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Abstract: We give a short survey on the concept of contact Hamiltonian dynamics and its use in
several areas of physics, namely reversible and irreversible thermodynamics, statistical physics and
classical mechanics. Some relevant examples are provided along the way. We conclude by giving
insights into possible future directions.
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1. Introduction

Contact geometry is the “odd-dimensional cousin” of symplectic geometry [1,2]. Unlike her famous
cousin, until recently, contact geometry has received much less attention in the physics literature, with
some relevant exceptions being time-dependent Hamiltonian mechanics, thermodynamics and string
theory [2–9].

One of the reasons why symplectic geometry appears everywhere in physical applications is
the fact that Hamilton’s equations on symplectic manifolds are the natural framework for classical
mechanics and statistical physics and the starting point to derive their quantum counterparts.
However, the standard (time-independent) Hamilton equations can only be used to model conservative
mechanical systems, and in statistical mechanics, they only provide the dynamical basis for the
microcanonical ensemble. Therefore, a major goal, at least in some areas, is that of finding generalizations
of Hamilton’s equations that apply to systems exchanging energy with an environment.

In contact geometry one has a direct generalization of Hamilton’s equations, the so-called contact
Hamiltonian equations. Again, such equations have not been considered as much as their symplectic
counterparts in physics. Nevertheless, in recent years, several applications of contact Hamiltonian
dynamics have been found, ranging from thermodynamics to classical and statistical mechanics.
Unfortunately, such literature is quite dispersed, and we believe that a general treatment would be
useful in order to highlight the common features and remark on the differences among the many
applications of this research area of growing interest.

It is the purpose of this paper to give a brief survey of all these applications and to discuss possible
future directions. In order to give a chronological introduction, we start with equilibrium thermodynamics,
then we present the use of contact Hamiltonian systems in irreversible thermodynamics, and in the end,
we investigate their use in statistical physics and classical mechanics of dissipative systems.

This work aims to give a concise introduction to the concept of contact Hamiltonian dynamics and
its multiple uses in different disciplines, by collecting them all together for the first time and focusing
on their common denominator: the fact that the system is not necessarily isolated, that is, contact
Hamiltonian dynamics can help model open systems at all levels of description. However, we mention
here only the main aspects of each application and select a few systems that are representative of each
case, referring to the cited works for more details and examples.
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2. Contact Hamiltonian Dynamics

We begin by introducing contact Hamiltonian dynamics and discussing in which way it generalizes
the standard Hamiltonian equations. Throughout this work, we use the same definitions and sign
conventions as in [10].

A contact manifold is a pair (T , η), where T is a (2n + 1)-dimensional manifold and η is a
one-form on T , called the contact form, that satisfies the condition:

η ∧ (dη)n 6= 0 , (1)

with dη the exterior derivative of η and ‘∧’ the wedge product. There is a more mathematical and
more precise definition of a contact manifold, which considers the fact that the real relevant object in
order to define a contact manifold is the distribution induced by the kernel of the one-form η (cf. [1,2]).
For the purposes of this short survey, we can stick to the definition given above, which is more intuitive.
However, in thermodynamic applications in which a change of representation, e.g., from entropy to
internal energy, is considered, then this aspect becomes crucial (see [11–13] for related discussions).
The left-hand side in (1) provides the standard volume form on T , analogously to Ωn for the symplectic
case, where Ω is the symplectic two-form.

Let us define the dynamics in T . One can associate with every differentiable function H : T → R,
a vector field XH , called thecontact Hamiltonian vector field generated by H , defined through
the relations:

£XH
η = fH η and H = −η (XH ) , (2)

where £XH
is the Lie derivative along a vector field, H is called the contact Hamiltonian and

fH : T → R is a function that turns out to be completely determined by H (see below). Associated
with η, there is another fundamental object called the Reeb vector field ξ, which is defined intrinsically
by the conditions:

η(ξ) = 1 and dη(ξ) = 0 . (3)

From the above Properties (2) and (3), it is easy to show that:

fH = −ξ(H ) , (4)

thus proving that fH is completely determined by the contact Hamiltonian.
It is always possible to find a set of local (Darboux) coordinates (xa, ya, z) for T , with a = 1, . . . , n,

which we refer to as contact coordinates, such that the one-form η reads:

η = dz− yadxa , (5)

where Einstein’s summation convention over repeated indices is assumed here and in the following.
In these coordinates, the Reeb vector field is just ξ = ∂/∂z, and the generic contact Hamiltonian vector
field XH takes the form:

XH =

(
ya

∂H

∂ya
−H

)
∂

∂z
−

(
∂H

∂xa + ya
∂H

∂z

)
∂

∂ya
+

(
∂H

∂ya

)
∂

∂xa . (6)

According to (6), the flow of XH can be explicitly written in contact coordinates as:

ẋa =
∂H

∂ya
,

ẏa = −∂H

∂xa − ya
∂H

∂z
,

ż = ya
∂H

∂ya
−H .

(7)

(8)

(9)
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The similarity of (7) and (8) with Hamilton’s equations on symplectic manifolds:

q̇a =
∂H
∂pa

, ṗa = −
∂H
∂qa , (10)

is clear. In fact, (7)–(9) are the generalization of Hamilton’s equations to a contact manifold. In particular,
when H does not depend on z, Equations (7) and (8) give exactly Hamilton’s equations in the
symplectic sub-space parametrized by xa and ya. Finally, (9) in this case is the usual definition of
Hamilton’s principal function [10,14].

An important difference between contact Hamiltonian dynamics and symplectic Hamiltonian
dynamics is that in the contact case, the Hamiltonian H is not preserved along the evolution. In fact,
using (7)–(9), it is straightforward to show that:

˙H = −H
∂H

∂z
. (11)

Using (11), one can sometimes model the contact Hamiltonian (or appropriate functions thereof)
as a Lyapunov function for the dynamics. This fact turns out to be extremely useful in irreversible
thermodynamics, information geometry and control theory [15–18].

On contact manifolds, there is a distinguished class of submanifolds, namely Legendre
submanifolds. These are defined as those submanifolds of maximal dimension whose tangent space is
contained on the kernel of η at any point. More informally, they are solutions of the equation η = 0 of
maximal dimension. Using Condition (1), one can prove [2] that the maximal dimension is n and that
the general local form of a Legendre submanifold L is:

xi = − ∂ f
∂yi

, yj =
∂ f
∂xj , z = f − yi

∂ f
∂yi

, (12)

where I ∪ J is a disjoint partition of the set of indices {1, . . . , n}, i ∈ I, j ∈ J and f (yi, xj) is a
function of n variables only, which we call the generating function of L. We remark that Legendre
submanifolds are the contact counterparts of Lagrange submanifolds in symplectic geometry. Indeed,
a Lagrange submanifold is defined as a submanifold of maximal dimension on which the symplectic
form vanishes, and it turns out that Lagrangian submanifolds on a symplectic manifold of dimension
2n have dimension n [2].

A fundamental property of the dynamics (7)–(9) is that it can be shown [19] that a Legendre
submanifold L is invariant (meaning that once the system enters such a submanifold, it remains on it)
if and only if the contact Hamiltonian H vanishes on L, i.e.,

L invariant for XH ←→ H |L = 0 . (13)

3. Reversible Thermodynamics

The first appearance of contact Hamiltonian dynamics in physical applications is in [19,20], which
deal with the definition of reversible thermodynamic processes by means of a Hamiltonian in the
thermodynamic phase space. One starts with the first law for reversible processes written in the form:

dU − TdS + PdV − µdN = 0 . (14)

By defining the thermodynamic phase space to be a contact manifold (T TD, ηTD), one can always
find local contact coordinates (xS, xV , xN , yS, yV , yN , z) in which:

ηTD = dz− xSdyS − xVdyV − xNdyN . (15)
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Since all thermodynamic systems at equilibrium satisfy (14), one can then identify them as
Legendre submanifolds of the thermodynamic phase space, cf. (12), by means of the natural embedding
given by the relations (xS = S, xV = V, xN = N) and:

z|LTD = U(S, V, N) , (16)

yS|LTD =
∂U
∂S

∣∣∣∣
L
= T , (17)

yV |LTD =
∂U
∂V

∣∣∣∣
L
= −P , (18)

yN |LTD =
∂U
∂N

∣∣∣∣
L
= µ , (19)

where U(S, V, N) is the internal energy of the system, S, V and N are the extensive variables (entropy,
volume and number of moles) and T, P and µ are the corresponding intensive variables (temperature,
pressure and chemical potential); see, e.g., [21]. Notice that in this case, the generating function of the
Legendre submanifold is given by the internal energy (16) of the system, and the remaining n equations
are the equations of state (17)–(19). However, by (12), one can notice that any other representation
of the system in terms of the various thermodynamic potentials and the corresponding equations
of state can be equivalently used. Therefore, we can think of any thermodynamic system as a triple
(T TD, ηTD, LTD) where (T TD, ηTD) is the thermodynamic phase space and LTD is the Legendre submanifold
corresponding to the system.

Considering this fact and the invariance property (13), in [19,20], it has been argued that
thermodynamic transformations of a system like, e.g., an ideal gas can be defined as a quadruple
(T TD, ηTD, LTD, H TD), where H TD is a contact Hamiltonian that vanishes on LTD. In this way, the dynamics
automatically preserves LTD, i.e., the thermodynamic properties of the system, expressed by (16)–(19).
For instance, an ideal gas with gas constant R undergoing an isothermal and isochoric transformation
can be given by the Legendre submanifold LIG defined by (16)–(19), where:

UIG(S, V, N) = U0 eS/cNRV−1/cN1+1/c (20)

is the internal energy of the gas, with U0 an arbitrary positive constant and c the heat capacity at
constant volume (e.g., c = 3/2 for a monatomic ideal gas), together with the contact Hamiltonian:

H IG = z− ySxS + RySxN − yN xN . (21)

Notice that H IG restricted to LIG reads:

H IG|LIG = U − TS + NRT − µN = 0 , (22)

where in the last equality, we have used the ideal gas equation of state PV = NRT, which can be
easily derived from (17), (18) and (20) and the fact that (20) is a homogeneous function of degree
one; thus by Euler’s theorem, it satisfies U = TS− PV + µN [21]. We conclude that H IG fulfills the
invariance property (13) for the Legendre submanifold representing an ideal gas, and thus, its contact
Hamiltonian vector field preserves the thermodynamic relations of the ideal gas. Finally, a direct
calculation from (7)–(9) shows that the flow of H IG is given by,

Ṡ = −S + NR, V̇ = 0, Ṅ = −N, Ṫ = 0, Ṗ = −P, µ̇ = −RT, U̇ = U . (23)

thus inducing an isothermal and isochoric transformation, as anticipated.
Several other cases have been investigated in [6,19,20,22], including that of transformations

deforming an ideal gas into a van der Waals gas (see also [23]). For an analysis of equilibrium
thermodynamics using symplectic structures and the Dirac formalism for constrained systems, see [12,24].
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4. Irreversible Thermodynamics

4.1. The Work of Grmela and Öttinger on Mesoscopic Dynamics

While looking for a general equation for the non-equilibrium reversible-irreversible coupling
(GENERIC), Grmela and Öttinger immediately realized that it could be cast in the form of a
contact Hamiltonian system [25]. Later, in [26], a “contact geometry formulation of nonequilibrium
thermodynamics” had been put forward. We report here from [26] the contact formulation of the
Onsager-Casimir (OC) dynamics for a system that approaches equilibrium in the linear regime.
Considering the state variables xa to be the extensive equilibrium variables, the OC dynamics reads:

ẋa = (T0 Jab − Dab)
∂φ

∂xb , (24)

with T0 the equilibrium temperature, J a skew-symmetric matrix defining the reversible part of the
evolution, D a symmetric nonnegative matrix responsible for the irreversible part of the evolution and
φ(xa) the potential function defining the thermodynamic properties. Thus, φ(xa) is the generating
function of the Legendre submanifold LOC defined by:

z|LOC = φ(xa) , (25)

ya|LOC =
∂φ

∂xa , (26)

in the contact phase space T OC with coordinates (xa, ya, z), which entails the equilibrium thermodynamic
properties of the system, exactly in the same sense as in the previous section. The next step in the
construction is to reproduce (24) on LOC. The contact Hamiltonian suggested in [26] is of the form:

H OC = −1
2

yaDabyb +
1
2

∂φ

∂xa Dab ∂φ

∂xb + T0ya Jab ∂φ

∂xb . (27)

One can directly show that H OC vanishes on LOC, thus ensuring by (13) that the thermodynamic
relations at equilibrium are preserved. Moreover, H OC is constructed so that the dynamics for the
extensive variables (cf. (7)) restricted to LOC gives exactly the Onsager-Casimir evolution (24). Thus,
the contact dynamics given by H OC is the proper lift to T OC of the Onsager-Casimir dynamics, meaning
that it extends it to the contact phase space, and reduces to it on the invariant Legendre submanifold
LOC representing the thermodynamic system of interest.

A further generalization of this dynamics has been made in [26], by removing the restriction that
the variables xa are the equilibrium extensive variables and with a choice similar to (27) for the contact
Hamiltonian. This generalization has been called rate thermodynamics, and it has been proven that
when restricted to the corresponding invariant Legendre submanifold, it reduces to GENERIC, from
which one can further deduce that by an appropriate choice of the independent variables xa and of
the Legendre submanifold, a number of mesoscopic dynamical descriptions such as, e.g., Boltzmann
kinetic theory and Navier-Stokes-Fourier hydrodynamics can be recovered (see [25–27]).

4.2. The Work of Eberard, Maschke and van der Schaft on Conservative Contact Systems

A strictly related formulation is that of [28]. Again, the authors define a class of contact Hamiltonian
systems representing both the invariance of the thermodynamic properties of the system and the fluxes due
to nonequilibrium conditions, dubbed as conservative contact systems. The construction of conservative
contact systems proceeds along the same steps as in the work of Grmela, the main difference being in
the specification of the state variables and hence of the contact phase space.

A conservative contact system (CCS) is a quadruple (T CCS, ηCCS, LCCS, H CCS), where (T CCS, ηCCS) is
a contact manifold defining the extended phase space of the system, possibly including mechanical,
as well as thermodynamical variables, LCCS is a Legendre submanifold encoding the thermodynamic
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properties of the system and the mechanical relations between conjugate variables and H CCS is a
contact Hamiltonian satisfying the invariance condition (13) and generating the vector field that
corresponds to dynamical phenomena due to nonequilibrium conditions. The physical equations of
motion are obtained by the restriction of the contact Hamiltonian Equations (7)–(9) to the Legendre
submanifold LCCS.

As an example, we report here from [28] the case of an ideal gas in a cylinder under a piston.
The properties of the piston are encoded in its mechanical Hamiltonian:

H0 =
1

2m
(xkin)2 + mgxpot , (28)

with xkin the momentum and xpot the height of the piston. The thermodynamic properties of the ideal
gas are defined by, e.g., the internal energy U(S, V, N), cf. (20). Therefore, the physical properties of
the total system are given in an 11-dimensional phase space T CCS with local coordinates:

(xS, xV , xN, xpot, xkin, yS, yV , yN, ypot, ykin, z) (29)

by means of the Legendre submanifold defined by the generating function:

f (S, V, N, xpot, xkin) = U(S, V, N) + H0(xpot, xkin) , (30)

i.e., the Legendre submanifold LCCS that satisfies the relations xS = S, xV = V, xN = N and:

z|LCCS = f (S, V, N, xpot, xkin) , (31)

yS|LCCS =
∂ f
∂S

= T , (32)

yV |LCCS =
∂ f
∂V

= −P , (33)

yN|LCCS =
∂ f
∂N

= µ , (34)

ypot|LCCS =
∂ f

∂xpot
= mg = F , (35)

ykin|LCCS =
∂ f

∂xkin
=

xkin

m
= v . (36)

Now, let us consider for instance a nonadiabatic transformation due to friction, in which the
dissipated mechanical energy is converted entirely into a flow of heat in the gas. To do so, one defines
the contact Hamiltonian:

H CCS = Kmec + (yV + P)Av + (ykin − v)AP−
(

ykin −
yS
T

v
)

γv , (37)

where γ is the friction coefficient, A denotes the area of the piston, P, v, T and F are defined
in (31)–(36) and:

Kmec = ypotv− ykinF . (38)

One can directly check that H CCS satisfies the invariance property (13) and that the contact
dynamics (7) of the extensive variables restricted to LCCS reads:
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Ṡ|LCCS =
∂H CCS

∂yS
=

1
T

γv2 , (39)

V̇|LCCS =
∂H CCS

∂yV
= Av , (40)

Ṅ|LCCS =
∂H CCS

∂yN
= 0 , (41)

ẋpot|LCCS =
∂H CCS

∂ypot

= v , (42)

ẋkin|LCCS =
∂H CCS

∂ykin

= −mg + AP . (43)

Here, the last equation is Newton’s law for the motion of the piston; the fourth equation is the
definition of the velocity; the third equation indicates that the system is closed; the second equation
is the relation between the motion of the piston and the change in volume of the gas; and the first
equation is the entropy balance, stating that the irreversible entropy production due to friction is
converted into an entropy flow in the gas.

Several other examples, concerning also the generalization to open systems (called control contact
systems) can be found in [28] and also in subsequent works, e.g., [29–34]. Further (and different)
approaches to the use of contact Hamiltonian dynamics in irreversible thermodynamics can be found
in [12,15,16,35–37].

5. Equilibrium Statistical Mechanics

Recently, in [38], another application of contact Hamiltonian dynamics has been proposed, namely
in equilibrium statistical mechanics (SM). A major problem for the dynamical simulations of systems in
an equilibrium ensemble different from the microcanonical one is that of finding equations of motion
that generate the correct equilibrium distribution for the positions and momenta of the physical system
(see, e.g., [39–41]).

Let us start by considering the phase space of a (possibly open) mechanical system to be a contact
manifold (T SM, ηSM) with local contact coordinates (qa, pa, S) given by the canonical positions and
momenta of the system and by the additional variable S. In this case, ηSM takes the form:

ηSM = dS− padqa . (44)

The key to find the correct equations of motion that give any invariant distribution on the physical
phase space (with variables (qa, pa) only) is to use contact Hamiltonian dynamics and take advantage
of a theorem called Liouville’s theorem for nonconservative systems from contact geometry [14]
(see also [42,43]). The theorem says that for a general contact Hamiltonian H SM, there is only one
invariant measure, which depends only on H SM, given by:

dµ = ρ ηSM ∧ (dηSM)n =
|H SM|−(n+1)

Z dqa ∧ dpa ∧ dS , (45)

where Z is a normalization factor and n is the number of degrees of freedom of the physical system of
interest. We emphasize that for a general choice of H SM, the distribution in (45) may not be integrable.
However, we are interested here only in those cases where such an integral exists. Besides, due to the
property (11), the contact Hamiltonian does not change its sign along the dynamics, and thus, if it
is positive at the initial condition, it will stay positive along the evolution, and we can then omit the
absolute value in (45). In particular, choosing H SM of the form:

H SM = ρt(qa, pa, S)−
1

n+1 , (46)
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with ρt(qa, pa, S) any distribution on T SM, then the contact Hamiltonian Equations (7)–(9) take the form:

q̇i =
H SM

n + 1
∂Θ(p, q, S)

∂pi
,

ṗi =
H SM

n + 1

[
−∂Θ(p, q, S)

∂qi
− ∂Θ(p, q, S)

∂S
pi

]
,

Ṡ =
H SM

n + 1

[
pi

∂Θ(p, q, S)
∂pi

− (n + 1)
]

,

(47)

(48)

(49)

with Θ = −lnρt. Using the above-mentioned Liouville theorem, it follows that the invariant measure
of the dynamics has the distribution ρt(qa, pa, S) [38]. Therefore, one is free to choose ρt from the onset
to be any distribution in T SM. A particularly convenient choice for the problem of generating target
equilibrium distributions in qa and pa is:

ρt = ρtarget(qa, pa) f (S) , (50)

where ρtarget is the desired distribution for the momenta and positions of the physical system of interest
and f (S) is an independent distribution for the additional variable S. In fact, in this case, the additional
variable S can then be integrated out using the fact that ρt is separable and one ends up with the
desired distribution ρtarget for the physical system. For example, it has been shown both analytically
and with numerical simulations that when ρtarget and f (S) are a canonical and a logistic distribution,
respectively, then Equations (47)–(49) correctly simulate the equilibrium properties of systems in the
canonical ensemble (see [38,44,45]).

6. Classical Mechanics

Once one realizes that contact Hamiltonian dynamics provides a useful framework for simulating
the equilibrium statistical mechanics of open systems by virtue of the dynamical friction mechanism
given in (48) and (49), a natural question arises as to whether it can also describe the motion of a
simple dissipative system in classical mechanics (CM). In [10], it has been shown that considering
the mechanical phase space of a system to be a contact manifold (T CM, ηCM), the contact Hamiltonian
Equations (7)–(9) extend the standard Hamiltonian equations to include cases where dissipation is
considered. As an example, considering the (on-dimensional) contact Hamiltonian:

H CM = Hmec(q, p) + γ S , (51)

where:

Hmec(q, p) =
p2

2m
+ V(q) (52)

is the mechanical energy of the system and γ is a constant, from (7)–(9), it follows that the dynamics of
the system in the contact phase space is:

q̇ =
p
m

, (53)

ṗ = −∂V(q)
∂q
− γ p , (54)

Ṡ =
p2

2m
−V(q)− γ S . (55)

By the first two equations, one has that the equation for the position of the system is:

q̈ + γq̇ +
1
m

∂V
∂q

= 0 , (56)
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which is the standard Newtonian equation for mechanical systems with a dissipation linear in the
velocity, with γ being the friction coefficient. Moreover, from the third equation, one can see that S
(whose dynamics decouples from that of q and p in this case) is Hamilton’s principal function.

Furthermore, it is possible to extend contact Hamiltonian systems to the time-dependent case and
to show that several results from symplectic mechanics carry over to the contact setting. For instance,
contact transformations generalize canonical transformations, and one can find a contact version of the
Hamilton-Jacobi theory, equivalent to the dynamics (7)–(9) (cf. [10,46]).

7. Conclusions and Future Directions

The main purpose of this work has been to review and collect in a unified framework different
novel applications of contact Hamiltonian dynamics in various areas of physics. The two main points
we want to stress are on the one side that contact Hamiltonian dynamics is just as ubiquitous as its
symplectic ‘cousin’, and on the other side that from all the applications presented here, it seems that
it is a natural candidate for the extension of standard Hamiltonian dynamics to systems governed
by irreversible phenomena. Indeed, there is a general belief that a full knowledge of the degrees
of freedom and of the dynamics of a system corresponds to a symplectic Hamiltonian evolution,
i.e., a time-reversible dynamics for which energy is conserved. On the contrary, dissipation and
irreversibility are usually associated with effective or averaged descriptions and hence with a
dimensional reduction of the phase space of the problem. In this work, we have shown that contact
Hamiltonian dynamics plays a role at all levels of representation whenever an effective description is
taken into account: from classical mechanics of dissipative systems, to mesoscopic dynamics, up to
equilibrium statistical mechanics and thermodynamics.

Since the contact Hamiltonian equations are Legendre transformations (meaning that they
preserve the contact structure), our analysis seems to provide further motivation for the program
proposed in [25–27] of considering Legendre transformations as the basic dynamical laws for
irreversible phenomena, motivated by the fact that they correspond to maximization of eta-functions
(like, e.g., the entropy) subject to constraints. This aspect certainly deserves further investigation.
It is also worth trying to understand precisely the mechanism of dimensional reduction by which
the reversible symplectic Hamiltonian dynamics converts into an irreversible contact Hamiltonian
evolution at the various levels of description (for this purpose, a comparison with different approaches
may be useful [47]).

Related to contact Hamiltonian mechanics, a direction that needs to be addressed is that of the
quantization of contact Hamiltonian systems. In this sense, a naive proposal has been sketched already
in [10], whereas in [48–50], one can find more formal approaches.

In equilibrium thermodynamics, one can codify fluctuations by means of another geometric
object, namely a metric structure. Such a metric on the Legendre submanifolds representing systems at
equilibrium takes the form of a Hessian metric of the thermodynamic potential (see, e.g., [12,51,52]).
This Hessian metric can be lifted naturally to the thermodynamic phase space, and one can prove that
its lift is as well adapted to the contact structure as it can be, i.e., it defines a (para-)Sasakian structure
(see [15,53]), which is the analogue in odd-dimensional spaces of a (para-)Kähler structure. It is natural
then to ask whether such geometry plays any role in the other areas presented in this work or if on the
contrary contact Hamiltonian dynamics can be relevant for theories using similar geometric structures
such as, e.g., string theory [8,9] and the geometric description of quantum mechanics [54–57].

In this work, we have deliberately focused only on physical applications. However, contact
geometry and contact Hamiltonian dynamics appear also in the theory of the optimal control of
systems [58,59]. Other areas where contact geometry has been used and which have not been covered
in this survey are fluid mechanics [60], electromagnetism [61], electric circuits theory [37,62] and black
hole thermodynamics [7,63]. Moreover, recently, a novel application of contact geometry in order to
obtain a generally covariant approach to quantum mechanics has been presented in [64]. We consider
that these can be fruitful areas for further research.
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Finally, from our analysis, it should be clear that contact Hamiltonian dynamics provides a
formal framework to describe systems undergoing irreversible phenomena at all scales. Therefore,
an interesting direction is that of finding new systems and new effective theories starting from contact
Hamiltonian dynamics.
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