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Abstract: In the present work, we quantify the irregularity of different European languages belonging
to four linguistic families (Romance, Germanic, Uralic and Slavic) and an artificial language
(Esperanto). We modified a well-known method to calculate the approximate and sample entropy of
written texts. We find differences in the degree of irregularity between the families and our method,
which is based on the search of regularities in a sequence of symbols, and consistently distinguishes
between natural and synthetic randomized texts. Moreover, we extended our study to the case where
multiple scales are accounted for, such as the multiscale entropy analysis. Our results revealed that
real texts have non-trivial structure compared to the ones obtained from randomization procedures.
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1. Introduction

Diverse studies have reported spatio-temporal organization properties in natural languages.
Two representative findings of universal features of natural language are the Zipf and Heaps laws,
which are based on word frequency and number of different words, respectively [1–4]. From a more
basic perspective, human language can also be considered as a sequence of symbols which contains
information encoded in the patterns (words) needed to communicate. For instance, the frequency
rate of appearance of the symbols is different for every language, and so are the declension and
verbal conjugation rules. There are also restrictions in the order of appearance of bigrams, trigrams
and, in general, n-grams; for example, in English and Spanish the letter “q” is always followed
by “u”. The way these restrictions and other factors modulate the structure and randomness of the
language can be potentially evaluated by means of concepts like entropy, as proposed by Shannon [5,6].
The use of entropy-related algorithms to estimate orderliness in natural language have revealed that
language is not regular nor random, but the direct quantification of the presence of randomness is
not an easy task. Diverse studies have used the concept of entropy by means of a n-gram analysis [7],
a binary simplification [8], nonparametric entropy estimation [9], mutual information of letters [10],
information-based energy [11], complexity quantification [12] and entropy-word approach [13].
However, entropy-information measures based on regularity of pattern statistics has not been widely
employed to evaluate the “complexity” of natural language. A straightforward way to quantify the
propinquity of two words is to count the number of letters that they have in common; the words
coming from the same root, diminutives, augmentatives or the “functional shift” of certain words
are good examples of these similarities. In the context of dynamical systems, there are well known
methods to measure the repetition pattern in a time series: the approximate entropy (ApEn) and its
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derivatives [14,15]. The ApEn quantifies the regularity in a time series, a lower value of ApEn indicates
a more regular behavior whereas a high value is assigned to more irregular sequences. This method
has been successfully applied to analyze time series from several sources [16–20]. Here we adopt
a similar approach based on the ApEn algorithm in order to evaluate the levels of complexity in four
language families (Romance, Germanic, Slavic and Uralic). Our goal is to determine the dominance of
regularities in written texts, which are considered as finite time series. Our method was applied to
several texts from different languages. The results reveal that, for texts belonging to the same family,
it is observed that the ApEn decreases as the length of the word pattern increases in similar fashion.
Moreover, we also extend our study to evaluate the multiscale behavior of entropy for the assessment
of regularities based on different scales as it was suggested by Costa et al. [21]. Additionally, we also
apply our methodology to two synthetic sequences, which are the randomized versions of the original
text and a text written in Esperanto. We found significant differences between real and synthetic
texts, observing a higher complexity for the real sequences compared to the randomized ones through
different scales. The paper is organized as follows: First, we present the methodology used throughout
the article, including the modified method to calculate the ApEn for the cases of sequences of symbols.
Next, the main results of the study are described; and finally, we provide some final remarks.

2. Approximate Entropy of a Text

Within the context of information theory, the entropy of a sequence of symbols (from an alphabet
with L elements) is given in terms of the so-called Shannon entropy HS = −∑L

j=1 pj log pj, with pj
the probability of the symbol j. The Shannon entropy measures the average uncertainty of a discrete
variable and represents the average information content [6]. For sequences composed of blocks
with n symbols, the entropy Hn = −∑j p(n)j log p(n)j measures the uncertainty assigned to a word of
length n [22,23]. The difference entropy hn = Hn+1 − Hn represents the uncertainty related to the
appearance of the n + 1 symbol given that the n preceding symbols are known [22]. For dynamical
systems, the estimation of the mean rate of creation of information is given by the Kolmogorov–Sinai
(KS) entropy and KS measures the unpredictability of systems changing with time [24]. However,
numerical calculations of KS requires very large sequences, therefore it is not practical to apply
to real sequences. In order to overcome this limitation, Grassberger et al. [25] proposed the K2

entropy to evaluate the dimensionality of chaotic systems as a lower bound of the KS entropy. Later,
as an extension of the K2 entropy, Pincus [14] introduced the Approximate Entropy (ApEn) to evaluate
the regularity in a given time series. The ApEn provides a direct measure of the degree of irregularity
or randomness in a time series and, in the context of physiological signals, as a measure of system
complexity: smaller values indicate greater regularity, and greater values convey more disorder or
randomness [14,17]. Here we introduce a modified ApEn algorithm for the regularity analysis of
a written text. Our method considers a similar procedure as the ApEn proposed by Pincus [14] and
it can be summarized as follows: for a given text, {s(1), s(2), s(3), ..., s(N)} of N elements, where an
element can be a letter or symbol (including the space), we define a set of patterns of length m, Sm(i)
for i ∈ [1, N−m + 1], where Sm(i) = {s(i + k)|0 ≤ k ≤ m− 1} is the pattern of m elements or symbols,
from s(i) to s(i + m− 1). Next, we look for matches occurring between two patterns if the “distance”
is smaller than a given value. We impose a restriction to the “distance” between two such patterns,
i.e., we set a number r representing the maximum number of positions at which the corresponding
symbols are different. This distance is known as the Hamming distance [26]. Next, we calculate the
number nm

i of patterns Sm(j) with j ≤ N −m + 1 such that h(Sm(i), Sm(j)) ≤ r, with h(Sm(i), Sm(j))

the Hamming distance. Then, the quantity Cm
i (r) = nm

i
N−m+1 is defined, representing the probability of

having patterns within the distance r from the template pattern Sm(i).
Following Pincus [14] we define the Approximate Entropy in the case of texts as,

ApEn(m, r, N) = Φm(r)−Φm+1(r), (1)
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where Φm(r) and Φm+1(r) are given by Φm(r) = 1
N−m+1 ∑N−m+1

i=1 ln Cm
i (r) and

Φm+1(r) = 1
N−m ∑N−m

i=1 ln Cm+1
i (r), respectively. As in the context of time series, the statistic

represented by ApEn quantifies the degree of regularity/irregularity in a given text, and it is conceived
as approximately equal to the negative average natural logarithm of the conditional probability that
two patterns that are similar for m symbols remain similar for m + 1 elements [14]. Although ApEn is
very useful for distinguishing a variety of deterministic/stochastic processes, it has been reported that
there is a bias in ApEn because the method counts each pattern as matching itself. The existence of this
bias, under particular circunstances, causes ApEn to substimate or to provide a faulty value for a given
time series. Therefore, the development of an alternative method was desirable to overcome the
limitations of ApEn. On the basis of K2 and ApEn algorithms, Richman and Moorman [15] introduced
the so-called sample entropy (SampEn) to reduce the bias in ApEn. One of the advantages of SampEn
is that it does not count self-matches and is not based on a template-wise approach. Discounting
the self-matches is justified since the entropy is conceived as a measure of the rate of information
production; then, self-matches do not add new information [15]. Following the definition of Richman
and Moorman [15], we can also define the SampEn(m, r, N) in the case of texts as,

SampEn(m, r, N) = − ln
Um+1

Um , (2)

where Um+1 and Um are the probabilities that two patterns will match (with a tolerance of r) for m + 1
and m symbols, respectively [27]. As in the case of ApEn, SampEn is conceived as the negative natural
logarithm of the conditional probability that two sequences similar for m points remain similar at the
next point, with a tolerance of r, without counting the self-matches; and a lower value of SampEn
indicates a more regular behavior of a symbol sequence whereas high values are assigned to more
irregular sequences. We remark that both ApEn and SampEn represent family statistics that depend
on the sequence length N, the tolerance parameter r and the pattern length m.

3. Results and Discussion

Prior to the description of our results, we briefly explain the main steps of our method for a simple
case of a very short text. Lets consider the beginning of the famously acknowledged Hamlet’s soliloquy:
To-be-or-not-to-be. The length of the sentence is 18, and the average length of words in this sentence
is 2, i.e., approximately every three symbols the space mark repeats, then a natural value for m is 3,
and we set the tolerance value r = 1 (33% of the pattern length). Starting with the first letter from
the left, the 16 subseries we can built are S1 = {To-}, S2 = {o-b}, ..., S16 = {-be}. After performing all
the procedure described in the previous section, we find that, for the Hamlet’s soliloquy beginning,
the statistics Equation (1) results in ApEn(3, 1, 18) = 0.215. This is a relatively intermediate value,
which indicates that the sentence is moderately predictable compared to the case where the position of
symbols was randomized (ApEnrand = 0.435 in average for five independent realizations).

First, we analyze literary texts from each of the 14 languages which are described in Table 1 for an
extended dataset, which includes two more books of each language, please refer to the supporting
information online at [28]. The texts were downloaded from the website of the Gutenberg Project
(http://www.gutenberg.org). In order to avoid finite size effects and to validate our method for
relatively short sequences, we restrict ourselves to segments with 5000 symbols and repeat the
calculations for 10 segments this length [29]. In our case we have kept the punctuation marks and
the space mark as symbols. In what follows, we will only refer to ApEn values since we obtain the
same qualitative results using either SampEn or ApEn algorithms and particular differences will be
discussed elsewhere.

http://www.gutenberg.org
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Table 1. Books written in different languages considered in our study. For each book, we also include
the linguistic family, the language, the number of symbols in the alphabet (L), the mean ApEn values
for m = 5 and m = 6 with r = 2, the total number of words N and the total number of different words
M. The Esperanto text (L = 28) used in the analysis is La Batalo del Vivo, of Charles Dickens. For an
extended dataset see supporting information online at [28].

European Macrofamily

Family Language L Title (Author) ApEn m = 5 (S.D.) ApEnm = 6 (S.D.) N M

Romance

Latin 23 Commentaries on the Gallic War (Julius Caesar) 1.221 (0.028) 0.8558 (0.045) 51,643 11,688
Spanish 27 His only son (Leopoldo Alas) 1.1321 (0.028) 0.9226 (0.032) 89,372 12,651
Italian 21 Memories of Paris (Edmondo de Amicis) 1.216 (0.038) 0.894 (0.046) 54,509 11,073
French 26 Zadig (Voltaire) 1.132 (0.045) 0.903 (0.378) 28,099 4676

Germanic

English 26 Moby Dick (Herman Melville ) 1.079 (0.044) 0.762 (0.030) 214,903 18,772
German 30 The Golden Pot (E.T. Hoffman) 1.201 (0.032) 0.748 (0.033) 29,252 6089
Swedish 29 Sara Videbeck and the Chapel (C.J.L. Almqvist) 1.162 (0.034) 0.748 (0.033) 36,899 6702
Dutch 28 Sense and sensibility (Jane Austen) 1.165 (0.033) 0.862 (0.048) 125,965 9433

Slavic

Rusian 33 Anna Karenina (L. Tolstoy) 1.105 (0.087) 0.611 (0.056) 271,387 35,308
Polish 32 One month of prose works (Jan Sten) 1.149 (0.049) 0.754 (0.070) 31,452 10,233
Serbian 30 Stone age (Jovan Zvjovic) 1.133 (0.069) 0.710 (0.097) 37,065 9465
Czech 42 The double (F.Dostoyevsky) 1.047 (0.182) 0.569 (0.158) 120,768 21,078

Uralic Finnish 29 Erkki Ollikainen (J.O. Åberg) 1.264 (0.029) 0.898 (0.040) 25,185 8855
Hungarian 44 A három galamb (Kadar Lehel) 1.1952 (0.022) 0.7912 (0.040) 30,400 9800

Figure 1 shows the calculations of the average ApEn for several values of m and a fixed value
r = 2. We notice that for m = 6, the ApEn values obtained for each language tend to be close when they
are grouped according to the family to which they belong, allowing a comparison between families
(see Table 1). For this m value, the Romance family exhibits the highest value of ApEn, followed by
the Uralic, Germanic and Slavic families, indicating that different levels of regularity/irregularity are
observed in the analyzed family languages (Figure 1a–d). It is also worth to mention that languages
that belong to the same family display a similar profile as the pattern length increases, while the
value of entropy for Romance, Slavic and Uralic families almost monotonically decreases; for the
Germanic one the entropy exhibits a small change between m = 6 and m = 7, revealing that the
level of irregularity remains approximately constant for these pattern length scales, which roughly
corresponds to the mean word length of these languages [7]. Notably, all the Romance languages are
much more overlapped compared to ApEn curves for the other families.

To further compare the ApEn profiles in texts, we also studied two artificial cases: Esperanto and
randomized versions of the original sequences. Invented languages like Esperanto are attempts to
simplify natural languages by suppressing, for example, irregular verbs and including words from
different languages to make it universal. For the randomized version, we consider a text which is
randomly generated with identical symbol and space probabilities as observed in a real text and ten
independent realizations were constructed. The results of ApEn-values for the randomized versions
are shown in Figure 1f. In Figure 1e we also show the behavior of entropy in terms of m for Esperanto.
For r = 2, we observe that at m = 3, the entropy value is close to the values observed in the majority
of natural languages, and a rapid decay is observed between m = 4 and m = 5, being this decline
much faster than the one observed in real texts (see Figure 1a–d). We note that for values between
m = 3 and m = 4, a higher value of ApEn is observed for random texts than for real texts, and then
the entropy decreases dramatically for larger values of the pattern length. We remark that for short
length patterns the ApEn is high due to the fact that the frequency of m and m + 1 length patterns is
quite different, indicating a high irregularity in the text, as expected for random sequences. When the
entropy values (corresponding to pattern lengths 3–10) from the different languages were pairwise
compared with their corresponding random version, we found significant differences in almost all
cases (p-value < 0.05 by Student’s test, see Table 2 for details).

In order to further characterize the effects of the parameters m and r on the entropy values,
in Figure 2 we show the calculations of ApEn for 36 pairs of values of the parameter r and the pattern
length m. Recall that the r value represents the similarity criterion based on the Hamming distance,



Entropy 2017, 19, 521 5 of 10

i.e., the number of positions at which the corresponding symbols may differ. Thus, r takes values
between 1 and m − 1. As shown in Figure 2, we find that in most cases the entropy increases as
the parameter r increases for a fixed value of the pattern length m, whereas for a fixed r the entropy
value tends to decrease as m increases. Note that, for Germanic languages this general behavior is
not observed as m increases ( Figure 2(b1)). As a general remark of the dependence of entropy on
parameters m and r, we notice that an acceptable value of r is given by the level of discrepancies
between the two patterns (a factor of the pattern length), since for larger m values and small values of
r, a higher concordance is required every time, i.e., almost a perfect match, and larger sequences are
required to get a reliable statistic.

Finally, to compare the behavior of the entropy values, we applied the Fisher’s linear discriminant [30]
to the data showed in Figure 1a–d. This technique is very useful to determine if the ApEn profiles could
potentially classify languages into the Romance, Germanic, Slavic and Uralic families. Results for the
14 languages are presented in Figure 3. For this analysis we considered the ApEn values (corresponding
to pattern lengths 3–10) from ten segments of 5000 symbols for each language. Then, the data were
projected down to a two-dimensional scatter plot presented in Figure 3. We observe a separation
between clusters formed by languages that belong to the same linguistic family.
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Figure 1. Approximate entropy (ApEn) as a function of the pattern length m for four families of
European languages. In all cases we set r = 2. Here symbols represent the mean value of the entropy
measure for 10 segments, each with 5000 symbols and the error bars represent the standard deviation.
The four families considered here are: (a) Romance (Latin, Spanish, Italian and French); (b) Germanic
(English, German, Swedish and Dutch); (c) Slavic (Russian, Polish, Serbian and Czech); and (d) Uralic
(Finnish and Hungarian). We also show the cases of (e) Esperanto and (f) random versions of the
cases in panels (a–d). For natural languages, we observe similarities in the decay profile of the entropy
between languages which belong to the same family. We notice that for the Germanic family, the entropy
measure remains almost constant for pattern lengths between m = 6 and m = 7. Esperanto shows a fast
decay between m = 4 and m = 5, while random texts present a high value of entropy for m = 3 and
m = 4 with abrupt decay from values greater than 4. For results of the extended dataset see supporting
information online at [28].
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Figure 2. Behavior of ApEn as a function of m and r for (a1) Latin, (a2) Spanish, (a3) Italian, (a4) French;
(b1) English, (b2) German, (b3) Swedish, (b4) Ducth; (c1) Russian, (c2) Polish, (c3) Serbian, (c4) Czech;
(d1) Finnish, (d2) Hungarian, (d3) Esperanto and (d4) randomized English text.

Table 2. Results of the application of the t-Student’s test to ApEn values of original texts vs. random
versions. We only show the values of p for m = 4, 5, 6, 7. We observe that for most of the cases
p << 0.05, indicating significant differences between original vs. random data, except the case of
Dutch for m = 6 (highlighted in bold).

Language p-Value

m = 4 m = 5 m = 6 m = 7

Latin 5.468× 10−20 1.036× 10−16 0.001 7.853× 10−12

Italian 6.629× 10−15 7.662× 10−16 2.950× 10−6 2.763× 10−11

French 4.331× 10−22 1.197× 10−13 1.957× 10−8 7.586× 10−11

Spanish 1.048× 10−22 4.911× 10−19 1.296× 10−9 3.790× 10−13

English 2.083× 10−14 1.649× 10−12 2.589× 10−5 4.630× 10−12

German 1.029× 10−19 1.469× 10−14 1.880× 10−5 1.316× 10−9

Swedish 5.874× 10−21 3.206× 10−18 6.945× 10−7 7.534× 10−12

Dutch 2.853× 10−22 8.664× 10−16 0.610 4.297× 10−14

Russian 6.486× 10−14 5.428× 10−10 4.621× 10−6 1.963× 10−8

Polish 2.164× 10−23 2.722× 10−13 6.902× 10−10 1.101× 10−8

Serbian 6.955× 10−14 2.669× 10−10 0.001 1.309× 10−8

Czech 6.131× 10−11 6.753× 10−6 0.001 1.608× 10−6

Hungarian 1.531× 10−19 6.322× 10−19 1.085× 10−13 1.569× 10−11

Finnish 1.813× 10−20 3.814× 10−15 2.075× 10−9 6.239× 10−11

Esperanto 3.463× 10−13 6.042× 10−12 0.035 2.047× 10−10
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Figure 3. Results of the application of a linear classification analysis to data derived from four family
languages. Here we show the projection of ApEn values from patterns lengths between m = 3 and
m = 10 (see Figure 1). For each m-value and for each language, we considered ten segments with
length 5000 to obtain ten ApEn values. Next, languages were labeled in classes according to the
linguistic family to which they belong (Romance, Germanic, Slavic, Uralic). The eight dimensional
vectors comprising the eight ApEn (pattern lengths 3–10) values are used to create the two-dimensional
projection. We observe that the families are segregated. For results of the extended dataset see
supporting information online at [28].

Multiscale Entropy Analysis of Texts

In the context of biological signals, Costa et al. [21] introduced the multiscale entropy analysis
(MSE) to evaluate the relative complexity of time series across multiple scales. This method was
introduced to give an explanation to the fact that, in the context of biological signals, single-scale
entropy methods (such as ApEn) assign higher values to random sequences from certain pathologic
conditions whereas an intermediate value is assigned to signals from healthy systems [17,21]. It has
been argued that these results may lead to erroneous conclusions about the level of complexity
displayed by these systems. Here we adopt a similar approach with the idea of evaluating the
complexity of written texts by accounting multiple time scales. We explain the main steps of
the modified MSE for the analysis of texts. Given the original sequence {s(1), s(2), s(3), ..., s(N)},
a coarse-graining process is applied. A scale factor τ is considered to generate new sequences with
elements formed by repeated concatenation of symbols from non-overlapping segments of length
τ. Thus, the coarse-graining sequences for a scale factor τ are given by yτ

k,j = s(k−1)τ+j · · · skτ+j−1,
with 1 ≤ k ≤ N/τ, 1 ≤ j ≤ τ and the dots denote concatenation. We observe that for τ = 1, the original
sequence is recovered, whereas for τ > 1 the length of the new sequences is reduced to N/τ. We note
that for each scale factor τ, there are τ coarse-grained sequences derived from the original one, as it
was recently pointed out in the composite MSE [31,32]. Next, to complete the MSE steps the ApEn
algorithm is applied to the sequence yτ

k,j for each scale to evaluate the regularity/irregularity in the
new block-sequences. In order to improve the statistics, the entropy was calculated for all the jth
coarse-grained time series for a given τ and the MSE value is given in terms of the average value of
the entropies. Finally, the entropy value is plotted against the scale factor. A very simple example
of the coarse-graining procedure can be illustrated for the Hamlet’s soliloquy: “To-be-or-not-to-be”.
For τ = 2 we obtain y2

1,1 = {To}, y2
2,1 = {-b}, ..., y2

9,1 = {be} and y2
1,2 = {o-}, y2

2,2 = {be}, ..., y2
8,2 = {-b}.

We note that these new sequences have components formed by two-letter blocks which are the input
for the modified ApEn algorithm described in the previous Section. In practice, each new τ-block
component is assumed as a single character for calculation purposes. Figure 4 presents the results
of the MSE analysis for the real and synthetic texts described in the previous Section. The value of
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the entropy for scales one and two is higher for random texts than for real ones (Figure 4a–d). It is
noticeable that for texts from natural language, as the scale factor increases, the entropy value decreases
moderately compared to the rapid decreasing observed for synthetic random data such that for scales
larger than 3, the entropy values for random sequences are smaller than the ones from original
texts. Similar conclusions were obtained for Esperanto and its random version (data not shown).
As it has been identified when MSE was applied to biological signals, it is observed signals that exhibit
long-range correlated behavior are more complex than the uncorrelated ones. When applied to natural
language, our results show that the temporal organization of natural languages (with some differences
between them) exhibits more complex structure than the sequences constructed by randomizations.
These results are also concordant with previous studies, which report the presence of long-range
correlations in written texts [33,34].
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Figure 4. Multiscale entropy analysis (MSE) for 14 natural languages from 4 European families and their
corresponding randomized sequences. Symbols represent the mean value of the ApEn for 10 segments
and the error bars the standard deviation. The length of each segment is 5000 data elements and we
used the values m = 3 and r = 2. Each panel shows the results for the (a) Romance; (b) Germanic;
(c) Slavic and (d) Uralic families. Note that for scales one and two, randomized versions exhibit higher
values of entropy than the real ones, while for scales bigger than three original sequences have more
complexity vs random versions. We also note that random data from the Slavic and Uralic families
remain very close to the entropy values of real texts compared to what happens to the Romance and
Germanic cases, where a clear separation is observed for scale factors smaller than six.

4. Conclusions

We have presented a modified version of the approximate entropy method which is suitable for the
evaluation of irregularities on multiple temporal scales in written texts from natural languages. First,
we described the modified ApEn and SampEn methodologies by considering repetition of patterns
subjected to a threshold Hamming distance. This entropy-based statistic (ApEn) was defined as
approximately equal to the negative average natural logarithm of the conditional probability that two
symbols-patterns that are similar for one length m remain similar when the length m is increased in one
element [14]. We applied this algorithm to different natural languages which belong to four families.
Our results showed that natural languages are neither regular nor random but exhibiting different
levels of irregularity which are similar for languages belonging to the same family. The application of
the Fisher linear discriminant analysis to the ApEn-values, revealed that the four language families are
segregated. Besides, the modified MSE method was applied to compare the multiscale features in the
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same real texts as well as in randomized versions of themselves. We found that real sequences exhibit
a non trivial structure compared to texts obtained from randomizations, i.e., natural languages have
more complex structure observed across different local scales compared to sequences with arbitrary
order. Finally, we point out that additional studies are needed to fully characterize natural language
predictability as well as to consider corrections in the calculations of multiscale entropy values [32].
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