the above results, a single-letter characterization for CS(R) is derived in the following
for the source in Example 1. It also demonstrates how an exact characterization for CS(R) can
be extended from a PIN model to a hypergraphical model via some contrived arguments. The
characterization is also useful later in Example 3 to give an exact characterization of C̃S(α).

Example 2. The source defined in (15) in Example 1, for instance, is a hypergraphical source with E = {a, b, c},
ξ(a) = {1, 2, 3}, ξ(b) = {1, 2} and ξ(c) = {2, 3}. By (23), we have RCO = 1 with the optimal solution
r1 = r3 = 0 and r2 = 1. This means that user 2 needs to discuss 1 bit to attain omniscience. In particular, user
2 can reveal the XOR Xb ⊕ Xc so that users 1 and 3 can recover Xc and Xb, respectively, from their observations.
By (24b), we have

CS(R) = CS(∞) = H(ZV)− RCO = 2 for R ≥ RCO = 1. (32)

It can also be checked that the alternative characterization of CS(∞) in (26) gives

CS(∞) = I(ZV) =
1
2

[
H(Z1) + H(Z2) + H(Z3)− H(Z{1,2,3})

]
= 2.

Next, we argue that

CS(R) = 1 + R for R ∈ [0, 1]. (33)

The achievability (i.e., the inequality CS(R) ≥ 1 + R) is by the usual time-sharing argument. In particular, the
bound CS(0.5) ≥ 1.5, for example, can be achieved by the compressed secret key agreement scheme in Example 1
with α = 2 (i.e., by time-sharing the compressed secret key agreement schemes for α = 1 and for α = 3 equally).
More precisely, we set Z̃1 = (Xn

a ,Xbn/2c
b ), Z̃2 = (Xn

a ,Xbn/2c
b ,Xbn/2c

c ), Z̃3 = (Xn
a ,Xbn/2c

c ), K = (Xn
a ,Xbn/2c

b ),

and F = F2 = X
bn/2c
b ⊕ X

bn/2c
c . It follows that the public discussion rate is lim supn→∞

1
n log|F| = 0.5.

Now, to prove the reverse inequality ≤ for (33), we modify the source ZV to another source Z′V defined as
follows with an additional uniformly random and independent bit Xd:

Z′1 := (Xa,Xb), Z′2 := (Xa,Xb,Xc,Xd), and Z′3 := (Xc,Xd).

Note that Z′V is different from ZV ; namely, Z′2 is obtained from Z2 by adding Xd, and Z′3 is obtained from Z3 by
adding Xd and removing Xa. It follows that Z′V is a PIN. By (26) and (31b), the constrained secrecy capacity for
the modified source Z′V is

C′S(R) = min{R, 2}.



Entropy 2017, 19, 545 11 of 19

The desired inequality is proved if we can show that

C′S(R + 1) ≥ CS(R).

To argue this, we note that, if user 2 reveals F′2 = Xa ⊕Xd in public, then user 3 can recover Xa. Furthermore, F′2
does not leak any information about Xa, and so the source Z′V effectively emulates the source ZV . Consequently,
any optimal discussion scheme FV that achieves CS(R) for ZV can be used to achieve the same secret key rate but
after an additional bit of discussion F′2. This gives the desired inequality that establishes (33).

4. Multi-Letter Characterization

We start with a simple multi-letter characterization of the compressed secrecy capacity in terms of
the MMI (26).

Proposition 2. For any α ≥ 0, we have

C̃S(α) = sup lim
n→∞

1
n

I(Z̃V) (34)

where the supremum is over all valid compressed source Z̃V satisfying the joint entropy limit (7).

Proof. This is because the compressed secrecy capacity is simply the secret key agreement on a
compressed source. Hence, by (26), the MMI on the compressed source gives the compressed secrecy
capacity.

The characterization in (34) is simpler than the formulation in (6) because it does not involve
the random variables F and K, nor the recoverability (4) and secrecy (5) constraints. Although such a
multi-letter expression is not computable and therefore not accepted as a solution to the problem, it
serves as an intermediate step that helps derive further results. More precisely, consider the bivariate
case where V = {1, 2}. Then, (34) becomes

C̃S(α) = sup lim
n→∞

1
n

I(Z̃1 ∧ Z̃2) where

lim sup
n→∞

1
n

H(Z̃1, Z̃2)− α ≤ 0.

(35a)

(35b)

If in addition the joint entropy constraint (35b) is replaced by the entropy constraint on user 1 only, i.e.,

lim sup
n→∞

1
n

H(Z̃1)− α ≤ 0, (35c)

then C̃S(α) can be single-letterized by standard techniques as in [7] to C̃S,1(α) defined in (21). The
following gives a simple upper bound that is tight for sufficiently small α.

Proposition 3. C̃S,1(α) defined in (21) is continuous, non-decreasing, and concave in α ≥ 0 with

C̃S,1(α) ≤ α. (36)

Furthermore, equality holds iff α ≤ JGK(Z1 ∧ Z2).

Proof. Monotonicity is obvious. Continuity and concavity can be shown by the usual time-sharing
argument as in Proposition 1. (36) follows directly from the data processing inequality that I(Z′1 ∧Z2) ≤
I(Z′1 ∧Z1) under the Markov chain Z′1−Z1−Z2 required in (21c). If α ≤ JGK(Z1 ∧Z2), then there exists
a feasible solution U to (18) (a common function of Z1 and Z2) with H(U) ≥ α, and so the compressed
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sources Z̃1 and Z̃2 can be chosen as a function of Un to achieve the equality for (36). Conversely,
suppose JGK(Z1 ∧ Z2) is finite and (36) is satisfied with equality. Then, in addition to Z′1 − Z1 − Z2, we
also have Z′1 − Z2 − Z1, which implies by the double Markov property that for the maximum common
function U achieving JGK(Z1 ∧ Z2) defined in (18),

I(Z′1 ∧ Z1,Z2|U) = 0 (or Z′1 − U− (Z1,Z2)).

In other words, the optimal Z′1 is a stochastic function of the maximum common function of Z1 and Z2,
and so α = I(Z′1 ∧ Z2) ≤ JGK(Z1 ∧ Z2) as desired.

We will show that the above upper bound in (36) extends to the multi-user case (in Proposition 5).
However, for α ≥ JGK(Z1 ∧ Z2), the above upper bound is not tight even in the two-user case. To
improve the upper bound, the following duality between C̃S,1 and CS,1 will be used and extended to
the multi-user case (in Theorem 1).

Proposition 4. For α ≥ JGK(Z1 ∧ Z2),

C̃S,1(α) = CS,1(α− C̃S,1(α)). (37)

Furthermore, the set of optimal solutions to the left (achieving C̃S,1(α) defined in (21)) is the same as the set of
optimal solutions to the right (achieving CS,1(R) in (17) with R = α− C̃S,1(α)). It follows that the minimum
admissible entropy (12) but with the entropy constraint on user 1 instead is

αS,1 = RS,1 + I(Z1 ∧ Z2) = JW,1(Z1 ∧ Z2) (38)

where RS,1 and JW,1(Z1 ∧ Z2) are defined in (19) and (20), respectively.

Proof. Set R = α− C̃S,1(α). Consider first an optimal solution Z′1 to C̃S,1(α) and show that it is also an
optimal solution to CS,1(R). By optimality,

I(Z′1 ∧ Z2) = C̃S,1(α). (39)

By the constraint (21b), I(Z′1 ∧ Z1) ≤ α. It follows that the constraint (17b) holds, and so Z′1 is a feasible
solution to CS,1(R); i.e., we have ≥ for (37) that

C̃S,1(α) ≥ CS,1(α− C̃S,1(α)). (40)

To show that Z′1 is also optimal to CS,1(R), suppose to the contrary that there exists a strictly better
solution Z′′1 to CS,1(R); i.e., with

I(Z′′1 ∧ Z2) > I(Z′1 ∧ Z2) = C̃S,1(α). (41)

It follows that
I(Z′′1 ∧ Z1) > I(Z′ ∧ Z1) = α. (42)

The last equality means that the constraint (21b) is satisfied with equality. If on the contrary that the
equality does not hold, setting Z′1 to be Z′′1 for some fraction λ > 0 of time gives a better solution to
CS,1(R), contradicting the optimality of Z′1. The first inequality can also be argued similarly by the
optimality of Z′1. Now, we have

I(Z′′1 ∧ Z2)− I(Z′1 ∧ Z2)

I(Z′′1 ∧ Z1)− I(Z′1 ∧ Z1)

(a)
≤

I(Z′1 ∧ Z2)

I(Z′1 ∧ Z1)

(b)
≤ 1,
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where (a) is by the concavity of C̃S,1(α); and (b) is by the upper bound C̃S,1(α) ≤ α in (36). We note

that equality cannot hold simultaneously for (a) and (b) because, otherwise, we have I(Z′′1∧Z2)

I(Z′′1∧Z1)
= 1,

which, together with (41) and (42), contradicts the result in Proposition 3 that C̃S,1(α) < α (with strict
inequality) for α > JGK(Z1 ∧ Z2). Hence,

I(Z′′1 ∧ Z2)− I(Z′1 ∧ Z2)

I(Z′′1 ∧ Z1)− I(Z′1 ∧ Z1)
< 1,

which, together with (41) and (42), implies

I(Z′′1 ∧ Z1)− I(Z′′1 ∧ Z2) > α− C̃S,1(α) = R

contradicting even the feasibility of Z′′1 to CS,1(R); namely, the constraint (17b) with Z′1 replaced with
Z′′1 . This completes the proof of the optimality of Z′1 to CS,1(R).

Next, consider showing that an optimal solution Z′1 to CS,1(R) is also optimal to C̃S,1(α). Then,

I(Z′1 ∧ Z1) ≤ R + I(Z′1 ∧ Z2) = α− C̃S,1(α) + CS,1(R) ≤ α

where the first inequality is by (17b); the second equality is by the optimality of Z′1; and the last
inequality follows from (40). Hence, the constraint (21b) holds and so Z′1 is a feasible solution for
C̃S,1(α). If on the contrary that we have a better solution Z′′1 for C̃S,1(α), then Z′′1 can be shown to be a
feasible solution for CS,1(R), contradicting the optimality of Z′1.

5. Main Results

The following extends the single-letter upper bound (36) in Proposition 3 to the multi-user case.

Proposition 5. C̃S(α) ≤ α with equality if α ≤ JGK(ZV).

Proof. The upper bound C̃S(α) ≤ α is because nC̃S(α) cannot exceed the unconstrained secrecy
capacity for the compressed source Z̃V , which, by (22) and (7), is upper-bounded by H(Z̃V) ≤ n [α + δn]

for some δn → 0 as n→ ∞.
Next, to prove the equality condition is sufficient, suppose α ≤ JGK(ZV). Then, each user can

compress their source directly to a common secret key at rate α without any public discussion. Hence,
C̃S(α) = α as desired.

Note that unlike the two-user case in Proposition 3, the equality condition above in terms of
the multivariate Gács–Körner common information is sufficient but not shown to be necessary.
Nevertheless, necessity seems very plausible, as there seems to be no counter-example that
suggests otherwise.

As in Proposition 4, a duality can be proved in the multi-user case, relating the compressed secret
key agreement problem to the constrained secrecy key agreement problem.

Theorem 1. With CS(R) and RS defined in (9) and (12) respectively, we have

αS ≥ RS + CS(∞)

C̃S(α) ≤ CS(α− C̃S(α))

(43a)

(43b)

for all α ≥ 0.

Proof. Equation (43a) can be obtained from (43b) by setting α = αS as follows:

CS(∞)
(a)
≥ CS(αS − C̃S(αS))

(b)
≥ C̃S(αS)

(c)
=CS(∞)



Entropy 2017, 19, 545 14 of 19

where (b) is given by (43b) with α = αS; while (a) and (c) follows directly from (11), (13), and
monotonicity. It follows that the inequalities (a) and (b) hold with equality. In particular, equality for
(a) means that CS(R) = CS(∞) for R ≥ αS − C̃S(αS) = αS − CS(∞), implying (43a) as desired.

To show (43b), we consider an optimal compressed secret key agreement scheme achieving C̃S(α)

with an arbitrary entropy limit α. It suffices to show that the discussion rate need not be larger than
α− C̃S(α). Letting Z̃V be the optimal compressed source and R̃CO be the smallest rate of communication
for omniscience of Z̃V , which is given by (23) with ZV replaced by Z̃V , the discussion rate for the
omniscience strategy is

1
n

R̃CO =
1
n
[
H(Z̃V)− I(Z̃V)

]
by (22). This simplifies to α− C̃S(α) as desired in the limit n → ∞. Note that since the omniscience
strategy is non-interactive, the desired hold even if CS and RS are defined with non-interactive
discussion.

While it is obvious from the above proof that a compressed secret key agreement scheme can be
used as a constrained secret key agreement scheme, yielding one of the best lower bounds for CS(R)
in [26], the above result also means that a converse result for constrained secret key agreement can
be applied to compressed secret key agreement. Upper bounds on C̃S(α) may be obtained from the
upper bounds for CS(R) such as those in [26]. It turns out that this approach can give better upper
bounds which, surprisingly, are tight for the PIN model as mentioned in Section 3.3. This leads to the
following exact single-letter characterization of C̃S(α).

Theorem 2. For the PIN model in Definition 3,

αS = (|V| − 1)CS(∞)

C̃S(α) = min
{

α

|V| − 1
, CS(∞)

} (44a)

(44b)

for all α ≥ 0.

Proof. Equation (44a) follows easily from (44b) by setting the two terms in the minimization to be
equal and solving for α. To show (44b), note that by (31b) we have

C−1
S (γ) = (|V| − 2)γ ∀γ < CS(∞)

because CS(R) is non-decreasing and concave, and thus it must be strictly non-decreasing before it
reaches CS(∞) = CS(∞). Now, by (43b),

α− C̃S(α) ≥ C−1
S (C̃S(α))

= (|V| − 2)C̃S(α)

for any α ≥ 0 such that C̃S(α) < CS(∞); that is, for α ≤ αS, and thus C̃S(α) ≤ α
|V|−1 . This implies

≤ for (44b). The bound is achievable by the same achieving scheme as in [26] (Theorem 4.4) along
the idea of decremental secrecy key agreement and the tree packing protocol in [27]. More precisely,
every (|V| − 1) bits of edge variable forming a spanning tree are turned into a secret key bit by the tree
packing protocol. This results in the factor of (|V| − 1) in (44), which corresponds to the number of
edges in a spanning tree.

For the more general source model, the idea of decremental secret key agreement needs to be
refined, because there need not be any edge variables to remove. The following is a simple extension
that leads to a single-letter lower bound on C̃S(α).
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Theorem 3. A single-letter lower bound on C̃S(α) is

C̃S(α) ≥ I(Z′V |Q) (45)

for any random vector (Q,Z′V) taking values from a finite set and satisfying

I(Q∧ ZV) = 0

H(Z′i|Zi,Q) = 0 ∀i ∈ V

H(Z′V |Q) ≤ α.

(46a)

(46b)

(46c)

Furthermore, it is admissible to have |Q| ≤ 3.

Proof. By (46b), we have Z′i = ξi(Zi,Q) for some function ξi. W.l.o.g., we let Q := {1, . . . , k} for some
integer k > 0. We choose Z̃i to be the following function of Zn

i :

Z̃i = ((ξi(Ziτ , q) | nq−1 < τ ≤ nq) | 1 ≤ q ≤ k) where

n0 = 0 and nq =

⌊
n

q

∑
j=1

PQ(j)

⌋
for 1 ≤ q ≤ k.

Essentially, Q acts as a time-sharing random variable, where PQ(q) is the fraction of time the source

Zi is processed to Z
(q)
i := ξi(Zi, q), for 1 ≤ q ≤ k. More precisely, we have that

nq−nq−1
n converges to

PQ(q), and thus
1
n

I(Z̃V) =
k

∑
q=1

I(Z(q)
V )

nq − nq−1

n

n→∞−−−−→ I(Z′V |Q).

Similarly,
1
n

H(Z̃V)
n→∞−−−−→ H(Z′V |Q) ≤ α

by (46c), satisfying the entropy limit of (7). Hence, Z̃V is a valid compressed source, the unconstrained
capacity of which is I(Z′V |Q), leading to the desired lower bound of (45).

The condition that |Q| ≤ 3 is admissible follows from the usual argument by the well-known
Eggleston–Carathéodory theorem. More precisely, by letting

S := {(I(Z′V |Q = q), H(Z′V |Q = q)) |PZV |Q=q = PZV ,

H(Z′i|Zi,Q = q) = 0}.

It can be seen that the conditions above are equivalent to (46a) and (46b), respectively, and thus the set
of feasible values to (46), namely

(I(Z′V |Q), H(Z′V |Q)) = ∑
q∈Q

PQ(q)(I(Zq
V), H(Z

q
V)),

is equal to the convex hull of S . Because the dimension of S is at most 2, the pair (C̃S(ZV), α)

can be obtained as a convex combination of at most three points in S as desired by the
Eggleston–Carathéodory theorem.

The main results above can be illustrated as follows using the hypergraphical source in Example 1
given earlier. In particular, an exact single-letter characterization of C̃S(α) will be derived, even though
such an exact characterization is not known for general hypergraphical sources.
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Example 3. Consider the source defined in (15) in Example 1. It is shown that (16a) and (16b) are satisfied
with equality, which gives the desired single-letter characterization of C̃S(α).

It is easy to show that JGK(ZV) = 1 as Xa is the maximum common function of Z1, Z2, and Z3. Hence, the
reverse inequality of (16a) follows from Proposition 5.

The reverse inequality for (16b) can be argued using the bound in Theorem 1 by CS(R) and the
characterization of CS(R) in Example 2. More precisely, by (32), the unconstrained secrecy capacity CS(∞) = 2.
Then, by (33), we have C−1

S (γ) ≤ γ− 1 for all γ ≤ CS(∞) = 2. Now, by (43b),

α− C̃S(α) ≤ C−1
S (C̃S(α)) ≤ C̃S(α)− 1

and thus C̃S(α) ≤ 1+α
2 for C̃S(α) ≤ 2. This completes the proof.

6. Conclusion and Extensions

Inspired by the idea of decremental secret key agreement and its application to the constrained
secret key agreement problem, we have formulated a multiterminal secret key agreement problem
with a more general source compression step that applies beyond the hypergraphical source model.
This formulation allows us to separate and compare the issues of source compression and discussion
rate constraint in secret key agreement. While a single-letter characterization of the compressed secrecy
capacity and admissible entropy limit remains unknown, single-letter bounds have been derived and
they are likely to be tight for the hypergraphical model, and possibly more general source models
such as the finite linear source model [47]. For the PIN model in particular, the bounds are tight,
giving rise to a complete characterization of the capacity in Theorem 2. One way to improve the
current converse results is to show whether the equality condition in Proposition 5 is necessary; that is,
C̃S(α) < α for α > JGK(ZV). By the duality in Theorem 1, the condition is necessary if one can show
that CS(0) = JGK(ZV); i.e., (28) holds with equality. Such equality can be proved for hypergraphical
as well as finite linear sources by extending the lamination techniques in [26]. It is hopeful that a
complete solution can be given for the finite linear source model and the well-known jointly Gaussian
source model. The bounds (43) in the duality result may plausibly be tight for these special sources,
in which case non-interactive discussion suffices to achieve the constrained secrecy capacity. The
current achievability results may also be improved. In particular, for the two-user case with joint
entropy constraint (35), the lower bound in (45) can be improved to C̃S(α) ≥ max I(Z′1 ∧ Z′2) where
I(Z′1 ∧ Z1) + I(Z′2 ∧ Z2) ≤ α and Z′1 − Z1 − Z2 − Z′2. Whether this improvement is strict or is the best
possible is not yet clear, but an extension to the multi-user case seems possible. A related open problem
is to characterize the CS(R) in the two-user case with two-way non-interactive discussion. A simpler
question is whether two-way non-interactive discussion can be strictly better than one-way discussion.

As pointed out before, by regarding the secrecy capacity as a measure of mutual information, an
optimal source compression scheme translates to a dimension reduction technique which is potentially
useful for machine learning. A closely related line of work is the study of the strong data processing

inequality in [43,48,49]; in particular, the ratio s∗(Z1;Z2) := sup I(Z′1∧Z2)

I(Z′1∧Z1)
where—as in (21)—the

supremum is taken over the choice of the conditional distribution PZ′1|Z1,Z2
such that Z′1 − Z1 − Z2

forms a Markov chain and I(Z′1 ∧ Z) > 0. It is straightforward to show that supα≥0
C̃S(α)

α for the
two-user case in (35) is upper bounded by s∗(Z1;Z2) and s∗(Z2;Z1). However, a sharper bound and
a more precise mathematical connection may be possible, and the result may be extended to the
multivariate case. Furthermore, the linearization considered in [50] may potentially be adopted to
provide a single-letter lower bound on the compressed secrecy capacity. As in [13,48], the problem
may also be related to a notion of maximum correlation appropriately extended to the multivariate
case.

Acknowledgments: The work of Chung Chan was supported in part by the Vice-Chancellor’s One-off
Discretionary Fund of The Chinese University of Hong Kong under Project VCF2014030 and Project VCF2015007
and in part by the University Grants Committee of the Hong Kong Special Administrative Region, China, under



Entropy 2017, 19, 545 17 of 19

Project 14200714. The author would like to thank Ali Al-Bashabsheh for pointing out a mistake in an earlier proof
and Qiaoqiao Zhou for the discussion of the two-user case. The author would also like to thank Shao-Lun Huang,
Navin Kashyap, and Manuj Mukherjee for their valuable comments and pointers to related work.

Conflicts of Interest: The author declares no conflict of interest.

References

1. Maurer, U.M. Secret Key Agreement by Public Discussion from Common Information. IEEE Trans.
Inf. Theory 1993, 39, 733–742.

2. Ahlswede, R.; Csiszár, I. Common Randomness in Information Theory and Cryptography—Part I: Secret
Sharing. IEEE Trans. Inf. Theory 1993, 39, 1121–1132.

3. Bennett, C.H.; Brassard, G.; Robert, J.M. Privacy amplification by public discussion. SIAM J. Comput. 1988,
17, 210–229.

4. Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423.
5. Gács, P.; Körner, J. Common information is far less than mutual information. Probl. Control Inf. Theory

1972, 2, 149–162.
6. Csiszár, I.; Narayan, P. Secrecy Capacities for Multiple Terminals. IEEE Trans. Inf. Theory 2004,

50, 3047–3061.
7. Csiszár, I.; Narayan, P. Common randomness and secret key generation with a helper. IEEE Trans. Inf.

Theory 2000, 46, 344–366.
8. Watanabe, S.; Oohama, Y. Secret key agreement from correlated Gaussian sources by rate limited public

communication. IEICE Trans. Fundam. Electron. Comput. Sci. 2010, 93, 1976–1983.
9. Watanabe, S.; Oohama, Y. Secret key agreement from vector Gaussian sources by rate limited public

communication. IEEE Trans. Inf. Forensic Secur. 2011, 6, 541–550.
10. Liu, J.; Cuff, P.; Verdú, S. Key Capacity for Product Sources with Application to Stationary Gaussian

Processes. IEEE Trans. Inf. Theory 2016, 62, 984–1005.
11. Tyagi, H. Common Information and Secret Key Capacity. IEEE Trans. Inf. Theory 2013, 59, 5627–5640.
12. Kaspi, A. Two-way source coding with a fidelity criterion. IEEE Trans. Inf. Theory 1985, 31, 735–740.
13. Liu, J.; Cuff, P.W.; Verdú, S. Common Randomness and Key Generation with Limited Interaction. arXiv 2004,

arXiv:1601.00899.
14. Ma, N.; Ishwar, P.; Gupta, P. Interactive Source Coding for Function Computation in Collocated Networks.

IEEE Trans. Inf. Theory 2012, 58, 4289–4305.
15. Gohari, A.; Anantharam, V. Information-Theoretic Key Agreement of Multiple Terminals—Part I.

IEEE Trans. Inf. Theory 2010, 56, 3973–3996.
16. Mukherjee, M.; Kashyap, N.; Sankarasubramaniam, Y. Achieving SK capacity in the source model: When

must all terminals talk? In Proceedings of the IEEE International Symposium on Information Theory
Proceedings (ISIT), Honolulu, HI, USA, 29 June–4 July 2014; pp. 1156–1160.

17. Zhang, H.; Liang, Y.; Lai, L. Secret Key Capacity: Talk or Keep Silent? In Proceedings of the IEEE
International Symposium on Information Theory Proceedings (ISIT), Hong Kong, China, 14–19 June 2015;
pp. 291–295.

18. Chan, C.; Al-Bashabsheh, A.; Zhou, Q.; Ding, N.; Liu, T.; Sprintson, A. Successive Omniscience. IEEE Trans.
Inf. Theory 2016, 62, 3270–3289.

19. Courtade, T.A.; Halford, T.R. Coded Cooperative Data Exchange for a Secret Key. IEEE Trans. Inf. Theory
2016, 62, 3785–3795.

20. Mukherjee, M.; Chan, C.; Kashyap, N.; Zhou, Q. Bounds on the communication rate needed to achieve SK
capacity in the hypergraphical source model. In Proceedings of the IEEE International Symposium on
Information Theory Proceedings (ISIT), Barcelona, Spain, 10–15 July 2016; pp. 2504–2508.

21. Mukherjee, M.; Kashyap, N.; Sankarasubramaniam, Y. On the Public Communication Needed to Achieve
SK Capacity in the Multiterminal Source Model. IEEE Trans. Inf. Theory 2016, 62, 3811–3830.

22. Chan, C.; Mukherjee, M.; Kashyap, N.; Zhou, Q. When is omniscience a rate-optimal strategy for achieving
secret key capacity? In Proceedings of the IEEE Information Theory Workshop, London, UK, 11–14
September 2016; doi:10.1109/ITW.2016.7606855.



Entropy 2017, 19, 545 18 of 19

23. Nitinawarat, S.; Narayan, P. Perfect Omniscience, Perfect Secrecy, and Steiner Tree Packing. IEEE Trans.
Inf. Theory 2010, 56, 6490–6500.

24. Chan, C.; Zheng, L. Mutual Dependence for Secret Key Agreement. In Proceedings of the 44th Annual
Conference on Information Sciences and Systems, Princeton, NJ, USA, 17–19 March 2010.

25. Chan, C.; Mukherjee, M.; Kashyap, N.; Zhou, Q. On the Optimality of Secret Key Agreement via
Omniscience. arXiv 2017, arXiv:1702.07429.

26. Chan, C.; Mukherjee, M.; Kashyap, N.; Zhou, Q. Secret key agreement under discussion rate constraints.
In Proceedings of the IEEE International Symposium on Information Theory Proceedings (ISIT), Aachen,
Germany, 25–30 June 2017; pp. 1519–1523.

27. Nitinawarat, S.; Ye, C.; Barg, A.; Narayan, P.; Reznik, A. Secret Key Generation for a Pairwise Independent
Network Model. IEEE Trans. Inf. Theory 2010, 56, 6482–6489.

28. Chan, C.; Al-Bashabsheh, A.; Zhou, Q. Incremental and decremental secret key agreement. In Proceedings
of the IEEE International Symposium on Information Theory (ISIT), Barcelona, Spain, 10–15 July 2016; pp.
2514–2518.

29. Chan, C.; Al-Bashabsheh, A.; Zhou, Q. Change of Multivariate Mutual Information: From Local to Global.
IEEE Trans. Inf. Theory 2017, doi:10.1109/TIT.2017.2749372.

30. Nitinawarat, S.; Narayan, P. Secret Key Generation for Correlated Gaussian Sources. IEEE Trans. Inf.
Theory 2012, 58, 3373–3391.

31. Vatedka, S.; Kashyap, N. A lattice coding scheme for secret key generation from Gaussian Markov tree
sources. In Proceedings of the IEEE International Symposium on Information Theory (ISIT), Barcelona,
Spain, 10–15 July 2016; pp. 515–519.

32. Chan, C.; Al-Babsheh, A.; Ebrahimi, J.; Kaced, T.; Liu, T. Multivariate Mutual Information Inspired by
Secret-Key Agreement. Proc. IEEE 2015, 103, 1883–1913.

33. Chan, C. On Tightness of Mutual Dependence Upperbound for Secret-key Capacity of Multiple Terminals.
arXiv 2008, arXiv:0805.3200.

34. Chan, C. The Hidden Flow of Information. In Proceedings of the IEEE International Symposium on
Information Theory (ISIT), St. Petersburg, Russia, 31 July–5 August 2011.

35. Chan, C. Matroidal undirected network. In Proceedings of the IEEE International Symposium on
Information Theory (ISIT), Honolulu, HI, USA, 28–31 October 2012; pp. 1498–1502.

36. Chan, C.; Al-Bashabsheh, A.; Zhou, Q.; Kaced, T.; Liu, T. Info-Clustering: A Mathematical Theory for Data
Clustering. IEEE Trans. Mol. Biol. Multi-Scale Commun. 2016, 2, 64–91.

37. Chan, C.; Al-Bashabsheh, A.; Zhou, Q.; Liu, T. Duality between Feature Selection and Data Clustering.
In Proceedings of the 54th Annual Allerton Conference on Communication, Control, and Computing,
Allerton Retreat Center, Monticello, IL, USA, 27–30 September 2016.

38. Csiszár, I. Axiomatic characterizations of information measures. Entropy 2008, 10, 261–273.
39. Tishby, N.; Pereira, F.C.; Bialek, W. The information bottleneck method. arXiv 2000, arXiv:physics/0004057.
40. Friedman, N.; Mosenzon, O.; Slonim, N.; Tishby, N. Multivariate information bottleneck. In Proceedings of

the Seventeenth conference on Uncertainty in artificial intelligence; Morgan Kaufmann: San Francisco, CA, USA,
2001; pp. 152–161.

41. Watanabe, S. Information Theoretical Analysis of Multivariate Correlation. IBM J. Res. Dev. 1960, 4, 66–82.
42. Csiszár, I.; Narayan, P. Secrecy Capacities for Multiterminal Channel Models. IEEE Trans. Inf. Theory 2008,

54, 2437–2452.
43. Erkip, E.; Cover, T.M. The efficiency of investment information. IEEE Trans. Inf. Theory 1998, 44, 1026–1040.
44. Tishby, N.; Zaslavsky, N. Deep learning and the information bottleneck principle. In Proceedings of the

IEEE Information Theory Workshop, Jerusalem, Israel, 26 April–1 May 2015; doi:10.1109/ITW.2015.7133169.
45. Shwartz-Ziv, R.; Tishby, N. Opening the Black Box of Deep Neural Networks via Information. arXiv 2017,

arXiv:1703.00810.
46. Fujishige, S. Optimization over the polyhedron determined by a submodular function on a co-intersecting

family. Math. Program. 1988, 42, 565–577.
47. Chan, C. Generating Secret in a Network. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge,

MA, USA, 2010.
48. Anantharam, V.; Gohari, A.; Kamath, S.; Nair, C. On maximal correlation, hypercontractivity, and the data

processing inequality studied by Erkip and Cover. arXiv 2013, arXiv:1304.6133.



Entropy 2017, 19, 545 19 of 19

49. Anantharam, V.; Gohari, A.; Kamath, S.; Nair, C. On hypercontractivity and a data processing inequality.
In Proceedings of the IEEE International Symposium on Information Theory Proceedings (ISIT), Honolulu,
HI, USA, 29 June–4 July 2014; pp. 3022–3026.

50. Huang, S.L.; Zheng, L. Linear information coupling problems. In Proceedings of the IEEE International
Symposium on Information Theory (ISIT), Cambridge, MA, USA, 1–6 July 2012; pp. 1029–1033.

c© 2017 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Problem Formulation
	Preliminaries
	Two-User Case
	General Source with Finite Alphabet Set
	Hypergraphical Sources

	Multi-Letter Characterization
	Main Results
	Conclusion and Extensions

