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to the third escort distribution.
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1. Introduction

Long tailed probability distributions and their related probability distributions are important
objects in anomalous statistical physics (cf. [1–3]). For such long tailed probability distributions,
the standard expectation does not exist in general. Therefore, the notion of escort distribution has
been introduced [4]. Since an escort distribution gives a suitable weight for tail probability, the escort
expectation which is the expectation with respect to an escort distribution is more useful than the
standard one.

In anomalous statistics, a deformed exponential function and a deformed logarithm function play
essential roles. In fact, a deformed exponential family is an important statistical model in anomalous
statistics. Such a statistical model is described by such a deformed exponential function. In particular,
the set of all q-normal distributions (or Student’s t-distributions, equivalently) is a q-exponential family,
which is described by a q-deformed exponential function [5] (see also [6,7]).

On the other hand, a generalized score function is defined from a deformed logarithm function.
In the previous works, the author showed that a deformed score function is unbiased with respect to
the escort expectation [8,9]. This implies that a deformed score function is regarded as an estimating
function on a deformed exponential family. In addition, in information geometry, it is known that
a deformed exponential family has a statistical manifold structure. Then a deformed score function
is regarded as a tangent vector on this statistical manifold [6,10]. Therefore, properties of escort
expectations are closely related to geometric structures on a deformed exponential family.

In this paper, we introduce a sequence of escort distributions, then we consider a sequential
structure of escort expectations. It is known that a deformed exponential family naturally has at
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least three kind of different statistical manifold structures [6,11]. Then we show that such statistical
manifold structures can be obtained from a sequential structure of escort expectations. In particular,
we show that a Fisher metric on a q-exponential family can be obtained from the deformed expectations
with respect to the second escort distribution, and a cubic form (or an Amari–Chentsov tensor field,
equivalently) is obtained from the deformed expectations with respect to the third escort distribution.

This paper is written based on the proceeding paper [7]. However, this paper focuses on
deformed expectations of a q-exponential family, whereas the previous paper focused on deformed
independences. We remark that several authors have been studying deformed expectations recently.
See [12,13], for example.

2. Deformed Exponential Families

In this paper, we assume that all objects are smooth for simplicity. Let us review preliminary facts
about deformed exponential functions and deformed exponential families. For more details, see [2,6],
for example. Historically, Tsallis [14] introduced the notion of q-exponential function and Naudts [5]
introduced the notion of q-exponential family together with a further generalization. Such a historical
note is provided in [2].

Let R++ be the set of all positive real numbers, R++ := {x ∈ R|x > 0}. Let χ be a strictly
increasing function from R++ to R++. We define a χ-logarithm function or a deformed logarithm
function by

lnχ s :=
∫ s

1

1
χ(t)

dt.

The inverse of lnχ s is called a χ-exponential function or a deformed exponential function, which is
defined by

expχ t := 1 +
∫ t

0
u(s)ds,

where the function u(s) is given by u(lnχ s) = χ(s).
From now on, we suppose that χ is a power function, that is, χ(t) = tq. Then the deformed

logarithm and the deformed exponential are defined by

lnq s :=
s1−q − 1

1− q
, (s > 0),

expq t := (1 + (1− q)t)
1

1−q , (1 + (1− q)t > 0).

We say that lnq s is a q-logarithm function and expq t is a q-exponential function. In this case,
the function u(s) is given by

u(s) = (1 + (1− q)s)
q

1−q = {expq s}q.

By taking a limit q→ 1, these functions coincide with the standard logarithm ln s and the standard
exponential exp t, respectively.

A statistical model Sq is called a q-exponential family if

Sq :=

{
p(x, θ)

∣∣∣∣∣p(x; θ) = expq

[
n

∑
i=1

θiFi(x)− ψ(θ)

]
, θ ∈ Θ ⊂ Rn

}
, (1)

where F1(x), . . . , Fn(x) are functions on a sample space Ω, θ = t(θ1, . . . , θn) is a parameter, and ψ(θ)

is the normalization with respect to the parameter θ. Under suitable conditions, Sq is regarded as a
manifold with a local coordinate system {θ1, . . . , θn}. In this case, we call {θi} a natural coordinate system.
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In this paper, we focus on the q-exponential case. However, many results for the q-exponential
family can be generalized for the χ-exponential family (cf. [6,8]). We remark that a q-exponential
family and a χ-exponential family have further generalizations. See [15], for example.

Example 1 (Student’s t-distribution (cf. [2,6,7])). Fix a number q (1 < q < 1 + 2/d, d ∈ N), and set
ν = −d − 2/(1 − q). We define a d-dimensional Student’s t-distribution with degree of freedom ν or a
q-Gaussian distribution by

pq(x; µ, Σ) :=
Γ
(

1
q−1

)
(πν)

d
2 Γ
(

ν
2
)√

det(Σ)

[
1 +

1
ν

t(x− µ)Σ−1(x− µ)

] 1
1−q

,

where X = t(X1, . . . , Xd) is a random vector on Rd, µ = t(µ1, . . . , µd) is a location vector on Rd and Σ is a
scale matrix on Sym+(d). For simplicity, we assume that Σ is invertible. Otherwise, we should choose a suitable
basis {vα} on Sym+(d) such that Σ = ∑α wαvα. Then, the set of all Student’s t-distributions is a q-exponential
family. In fact, setting parameters by

zq =
(πν)

d
2 Γ
(

ν
2
)√

det(Σ)

Γ
(

1
q−1

) , R̃ =
zq−1

q

(1− q)d + 2
Σ−1, and θ = 2R̃µ, (2)

we have

pq(x; µ, Σ) =
1
zq

[
1 +

1
ν

t(x− µ)Σ−1(x− µ)

] 1
1−q

=

[(
1
zq

)1−q
− 1− q

(1− q)d + 2

(
1
zq

)1−q
t(x− µ)Σ−1(x− µ)

] 1
1−q

= expq

[
−t(x− µ)R̃(x− µ) + lnq

1
zq

]
= expq

[
d

∑
i=1

θixi −
d

∑
i=1

R̃iix2
i − 2 ∑

i<j
R̃ijxixj −

1
4

tθR̃−1θ + lnq
1
zq

]
.

Since θ ∈ Rd and R̃ ∈ Sym+(d), the set of all Student’s t-distributions is a d(d + 3)/2-dimensional
q-exponential family. The normalization ψ(θ) is given by

ψ(θ) =
1
4

tθR̃−1θ − lnq
1
zq

.

A univariate Student’s t-distribution is a well-known probability distribution in elementary
statistics. We denote it by

tν(x; µ, σ) :=
1

Zq
expq

[
− (x− µ)2

(3− q)σ2

]
, (3)

where µ ∈ R is a location parameter, σ ∈ R++ is a scale parameter, and Zq is the normalization
defined by

Zq =

√
3− q
q− 1

Beta
(

3− q
2(q− 1)

,
1
2

)
σ.

In this case, the degree of freedom is ν = (3− q)/(q− 1). Conversely, the parameter q is give by

q =
ν + 3
ν + 1

. (4)
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3. Escort Distributions and Generalizations of Expectations

In anomalous statistics, a generalized expectation, called an escort expectation, is often discussed
since the standard expectation does not exist in general (cf. [2,5,6]). In this section, we recall
generalizations of expectations and introduce a sequential structure of escort distributions.

Let Sq be a q-exponential family. For a given p(x; θ) ∈ Sq we define the q-escort distribution Pq(x; θ)

of p(x; θ) and the normalized q-escort distribution Pesc
q (x; θ) by

Pq(x; θ) := Pq,(1)(x; θ) := {p(x; θ)}q,

Pesc
q (x; θ) :=

1
Zq(p)

{p(x; θ)}q, where Zq(p) =
∫

Ω
{p(x; θ)}qdx,

respectively. For a q-exponential family Sq = {pq(x; θ)}, the set of normalized escort distributions
Sq′ = {Pesc

q (x; θ)} is a q′-exponential family with q′ = (2q− 1)/q.

Example 2. Let tν(x; µ, σ) be a univariate Student’s t-distribution with degree of freedom ν. Then its
normalized escort distribution is also a univariate Student’s t-distribution with degree of freedom ν + 2.
In fact, from Equation (4), a direct calculation shows that

q′ =
2q− 1

q
=

ν + 5
ν + 3

.

This implies that the degree of freedom ν′ = ν + 2. Therefore, we obtain a sequence of escort distributions from a
given Student’s t-distribution tν:

tν → tν+2 → tν+4 → · · · .

This sequence is called a τ-sequence, and the procedure to obtain from a given t-distribution to another
t-distribution through an escort distribution is called the τ-transformation [16].

For a given pq(x; θ) ∈ Sq, we can define the escort of an escort distribution

P̃q(x; θ) := Pq,(2)(x; θ) := q{Pq(x; θ)}q′ = q{pq(x; θ)}2q−1.

We call P̃q(x; θ) the second escort distribution of pq(x; θ). The coefficient q before {pq(x; θ)}2q−1

comes from considerations of U-information geometry [17]. We will discuss in the latter part of
Section 5.

Similarly, we can define the n-th escort distribution Pq,(n)(x; θ) from the sequence of
escort distributions:

Pq,(n)(x; θ) := {q(2q− 1) · · · ((n− 1)q− (n− 2))}{pq(x; θ)}nq−(n−1). (5)

Let f (x) be a function on Ω. The q-expectation Eq,p[ f (x)] and the normalized q-expectation Eesc
q,p[ f (x)]

with respect to p(x; θ) ∈ Sq are defined by

Eq,p[ f (x)] :=
∫

Ω
f (x)Pq(x; θ)dx,

Eesc
q,p[ f (x)] :=

∫
Ω

f (x)Pesc
q (x; θ)dx,

respectively. We denote by Ẽq,p[ f (x)] the expectation with respect to the second escort distribution
P̃q(x; θ), that is,

Ẽq,p[ f (x)] :=
∫

Ω
f (x)P̃q(x; θ)dx = q

∫
Ω

f (x){pq(x; θ)}2q−1dx.
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Since a differential of a power function is also a power function, we can give a characterization
for escort distributions.

Proposition 1. Suppose that Sq is a q-exponential family defined by (1). Then the n-th escort distribution
is given by the n-th differential of q-exponential function. That is, by setting u(t) = (expq t)′, we have the
following formula:

pq(x; θ) = expq

(
n

∑
i=1

θiFi(x)− ψ(θ)

)
,

Pq(x; θ) = Pq,(1)(x; θ) = u

(
n

∑
i=1

θiFi(x)− ψ(θ)

)
,

P̃q(x; θ) = Pq,(2)(x; θ) = u′
(

n

∑
i=1

θiFi(x)− ψ(θ)

)
,

...
...

Pq,(n)(x; θ) = u(n−1)

(
n

∑
i=1

θiFi(x)− ψ(θ)

)
,

...
...

Proof. Since a q-exponential function is expq(x) = (1 + (1− q))1/(1−q), its differential is given by

u(x) =
1− q
1− q

(1 + (1− q)x)
1

1−q−1
= (1 + (1− q)x)

q
1−q = {expq x}q.

Therefore, we obtain Pq(x; θ) = u
(
∑n

i=1 θiFi(x)− ψ(θ)
)
.

By induction, the n-th differential of u(x) coincides with the n-th escort distribution Pq,(n), which is
given by Equation (5).

4. Statistical Manifolds and Their Generalized Conformal Structures

In this section, we us review the geometry of statistical manifolds. For more details about the
geometry of statistical manifolds, see [18,19].

Let (S, g) be a Riemannian manifold and ∇ be a torsion-free affine connection on S. We say that
the triplet (S,∇, g) is a statistical manifold if∇g is totally symmetric. In this case, we can define a totally
symmetric (0, 3)-tensor field by

C(X, Y, Z) := (∇X g)(Y, Z) = Xg(Y, Z)− g(∇XY, Z)− g(Y,∇XZ),

where X, Y and Z are arbitrary vector fields on S. The tensor field C is called a cubic form or an
Amari–Chentsov tensor field.

The notion of statistical manifold was introduced by Lauritzen [20]. He called the triplet (S, g, C)
a statistical manifold. In this paper, the definition is followed to Kurose [18]. Though these two
definitions are different, the other statistical manifold structure can be obtained from a given one,
However, the motivation for the notion of conformal equivalence using (S, g, C) is different from that
one using (S,∇, g), which we will discuss in the latter part of this section.

For a given statistical manifold (S,∇, g), we can define another torsion-free affine connection ∇∗
on S by

Xg(Y, Z) = g(∇XY, Z) + g(Y,∇∗XZ).
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The connection ∇∗ is called the dual connection of ∇ with respect to g. The triplet (S,∇∗, g) is also
a statistical manifold, which is called the dual statistical manifold of (S,∇, g). The cubic form is given by
the difference of two affine connections ∇∗ and ∇:

C(X, Y, Z) = g(∇∗XY−∇XY, Z).

We define generalized conformal structures for statistical manifolds followed to Kurose [18].
Two statistical manifolds (S,∇, g) and (S, ∇̄, ḡ) are said to be 1-conformally equivalent if there exists a
function λ : S→ R++ such that

ḡ(X, Y) = λg(X, Y), (6)

∇̄XY = ∇XY− g(X, Y)gradg(ln λ), (7)

where gradg(ln λ) is the gradient vector field of ln λ with respect to g, that is, g(X, ln λ) = X(ln λ).
We say that (S,∇, g) is 1-conformally flat if (S,∇, g) is locally 1-conformally equivalent to a flat
statistical manifold.

Two statistical manifolds (S,∇, g) and (S, ∇̄, ḡ) are said to be (−1)-conformally equivalent if there
exists a function λ : S→ R++ such that

ḡ(X, Y) = λg(X, Y),

∇̄XY = ∇XY + d(ln λ)(Y)X + d(ln λ)(X)Y, (8)

where d(ln λ)(X) = X(ln λ). If two statistical manifolds (S,∇, g) and (S, ∇̄, ḡ) are 1-conformally
equivalent, then their dual statistical manifolds (S,∇∗, g) and (S, ∇̄∗, ḡ) are (−1)-conformally
equivalent.

Proposition 2. If two statistical manifolds (S,∇, g) and (S, ∇̄, ḡ) are 1-conformally equivalent, then their
cubic forms have the following relation:

1
λ

C̄(X, Y, Z) = C(X, Y, Z) + g(Y, Z)d(ln λ)(X) + g(Z, X)d(ln λ)(Y) + g(X, Y)d(ln λ)(Z).

Proof. From Equations (7) and (8), we obtain

∇̄XY = ∇XY + d(ln λ)(Y)X + d(ln λ)(X)Y + g(X, Y)gradg(ln λ).

By taking an inner product with respect to g, we obtain the result.

5. Statistical Manifold Structures on q-Exponential Families

In this section, we consider statistical manifold structures on a q-exponential family. It is known
that a q-exponential family naturally has at least three kinds of statistical manifold structures (cf. [6,8]).
We reformulate these structures from the viewpoint of the sequence of escort distributions. In this
paper, we omit the details about information geometry. See [21,22] for further details.

Firstly, we review basic facts about q-exponential family. Let Sq be a q-exponential family.
The normalization ψ(θ) on Sq is convex, but may not be strictly convex. In fact, we obtain the
following proposition.
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Proposition 3. Let Sq = {p(x; θ)} be a q-exponential family. Then the normalization function ψ(θ) is convex.

Proof. Set u(x) = (expq x)′ and ∂i = ∂/∂θi. Then we have

∂i p(x; θ) = u
(
∑ θkFk(x)− ψ(θ)

)
(Fi(x)− ∂iψ(θ)),

∂i∂j p(x; θ) = u′
(
∑ θkFk(x)− ψ(θ)

)
(Fi(x)− ∂iψ(θ))(Fj(x)− ∂jψ(θ))

− u
(
∑ θkFk(x)− ψ(θ)

)
∂i∂jψ(θ). (9)

Since ∂i
∫

Ω p(x; θ)dx =
∫

Ω ∂i p(x; θ)dx = 0 and
∫

Ω ∂i∂j p(x; θ)dx = 0, we have

Zq(p) =
∫

Ω
{(p(x; θ)}qdx =

∫
Ω

u
(
∑ θkFk(x)− ψ(θ)

)
dx,

∂i∂jψ(θ) =
1

Zq(p)

∫
Ω

u′
(
∑ θkFk(x)− ψ(θ)

)
(Fi(x)− ∂iψ(θ))(Fj(x)− ∂jψ(θ))dx. (10)

For an arbitrary vector c = t(c1, c2, . . . , cn) ∈ Rn, since Zq(p) > 0 and u′′(x) > 0, we have

n

∑
i,j=1

cicj(∂i∂jψ(θ)) =
1

Zq(p)

∫
Ω

u′′
(

n

∑
k=1

θkFk(x)− ψ(θ)

){
n

∑
i=1

ci(Fi(x)− ∂iψ(θ))

}2

dx ≥ 0.

This implies that the Hessian matrix (∂i∂jψ(θ)) is semi-positive definite.

We assume that ψ is strictly convex in this paper. Under this assumption, we can induce many
geometric structures for a q-exponential family.

Since ψ is strictly convex, we can define a Riemannian metric and a cubic form by

gq
ij(θ) := ∂i∂jψ(θ),

Cq
ijk(θ) := ∂i∂j∂kψ(θ).

We call gq and Cq a q-Fisher metric and a q-cubic form, respectively [23,24]. Since gq is a Hessian of
a function ψ, gq is a Hessian metric, and ψ is the potential of gq with respect to the natural coordinate
{θi} [25].

For a fixed real number α, set

gq
(
∇q(α)

X Y, Z
)

:= gq
(
∇q(0)

X Y, Z
)
− α

2
Cq (X, Y, Z) , (11)

where∇q(0) is the Levi-Civita connection with respect to gq. Since gq is a Hessian metric, from standard
arguments in Hessian geometry [25], ∇q(e) := ∇q(1) and ∇q(m) := ∇q(−1) are flat affine connections
and mutually dual with respect to gq. Therefore, the triplets (Sq,∇q(e), gq) and (Sq,∇q(m), gq) are flat
statistical manifolds, and the quadruplet (Sq, gq,∇q(e),∇q(m)) is a dually flat space.

Under q-expectations, we have the following proposition (cf. [10]).

Proposition 4. For Sq a q-exponential family, (1) Set ηi = Eesc
q,p[Fi(x)]. Then {ηi} is a∇q(m)-affine coordinate

system such that

gq

(
∂

∂θi ,
∂

∂ηj

)
= δ

j
i .

(2) Set φ(η) = Eesc
q,p[logq p(x; θ)], then φ(η) is the potential of gq with respect to {ηi}.
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Next, let us consider the standard Fisher metric and the standard cubic form. Suppose that
S := {p(x; θ)} is a statistical model. Set pθ := p(x; θ), for simplicity. We define the (standard) Fisher
metric gF on Sq by

gF
ij(θ) :=

∫
Ω
(∂i ln pθ)(∂j ln pθ)pθdx,

and the (standard) cubic form or the Amari–Chentsov vector field CF by

CF
ijk(θ) :=

∫
Ω
(∂i ln pθ)(∂j ln pθ)(∂j ln pθ)pθdx.

From similar arguments of (11), we can define an α-connection ∇(α) on Sq, and we can obtain a
statistical manifold structure (Sq,∇(α), gF). In this case, (Sq,∇(α), gF) is called an invariant statistical
manifold [21,22].

A Fisher metric and a cubic form have the following representation using a sequence of
escort distributions,

Theorem 1. Let Sq be a q-exponential family. For p(x; θ) ∈ Sq, suppose that Pq,(2)(x; θ) and Pq,(3)(x; θ) are
the second and the third escort distribution of p(x; θ), respectively. Then the Fisher metric gF and the cubic form
CF are given as follows:

gF
ij(θ) =

1
q

∫
Ω
(∂i lnq pθ)(∂j lnq pθ)Pq,(2)(x; θ)dx, (12)

CF
ijk(θ) =

1
q(2q− 1)

∫
Ω
(∂i lnq pθ)(∂j lnq pθ)(∂k lnq pθ)Pq,(3)(x; θ)dx. (13)

Proof. Differentiating the q-logarithm, we have

∂i lnq pθ = ∂i

(
p1−q

θ − 1
1− q

)
= p−q

θ ∂i p(θ) = p1−q
θ ∂i ln p(θ).

Therefore, we obtain

1
q

∫
Ω
(∂i lnq pθ)(∂j lnq pθ)Pq,(2)(x; θ)dx =

∫
Ω

p1−q
θ (∂i ln pθ)p1−q

θ (∂j ln pθ)p2q−1
θ (x; θ)dx

=
∫

Ω
(∂i ln pθ)(∂j ln pθ)pθ(x; θ)dx

= gF
ij(θ).

By a similar argument, we obtain the representation for CF.

We define an α-divergence D(α) with α = 1− 2q and a q-relative entropy (or a normalized Tsallis
relative entropy) DT

q by

D(1−2q)(p(x), r(x)) =
1
q

Eq,p[lnq p(x)− lnq r(x)] =
1−

∫
Ω p(x)qr(x)1−qdx

q(1− q)
, (14)

DT
q (p(x), r(x)) = Eesc

q,p[lnq p(x)− lnq r(x)] =
1−

∫
Ω p(x)qr(x)1−qdx
(1− q)Zq(p)

, (15)

respectively. It is known that the α-divergence D(1−2q)(r, p) induces a statistical manifold structure
(Sq, gF,∇(2q−1)), where gF is the Fisher metric on Sq and ∇(2q−1) is the α-connection with α = 2q− 1,
and the q-relative entropy DT

q (r, p) induces (Sq, g,∇q(e)).
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Theorem 2 (cf. [10,24]). For a q-exponential family Sq, two statistical manifolds (Sq, gF,∇(2q−1)) and
(Sq, g,∇q(e)) are 1-conformally equivalent. In particular, an invariant statistical manifold (Sq, gF,∇(2q−1)) is
1-conformally flat. Riemannian metrics and cubic forms have the following relations:

gq
ij(θ) =

q
Zq(p)

gF
ij(θ), (16)

Cq
ijk(θ) =

q
Zq(p)

(2q− 1)CF
ijk(θ)

− q
Zq(p)

{
gF

ij∂k ln Zq(p) + gF
jk(θ)∂i ln Zq(p) + gF

ki(θ)∂j ln Zq(p)
}

. (17)

Proof. The results were essentially obtained in [10]. However, we give a simpler proof for
Equations (16) and (17). The key idea is a sequence of escort distributions and the escort representations
of gF and CF in Theorem 1.

From Equation (10), we directly obtain the conformal equivalence relation (16) using the escort
representation of gF in (12).

By differentiating (9) and taking an integration, we obtain

0 =
∫

Ω
u′′
(
∑ θl Fl(x)− ψ(θ)

)
(Fi(x)− ∂iψ(θ))(Fj(x)− ∂jψ(θ))(Fk(x)− ∂kψ(θ))dx

−
∫

Ω
u′
(
∑ θl Fl(x)− ψ(θ)

)
(Fk(x)− ∂kψ(θ))∂i∂jψ(θ)dx

−
∫

Ω
u′
(
∑ θl Fl(x)− ψ(θ)

)
(Fi(x)− ∂iψ(θ))∂j∂kψ(θ)dx

−
∫

Ω
u′
(
∑ θl Fl(x)− ψ(θ)

)
(Fj(x)− ∂jψ(θ))∂k∂iψ(θ)dx

−
∫

Ω
u
(
∑ θl Fl(x)− ψ(θ)

)
∂i∂j∂kψ(θ)dx.

Since Zq(p) =
∫

Ω Pq(x; θ)dx, we have

∂iZq(p) = ∂i

∫
Ω

Pq(x; θ)dx =
∫

Ω
∂iPq(x; θ)dx =

∫
Ω

P̃q(x; θ)(Fi(x)− ∂iψ(θ))dx.

From the escort representation of CF in (13), and Proposition 1, we obtain Equation (17) since
gq

ij(θ) = ∂i∂jψ(θ) and Cq
ijk(θ) = ∂i∂j∂kψ(θ).

We remark that the cubic form of (Sq, gF,∇(2q−1)) is not CF but (2q− 1)CF.
The difference of a α-divergence and a q-relative entropy is only the normalization q/Zq(p).

This implies that a normalization for probability density imposes a generalized conformal change for a
statistical model.

In the next part of this section, let us consider another statistical manifold on Sq (cf. [6,17,26]).
Recall that a Fisher metric gF has the following representation:

gF
ij(θ) =

∫
Ω
(∂i ln pθ)(∂j pθ)dx.

In information geometry, ∂i ln pθ is called an e-representation (exponential representation) of pθ ,
and ∂j pθ is called a m-representation (mixture representation). Intuitively, ∂i ln pθ and ∂j pθ are regarded
as tangent vectors on a statistical model. Hence a Fisher metric is regarded as a L2-inner product of
e- and m-representations.

Let us generalize e- and m-representations for a q-exponential family. For pθ ∈ Sq, we call ∂i lnq pθ

a q-score function. Then we define a Riemannian metric gM by

gM
ij (θ) =

∫
Ω
(∂i lnq pθ)(∂j pθ)dx. (18)
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By differentiating the above equation, we can define mutually dual torsion-free affine connections
∇M(e) and ∇M(m):

ΓM(e)
ij,k (θ) :=

∫
Ω
(∂i∂j lnq pθ)(∂k pθ)dx,

ΓM(m)
ij,k (θ) :=

∫
Ω
(∂k lnq pθ)(∂i∂j pθ)dx,

where ΓM(e)
ij,k and ΓM(m)

ij,k are the Christoffel symbols of ∇M(e) and ∇M(m) of the first kind, respectively.

It is known that gM is a Hessian metric, and the quadruplet (Sq, gM,∇M(e),∇M(m)) is a dually flat
space. In addition, a natural parameter {θi} is a ∇M(e)-affine coordinate sysem. Therefore, the cubic
form for (Sq,∇M(e), gM) is

CM
ijk(θ) = ΓM(m)

ij,k (θ). (19)

We remark that the statistical manifold structure (Sq,∇M(e), gM) is induced from a
β-divergence [17,26] (or a density power divergence [27]):

D1−q(p, r) :=
∫

Ω

{
p(x)

p(x)1−q − r(x)1−q

1− q
− p(x)2−q − r(x)2−q

2− q

}
dx. (20)

Theorem 3. For the statistical manifold structure (Sq,∇M(e), gM), the escort representations of the Riemannian
metric gM and the cubic form CM are given as follows:

gM
ij (θ) =

∫
Ω
(∂i lnq pθ)(∂j lnq pθ)Pq(x; θ)dx, (21)

CM
ijk(θ) =

∫
Ω
(∂i lnq pθ)(∂j lnq pθ)(∂k lnq pθ)P̃q(x; θ)dx. (22)

Proof. For the Riemannian metric gM, since ∂i pθ = (∂i lnq pθ)Pq(x; θ), we immediately obtain
Equation (21) from the definition of gM.

Let us consider the expression for cubic form (22). The q-score function ∂i lnq pθ is unbiased under
the q-expectation. In fact,

Eq,p[∂i lnq pθ ] =
∫

Ω
(∂j lnq pθ)Pq(x; θ)dx =

∫
Ω

∂j pθdx = 0.

From Equation (19), we obtain

CM
ijk(θ) = ΓM(m)

ij,k (x; θ)

=
∫

Ω
(∂k lnq pθ)(∂i∂j pθ)dx

=
∫

Ω
(∂k lnq pθ)∂i

{(
∂j lnq pθ

)
Pq(x; θ)

}
dx

= −∂ijψ(θ)
∫

Ω
(∂k lnq pθ)Pq(x; θ)dx +

∫
Ω
(∂k lnq pθ)(∂j lnq pθ){∂iPq(x; θ)}dx

=
∫

Ω
(∂k lnq pθ)(∂j lnq pθ)(∂i lnq pθ)P̃q(x; θ)dx.

We remark that Naudts [5] gave another generalization of Fisher metric gN , which is defined by

gN
ij (θ) :=

∫
Ω

1
Pesc

q (x; θ)
(∂i pθ)(∂j pθ)dx,
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The metric gN is conformally equivalent to gM with conformal factor Zq(pθ) =
∫

Ω{p(x; θ)}qdx.
That is, gN(θ) = Zq(pθ)gM(θ). (See also [6]). Naudts gave a further generalization of Fisher metric
and he showed a Cramér–Rao type bound theorem [5].

6. Concluding Remarks

In this paper, we introduced a sequence of escort distributions. Then we gave representations of
Riemannian metrics and cubic forms from a viewpoint of the sequence of escort distributions.

In particular, we can define the following (0, 2)-tensor fields on a q-exponential family. For pθ ∈ Sq,
set ηi = ∂iψ(θ).

(1) From the standard expectation, we obtain

g(0)ij (θ) := Gij(θ) :=
∫

Ω
(∂i lnq pθ)(∂j lnq pθ)pθdx

= Ep[(Fi(x)− ηi)(Fj(x)− ηj)].

The tensor G is a covariance matrix. However, G may not be important in anomalous statistics.
(2) From the q-expectation, we obtain

g(1)ij (θ) := gM
ij (θ) =

∫
Ω
(∂i lnq pθ)(∂j lnq pθ){pθ}qdx

=
∫

Ω
(∂i lnq pθ)(∂j lnq pθ)Pq(x; θ)dx

= Eq,p[(Fi(x)− ηi)(Fj(x)− ηj)].

The Riemannian metric gM is a Hessian metric, and it is induced from the β-divergence (20).
(3) From the expectation with respect to the second escort distribution, we obtain

g(2)ij (θ) := gF
ij(θ) =

∫
Ω
(∂i lnq pθ)(∂j lnq pθ){pθ}2q−1dx

=
1
q

∫
Ω
(∂i lnq pθ)(∂j lnq pθ)P̃q(x; θ)dx

=
1
q

Eq,(2),p[(Fi(x)− ηi)(Fj(x)− ηj)].

gq
ij(θ) =

Zq(p)
q

gF
ij.

The Riemannian metric gF is a Fisher metric. Hence gF is invariant to the choice of reference
measure on Ω, but it is not a Hessian metric. In addition, gF is induced from the α-divergence (14).
The conformal Riemannian metric gq is a q-Fisher metric. It is a Hessian metric, and it is induced from
a normalized Tsallis relative entropy (15).

We may define a Riemannian metric and a cubic form from higher order escort expectations:

g(n)ij (θ) :=
∫

Ω
(∂i lnq pθ)(∂j lnq pθ)Pq,(n)(x; θ)dx,

C(n)
ij (θ) :=

∫
Ω
(∂i lnq pθ)(∂j lnq pθ)(∂k lnq pθ)Pq,(n+1)(x; θ)dx.

Then we obtain a sequence of statistical manifold structures.

(Sq, g(1), C(1)) → (Sq, g(2), C(2)) → · · · → (Sq, g(n), C(n)) → · · ·

However, the geometric meaning of this sequence is not clear at this moment. Elucidating
geometric properties of this sequence is a future problem.
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