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Abstract: Gas turbines are important energy-converting equipment in many industries. The flow
inside gas turbines is very complicated and the knowledge about the flow loss mechanism is critical
to the advanced design. The current design system heavily relies on empirical formulas or Reynolds
Averaged Navier–Stokes (RANS), which faces big challenges in dealing with highly unsteady complex
flow and accurately predicting flow losses. Further improving the efficiency needs more insights
into the loss generation in gas turbines. Conventional Unsteady Reynolds Averaged Simulation
(URANS) methods have defects in modeling multi-frequency, multi-length, highly unsteady flow,
especially when mixing or separation occurs, while Direct Numerical Simulation (DNS) and Large
Eddy Simulation (LES) are too costly for the high-Reynolds number flow. In this work, the Delayed
Detached Eddy Simulation (DDES) method is used with a low-dissipation numerical scheme to
capture the detailed flow structures of the complicated flow in a high pressure turbine guide vane.
DDES accurately predicts the wake vortex behavior and produces much more details than RANS
and URANS. The experimental findings of the wake vortex length characteristics, which RANS and
URANS fail to predict, are successfully captured by DDES. Accurate flow simulation builds up a solid
foundation for accurate losses prediction. Based on the detailed DDES results, loss analysis in terms
of entropy generation rate is conducted from two aspects. The first aspect is to apportion losses by its
physical resources: viscous irreversibility and heat transfer irreversibility. The viscous irreversibility
is found to be much stronger than the heat transfer irreversibility in the flow. The second aspect is
weighing the contributions of steady effects and unsteady effects. Losses due to unsteady effects
account for a large part of total losses. Effects of unsteadiness should not be neglected in the flow
physics study and design process.

Keywords: loss analysis; entropy generation rate; high pressure turbine; delayed detached eddy
simulation; wake-pressure wave interaction

1. Introduction

Gas turbines are ubiquitous in industrial power generation and marine propulsion. They are also
used in locomotives, tanks and even high-end road vehicles. Meanwhile, gas turbines are indispensable
for environment protection. Coal is used as a feedstock for 40% of global electricity generation, so clean
use of coal is a vital task for the sustainable development and environmental security of human society.
With the help of gas turbines, integrated gasification combined cycle (IGCC) plants are advantageous
over conventional coal power plants due to their high thermal efficiency, low non-carbon greenhouse
gas emissions and capability to process low grade coal [1]. To achieve better performance, the inlet
temperature and the pressure ratio of the turbine are increasing over time while the size of the turbine
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becomes more compact. The flow phenomena in turbines are multiform and complicated in the
presence of stationary and rotating blades, extreme temperatures (higher than the melting temperature
of the material for high pressure turbine) and high pressure ratios. The flow in turbine blade rows is
highly unsteady with transition, separation, reattachment, tip leakage flows, shock wave, wake vortex,
passage vortex, and horse shoe vortex, followed by interactions between them and the rotor–stator
interaction. Further improving the efficiency needs powerful numerical tools, such as LES and DDES,
to delineate the turbine flow and achieve insightful investigation into the details of losses generation
and underlying flow interaction mechanisms.

Loss coefficients are commonly used in turbine design, experimental and numerical analysis.
For design purposes, energy or enthalpy loss coefficient can by defined by:

ζ=
hout − hout,is

h∗out − hout
, (1)

where hout,is is the isentropic final enthalpy obtained in an isentropic expansion to the same final
static pressure at the outlet of the turbine blade or stage as the actual process. For experimental and
numerical use, the stagnation pressure loss coefficient, as defined by Equation (2), is more often used
since it is easy to measure or calculate:

Closs =
P∗inl − P∗out
P∗out − Pout

=
P∗inl − P∗out

1
2 ρu2

out
. (2)

For comparison and discussion of other loss coefficient definitions, one can refer to [2]. Denton [3]
pointed out that the stagnation enthalpy coefficient and the stagnation pressure coefficient are not
satisfactory for turbines since these coefficients can vary with the changes of radius without any
implied loss of efficiency occurring. He recommended the entropy loss coefficient, as defined by
Equation (3), as an indicator of the loss of efficiency:

ζs=
Tout∆s

h∗out − hout
. (3)

However, these coefficients are single “global” values representing a sum or consequence of all
losses generated in the volume studied without information about local loss generation inside the flow
field. In the past, entropy was a more rarely used quantification criteria for loss generation since it is
invisible and cannot be measured directly. Nowadays, detailed information of the flow field, which
makes experimentally unmeasurable or invisible variables visible, is available thanks to ever-developing
computational fluid dynamics (CFD). It is necessary and attractive to relate losses in a flow field
immediately to the cause of it rather than to certain consequences of it, such as the pressure loss coefficient.
Thermodynamically, losses in the flow field are the results from viscous and heat transfer irreversibilities.
According to the Second Low of Thermodynamics, entropy generation rate is a reasonable quantity for
measuring irreversibility [4–6]. The entropy generation rate gives detailed information about the location
of losses and provides a direct physical interpretation of losses in terms of exergy (available energy) losses
that is not available from aforementioned coefficients [7]. The Second Law Analysis (SLA) of entropy
and entropy generation rate has been applied for fundamental studies such as heat exchanger [8,9],
suddenly expanding pipe [10], diffuser [11], and micro- and mini-channels [12]. Up to date, there are
several applications of entropy or entropy generation rates in the field of turbines [13,14]. However,
they are all based on the URANS method. Recently, Jin and Herwig analyzed the physical mechanism
behind the effects of wall roughness on turbulence with DNS-based second low analysis (SLA) [15,16].
Heinz Herwig and Bastian Schmandt described and discussed the second law analysis (SLA) method
thoroughly and pointed out several advantages of this approach over conventional methods, and also
gave exemplary analysis for both external and internal flows [7].
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Entropy generation rate is a good quantity for assessment of local losses and overall losses by
integration over volume. However, the reliability of this quantity highly depends on the CFD models.
Perfect prediction of the entropy generation rate requires the CFD models predicting flows accurately,
especially when mixing or separation occurs. The flow inside turbine is essentially a 3D unsteady
flow, which covers a range of length-scales and frequencies and has strong mixing. Moreover, high
pressure turbines operate at both transonic Mach numbers and high Reynolds numbers, which impose
great challenges to modern CFD. Conventional RANS and URANS methods have many difficulties in
treating unsteady vortical flows in turbines [17–20] while DNS and LES are too costly [21] especially
for high pressure turbines. High pressure turbine cascades had previously not been studied with
high-fidelity numerical simulations until the works by Rathakrishnan Bhaskaran [22] with the help
of LES. Kopriva et al. conducted a detailed study of a high pressure turbine guide vane focusing on
the performance comparison of RANS, URANS, hybrid-LES and LES methods in ANSYS Fluent and
found that RANS and URANS give worse predictions of the total pressure wake while hybrid-LES and
LES produce much better results [20,23]. However, no local loss analysis is carried out in these studies.

In summary, there are two aspects to facilitate flow study and improve conventional turbine design.
First, entropy analysis is a powerful tool in flow mechanism research and system design. Replacing
the single global value loss coefficients with the local loss information and interpretation will definitely
help physics explanation and design. Second, DDES, a hybrid method of LES and URANS, which has
been proved to simulate 3D unsteady turbulent flow efficiently and accurately [23], is a feasible choice
for complex flow modeling in both academic and industry communities. In such a way, the defects of
RANS and URANS models in treating the complicated flow in high pressure turbines can be overcome,
and the efficiency is acceptable by industry community compared to the highly costly LES and DNS.
Moreover, DDES can improve the reliability of the entropy generation rate since the reliability of this
quantity is highly dependent on the accuracy and resolution of turbulent models. This work is the first
step towards DDES-based unsteady optimization. In this work, the complex flow inside a transonic
high-pressure turbine vane, where the URANS method fails, is successfully predicted through the DDES
method with abundant flow details. After comparison and validation of the results, local loss in the flow
field are characterized and quantified. The contributions to total losses are analyzed in two categories:
Viscous irreversibility and heat transfer irreversibility in terms of the physics process and losses from
time-averaged field and fluctuations in terms of unsteadiness. This work is aims to demonstrate the
application of entropy analysis in a complex flow study in the field of turbo-machinery, to improve the
reliability of numerical losses prediction by using the DDES method, and to evaluate the necessity to
consider the unsteady effects.

2. Review of an Experimental Test Rig

Accurate and detailed experimental data is necessary for the validation of flow solver. To this
end, the von Karman Institute for Fluid Dynamics had conducted a series of work. It held a Lecture
Series on “Transonic Flows in Turbomachinery” in 1973 [24] and on “Numerical Methods for Flows
in Turbomachinery Bladings” in 1982 [25]. In these lectures, measured aerodynamic performances
of several two- and three-dimensional cascades, together with the predictions using various inviscid
flow calculation methods proposed by the participants, were presented and discussed. VKI LS89 [26],
which aims to provide data for validating both viscous and inviscid flow solvers, is a follow up of these
events. This cascade is a generic transonic high-pressure turbine guide vane cascade. Parameters of
this test case are given in Table 1.
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Table 1. Blade cascade characteristic dimensions [26].

Parameter Unit Value

Chord length (mm) 67.647
Pitch to chord ratio (-) 0.85

Throat to chord ratio (-) 0.2207
Flow inlet angle (degree) 0

Stagger angle (degree) 55.0 (from axial direction)
rLE/C (-) 0.061
rTE/C (-) 0.0105

3. Numerical Methods

3.1. Governing Equations

The three-dimensional Navier–Stokes equation is expressed in the form

∂U
∂t

+
∂ (F − Fv)

∂x
+

∂ (G−Gv)

∂y
+

∂ (H − Hv)

∂z
= 0, (4)

where F, G, H represent the convective fluxes and Fv, Gv, Hv the viscous fluxes.
U = (ρ, ρu, ρv, ρw, ρE)T is the conservative variable with u, v and w denoting the Cartesian velocity
components and E denoting the total energy. The equation of state P = ρRT is used to close the system
of Equation (4), with R denoting the gas constant.

3.2. Turbulence Model

The standard Spalart–Allmaras one equation model [27] has the form of:

Dν̃

Dt
=

1
σ
∇× (ν + ν̃)∇ν + Cb1S̃ν̃− Cw1 fw

(
ν̃

d

)2
+

Cb2
σ
∇ν×∇ν, (5)

and the turbulent viscosity µt is obtained using the following formulation:

µt = ρν̃ fv1, fv1 =
χ3

χ3 + C3
v1

, χ =
ν̃

ν
, (6)

where ν is the kinematic viscosity and the production term is defined by:

S̃ ≡ S +
ν̃

κ2d2 fv2, fv2 = 1− χ

1 + χ fv1
. (7)

The function fw is given by:

fw = g

[
1 + C6

w3

g6 + C6
w3

]1/6

, g = r + Cw2(r6 − r), r =
ν̃

S̃κ2d2
. (8)

The constant parameters used in the S-A model are:

σ = 2/3, κ = 0.41, Cb1 = 0.1355, Cb2 = 0.622, Cv1 = 7.1,

Cw1 =
Cb1

κ2 +
1 + Cb2

σ
, Cw2 = 0.3, Cw3 = 2.

(9)

3.3. Delayed Detached Eddy Simulation

To reduce the intensive CPU requirements of the LES method, Spalart et al. [21] developed the
Detached Eddy Simulation (DES) method in 1997 as a hybrid combination of the URANS and LES
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methods. The DES method applies the URANS model in the near wall region within the boundary
layer and automatically shifts to the LES model far from the wall. The DES method replaces d in the
destruction term of the S-A model, Equation (5), with d̃, defined by

d̃ = min(d, CDES4), (10)

where4 is the largest spacing of the grid cell in all the directions. When d� 4, as in the boundary
layer, d̃ = d and the model acts as the S-A model. When d � 4, as far from the boundary layer,
d = CDES4, the model behaves like the sub-grid scale (SGS) model in the LES algorithm. CDES is set
to be 0.65 [21,28].

In 2006, Spalart et al. [29] improved the DES model with the Delayed Detached Eddy Simulation
model (DDES) to deal with the Modeled Stresses Depletion (MSD) problem. The DDES uses a
formulation similar to the one proposed by Menter and Kuntz for the SST model to limit the DES
length scale to ensure that the transition between the URANS and LES models is grid independent.
The parameter r is modified from the S-A model definition, Equation (8), to:

rd =
ν + νt(

Ui,jUi,j
)0.5

κ2d2
, (11)

where Ui,j are the velocity gradients. After this modification, this parameter can be applied to any
eddy-viscous model. rd is applied to following function:

fd = 1− tanh
(
[8rd]

3
)

, d̃ = d− fd max (0, d− CDES4) , (12)

which reduces the grey transition area between the URANS and LES models [29].

3.4. Low-Dissipation Numerical Scheme

According to Strelets [30] and Liu, Xiao, and Fu [31], the dissipation in the scheme strongly affects
the DDES simulation in the separation area, with too much dissipation dampening the small coherent
structures in the LES regions. However, global low-dissipative schemes will cause instabilities in the
URANS regions.

In this work, a well-proved in-house code is used to solve the governing equation and multi-block
structured mesh based finite volume method is adopted. The convective flux is calculated using
the Roe type approximate Riemann solver [32] and a novel characteristic-based fifth order Weighted
Essentially Nonoscillatory (WENO) reconstruction [33,34] is employed to get high order accuracy.
In the Roe scheme, the numerical flux can be expressed in the form of:

Fn(UL, UR) =
1
2
(Fn,L + Fn,R)−

1
2

∣∣∣∣∂Fn

∂U

∣∣∣∣ (UR −UL) , (13)

where UL and UR are computed with the WENO scheme. The last term in Equation (13) is the
numerical dissipation, and, in DDES type simulation, it should be kept at a low level in order not to
smear the small scale turbulence structures. Here, a blending function is adopted to further reduce the
numerical dissipation and the numerical flux is redefined as:

Fn(UL, UR) =
1
2
(Fn,L + Fn,R)−

Φ
2

∣∣∣∣∂Fn

∂U

∣∣∣∣ (UR −UL) , (14)

with Φ designed to automatically reduce the dissipation according to the local flow feature:

Φ = Φmax × tanh
(

ACH1
)

, (15)
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and several additional formulations are used to complete the definition of Φ [30]:

A = CH2×max
{

0,
[
(CDES4

/
lturb)/g− 0.5

]}
, lturb =

[
(ν + νt) /

(
C2/3

µ K
)]0.5

K = max
{[(

S2 + Ω2) /2
]0.5 , 0.1τ−1

0

}
, g = tanh B4

B = CH3×Ω×max (Ω, S) / max
[(

S2 + Ω2) /2, 10−20] ,

(16)

where Ω and S represent the rotation rate and strain rate, respectively. The characteristic convective
time is defined as τ0 = L/U∞ and the constant parameters are CH1 = 3, CH2 = 1, and CH3 = 2.

3.5. Entropy Generation Rate

3.5.1. Viscous Losses and Thermal Losses

Thermodynamically, irreversibilities are the physical resources of losses in a flow field. There are
two kinds of irreversibilities in a flow: viscous irreversibility and heat transfer irreversibility.
Bejan thoroughly discusses the entropy generation due to the two kinds of irreversibilities through heat
and fluid flow in his book [35]. Losses in high pressure turbine flow could also be directly computed
from the rise in entropy due to irreversible processes. Local losses due to irreversible processes can
be measured by the entropy generation rate, Ṡgen. Ṡgen is the sum of two components-viscous and
thermal entropy generation rate, which are given by Equations (17) and (18), respectively [9,10,35]:

Ṡvisc =
1
T

τij
∂ui
∂xj

, (17)

Ṡtherm =
k

T2

(
∂T
∂xj

)2

. (18)

The Bejan number, Be, as defined by Equation (19), measures the contribution of the heat transfer
to the total loss. Be can be used to determine which irreversibility is the main cause of the loss in a
process. Be� 0.5 indicates the irreversibility due to viscous effects is dominant and vice versa. A Be
around 0.5 indicates that the heat transfer irreversibility and viscous irreversibility are equally matched:

Be =
Ṡtherm

Ṡgen
=

Ṡtherm

Ṡvis+Ṡtherm
. (19)

3.5.2. Losses Due to Steady Effects and Unsteady Effects

Losses can be categorized in another aspect: losses due to the the steady effects and those due
to unsteady effects. Losses due to steady effects in a turbine vane mainly consider losses during the
flow expansion and compression in the flow passage. The RANS-based loss analysis handles losses
due to steady effects without taking into account the unsteady effects. The unsteadiness enhances
the irreversibility in the flow and gives rise to losses. To make it more clear, we firstly discuss the
decomposition of any field quantity, f, in a turbulent flow. f could be velocity or temperature. It can be
written as:

f = f + f′′ + f′, (20)

where f = f(x, t) is the instantaneous value at the point x in the turbulent flow field at the time t, f is the
time-averaged value, f′′ is the fluctuation due to large scale unsteady effects, and f’ is the fluctuation
due to turbulence. The decomposition is schematically shown in Figure 1. The time mean value f
reflects the steady effects, while f′′ and f′ represent the unsteady effects. Correspondingly, the entropy
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generation rate, Ṡgen, consists of two parts: Ṡgen of Equation (21) accounts for the contribution of f
while Ṡgen′ accounts for the contributions of f′′ and f′:

Ṡgen = Ṡgen + Ṡgen′ , (21)

where “−” denotes time-averaged and “′” denotes fluctuating. Ṡgen can be calculated from the time-mean
flow results and Ṡgen can be obtained from the instantaneous flow results. Thus, Ṡgen′ can be obtained by:

Ṡgen′ = Ṡgen − Ṡgen (22)

because of the division of the entropy generation rate by the unsteady effects and steady effects being
independent of the division due to its physical resources.

Figure 1. Triple decomposition of an unsteady flow quantity.

In other words, both velocity and temperature fields, which contribute to viscous and thermal
losses, respectively, can be divided into a time-mean part and an unsteady part. Thus, Ṡvisc and Ṡtherm
can also be divided. Take viscous losses. As an example, Equation (23) shows that the division of Ṡvisc.
Ṡvisc can be obtained by Equation (24):

Ṡvisc = Ṡvisc + Ṡvisc′ , (23)

Ṡvisc =
1
T

τij
∂ui
∂xj

, (24)

where τij is the viscous stress tensor calculated from the time-averaged velocity field. With Ṡvisc and
Ṡvisc known, one can get Ṡvisc′ from Equation (25):

Ṡvisc′ = Ṡvisc−Ṡvisc. (25)

3.5.3. Discussion of the Losses Obtained by Different Simulation Methods

The reliability of the entropy generation rate from numerical methods highly depends on the
performance of the turbulent model. The accuracy of the numerical results directly determines the
reliability of losses calculated. RANS methods only resolve the time-averaged flow field so that only
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losses due to the steady effects, Ṡgen, can be obtained. URANS methods can simulate the unsteady
flow but with limited capability, since it is essentially based on the RANS methods. Both Ṡgen and Ṡgen′

can be obtained from URANS results, but the reliability of Ṡgen′ is limited. When the complexity of the
flow increases, the reliability of Ṡgen′ decreases so that the suitability of applying URANS methods in
such flow decreases. LES and DDES are promising to accurately resolve the highly unsteady flow, so
the reliability of Ṡgen′ is higher than URANS methods. The DNS method resolves the Navier–Stokes
Equations without any modelling so that the Ṡgen and Ṡgen′ calculated from DNS are the most reliable
values that CFD can provide. However, DNS is far too costly for turbine simulations. In this work,
entropy generation rates (instantaneous and time-averaged) are directly calculated from the filtered
flow field of DDES.

4. Computational Setup

The three-dimensional (3D) computational domain is shown in Figure 2a. The influence of the
inlet and outlet positions on the solution is reduced by extending the mesh to 0.7 chord upstream of the
leading edge and 1.5 chord downstream. The structured mesh for DDES has 1329 points around the
blade, with the points concentrated near the leading edge and the trailing edge with 1025 points in the
stream-wise direction and 289 points in the pitch-wise direction with a pitch length of 0.85C. The mesh
has 49 evenly spaced points in the span-wise direction with a span length of 0.15C. The mesh quality
inside the boundary layer is carefully controlled with the boundary layer mesh spread over 20 cells
with a constant expansion ratio of 1.1, and then another 40 cells with an increasing expansion ratio
of less than 1.2. The minimum orthogonality is 43 degrees and the maximum y+ is 0.703. The total
mesh has 20.46 M cells, which is divided into 104 blocks for the parallel computation. The details of
the mesh are shown in Figure 2b. The 3D URANS simulations use a coarser mesh of 2.95 M cells with
mesh convergence studied.

(a) (b)

Figure 2. Computational domain for LS89 and mesh details at the leading and trailing edges.
(a) Computational domain; (b) Mesh details (every 2nd grid is shown).

Both the DDES and URANS simulations use values from the experimental data for the inflow
and outflow boundary conditions as given in Table 2 [26]. Periodic boundary conditions were used at
the pitch-wise and span-wise boundaries. A non-slip isothermal wall was set on the blade surface.
The time integration uses an implicit time marching method with a multi-grid method to accelerate the
convergence. The dual time step method is used for the unsteady calculations, with the convergence
criterion for the inner iteration being a maximum of 30 steps. The time step size4t is 1.2× 10−7 s.
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Table 2. Details of the flow conditions for the von Karman Institute (VKI) experiments [26].

Parameter Unit Case MUR129 Case MUR235

Mais (-) 0.840 0.927
P∗inl (Pa) 184900 182800
Pout (Pa) 116500 104900
T∗inl (K) 409.2 413.3

Twall (K) 298 301

5. Results and Discussions

5.1. Validation and Comparison of the Results

The computation is run for 250 vortex shedding periods. During the computation, the residual
has a six to seven orders-of-magnitude decrease in the inner steps, as shown in Figure 3. The power
spectra at three monitoring points in Figure 4 obey the −5/3 law, indicating that the inertial region of
the turbulence is resolved by the DDES. The frequency with the peak amplitude is 37,391 Hz, which
is the vortex shedding frequency. Figure 5 compares the isentropic Ma distributions along the blade
surface given by the time-averaged DDES, the time-averaged URANS result, experimental data, and
published RANS and LES results [36]. The four results are very close to each other and all of them
agree with experimental results very well. This indicates that URANS, DDES, and LES predict the
loading of the case accurately. The dimensionless quantities presented in the following sections are
nondimensionlized as: lengths are divided by the axial chord (Cax) and all of the other quantities are
normalized by the inlet conditions. For instance, the dimensionless density gradient is calculated by:

‖∇ρ‖ =

√[
∂(ρ/ρinl)

∂(x/Cax)

]2

+

[
∂(ρ/ρinl)

∂(y/Cax)

]2

+

[
∂(ρ/ρinl)

∂(z/Cax)

]2

, (26)

which is different from the one,
∥∥∥ ∂ρ

∂xi

∥∥∥ /ρinl , used in a previous study [36]. The density gradient contour
colors in the following sections have been carefully selected so that the results are comparable to the
previous study according to ‖∇ρ‖=Cax

∥∥∥ ∂ρ
∂xi

∥∥∥ /ρinl .

Figure 3. Convergence history for inner steps.
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URANS, and LES models with the experimental results for Case MUR129.

5.2. Flow Field in a High Pressure Turbine Vane Passage

Figures 6a and 7a show the flow fields for the steady RANS and time-averaged DDES results.
Both results show the shock wave and the wake. However, the RANS result misses the pressure
waves emitted from the trailing edge while the time-averaged DDES result accurately captures these
features. The wake predicted by the DDES model in Figure 7a is wider than that predicted by the
RANS model in Figure 6a. The URANS result in Figure 6b captures the shock wave, the wake and the
pressure waves near the trailing edge. However, the shock wave and pressure waves predicted by
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the URANS model are vague, and the wake lacks the details needed to study the wake development
and its interactions with the shock wave and pressure waves. The DDES method accurately predicts
the flow details inside the turbine vane passage, as shown in Figure 7b: (1) the wake vortex, which
acts like a von Karman vortex, sheds periodically from the trailing edge. The wake vortex shedding
induces (2) pressure waves that propagate to both sides of the vane. One branch of the pressure waves
(3) reflects after hitting the suction side of the neighboring vane while the other branch (4) interacts
with the wake. Meanwhile, the shock wave (5) in the passage (6) interacts with the wake. Both the
shock wave and the pressure waves strongly dissipate the wake flow. The detailed flow structures are
resolved in high quality comparable to that from the wall-resolved LES [36].

(a) (b)

Figure 6. Density gradient contours of three-dimensional (3D) URANS results for Case MUR235.
(a) Steady RANS result; (b) Instantaneous result of URANS.

(a) (b)

Figure 7. Density gradient contours of 3D DDES results for Case MUR235. (a) Time-averaged result of
DDES; (b) Instantaneous result of DDES.

The DDES results predict the wake vortex behavior accurately. The wake vortex pair consists
of two vortices (labelled “a” and “b”, a denotes pressure side vortex, b denotes suction side vortex)
with different sizes as shown in Figure 8. The stream-wise distance between a pressure side vortex
and the following suction side vortex, l1, is smaller than the stream-wise distance between the latter
and the next downstream pressure-side vortex, l2. This phenomenon is observed in the experimental
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Schlieren [37] and smoke visualizations [38]. The numerical Schlieren based on DDES, as Figure 7b,
predicts the length characteristics of the wake vortex accurately while the RANS and URANS based
numerical Schlierens fail to model the wake vortex behavior. It is reasonable to believe that the loss
analysis based on DDES is more accurate than that based on RANS and URANS due to the better
performance of DDES in modeling the wake vortex.

Figure 8. The length characteristics of the wake vortex (iso-surfaces of the Q–criterion and Mach
number contour).

5.3. Loss Analysis

5.3.1. Viscous Losses and Thermal Losses

Figure 9a shows the entropy generation rate caused by viscous dissipation and Figure 9b the
entropy generation rate caused by irreversible heat transfer. The thermal loss is much less than the
viscous loss. Both thermal and viscous losses with high values not only show up near the vane surface,
but also occur with pressure waves, shock wave and wake vortices that exhibit especially high losses.

The suction side of the vane has a thicker high Ṡvis layer than the pressure side, while the high
Ṡtherm layers over the two sides share a similar thickness. The velocity profiles over the suction side and
pressure side contributes to this difference. As shown in Figure 10, the suction side has a much thicker
boundary layer than the pressure side. The velocity gradient give rises to viscous losses. The thickness
of the temperature boundary layers over the pressure and suction sides are very close to each other.
The high Ṡtherm layer develops very smoothly on the pressure side; however, it has much different
behavior in the rear of the suction side.

For a turbine cascade without an end-wall, profile losses, to which wake loss contributes the
most, account for the major part of losses. The shedding of the vortex introduces highly turbulent
flow. The dissipation of turbulent kinematic energy and the irreversible heat transfer give rise to
entropy generation. In Figure 9, there is a large area near the trailing edge with high Ṡvisc and Ṡtherm,
which are, in fact, much higher than that of other areas over the vane surface, but can not be clarified
in the color legend used. The shedding vortex leaves the trailing edge and causes losses as it goes
downstream. The contours in Figure 9 also indicate that the vortex shedding from the pressure side
has larger dissipation than that shedding from the suction side. This corresponds to the experimental
findings of a stronger pressure side vortex shedding [37,38].
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(a) (b)

Figure 9. Viscous losses and thermal losses in HPT vane LS89. (a) Viscous entropy generation rate Ṡvisc

contour; (b) Thermal entropy generation rate Ṡtherm contour.

(a) (b)

Figure 10. Velocity and temperature profiles over the vane pressure and suction sides at 2rTE upstream
of TE. (a) Velocity profiles over pressure and suction sides; (b) Temperature profiles over pressure and
suction sides.

5.3.2. Losses Due to Steady and Unsteady Effects

Figure 11a shows the contour of total entropy generation rate, Ṡgen, of an instantaneous unsteady
DDES result. As discussed in Section 3.5.2, Ṡgen can be divided into Ṡgen and Ṡgen′ from steady
and unsteady effects, respectively. Figure 11b shows the contour of Ṡgen. It is obtained from the
time-mean flow field and delineates losses due to steady effects. The steady effects mainly include the
time-mean flow strain and thermal irreversibility in the boundary layer, wake and shock. According to
Equation (22), losses due to unsteady effects, Ṡgen′ , are obtained by subtracting Ṡgen from Ṡgen. Ṡgen′ is
shown in Figure 11c, and it is clear that losses due to unsteady effects accounts for the major part of
the total entropy generation rate. The unsteady effects are weak near the leading edge and become
stronger as flow goes downstream. This is because the main unsteady effects come from the vortex
shedding the trailing edge, and the unsteadiness decreases as the unsteadiness propagates upstream
and downstream.
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(a) (b)

(c)

Figure 11. Comparison of losses due to steady and unsteady effects. (a) Losses of an instantaneous
field, Ṡgen; (b) Losses due to steady effects, Ṡgen; (c) Losses due to unsteady effects, Ṡgen′ .

To evaluate the unsteady effects through the vane more clearly, quantitative analysis of pitch-wise
mass-flow averaged loss is carried out. As shown in Figure 12, any flow variable f can be mass-flow
averaged over the pitch-wise direction, given by:

fm f a =

∫
f (y) ρ (y) u (y)dy∫

ρ (y) u (y)dy
. (27)

Figure 13 shows the distribution of pitch-wise mass flow averaged losses along the axial position.
The axial positions X/Cax = 0 and X/Cax = 1 are the locations of leading edge and trailing edge,
respectively. Generally, losses due to unsteady effects, Ṡgen,m f a, are larger than losses due to steady
effects, Ṡgen,m f a. Before the leading edge, both Ṡgen,m f a and Ṡgen,m f a are nearly zero, since the only
loss resource in the incoming flow is the flow turbulence. At the leading edge, both Ṡgen,m f a and
Ṡgen,m f a increase significantly since the incoming flow impinges on the leading edge and enters the
passage. From X/Cax = 0 to X/Cax = 0.3, Ṡgen,m f a and Ṡgen,m f a are very close to each other, which
indicates that, in this region, the unsteady effects of the flow are not significant. After the position
X/Cax = 0.3, considerable deviation between Ṡgen,m f a and Ṡgen,m f a starts to occur and increases very
fast. This implies that the unsteady effects in this region are strong and grow very fast. At the trailing
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edge, both Ṡgen,m f a and Ṡgen,m f a increase; however, Ṡgen,m f a increases much faster than Ṡgen,m f a does.
The increase of Ṡgen,m f a is due to the wake, while the increase of Ṡgen,m f a is due to both the wake
and vortex shedding. After the trailing edge, Ṡgen,m f a decreases very fast since it only considers the
wake after the trailing edge and misses losses due to unsteady effects of the vortex shedding. Ṡgen,m f a
decreases as the vortex dissipates, and the curve becomes very smooth after position X/Cax = 2.3.

In summary, it is found that the unsteady effects give rise to considerable losses. The vortex
shedding is the main origin of the unsteadiness. The unsteadiness propagates upstream by the pressure
waves and downstream by the vortex. Traditional design system heavily relies on RANS methods,
which does not consider the unsteady effects. Improving the efficiency further needs to take the
unsteady effects into consideration.

Figure 12. Schematic description of mass flow averaged variables over the pitch-wise direction.

Figure 13. Distribution of mass flow averaged losses, Ṡgen,m f a and Ṡgen,m f a, along the axial position.
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5.3.3. Loss Analysis in the Wake Area

The wake vortex shedding introduces strong unsteadiness to the flow and causes considerable
losses. To see the evolution of the wake vortex and its interactions with the shock wave and pressure
waves, quantitative analysis of losses in the wake area is carried out. The wake area considered in this
part is the region enclosed by the rectangle, as shown in Figure 14, and the entropy generation rate is
mass-averaged over the direction perpendicular to the main flow direction, η. Figures 14 and 15 show
quantitatively the mass-averaged entropy generation rate and Be in the wake area. The instantaneous
result is shown in Figure 14. In general, Ṡvisc and Ṡtherm have positive correlation. Both Ṡvisc and
Ṡtherm have peaks corresponding to the positions of wake vortices and decrease with the increase of
the stream-wise distance from the trailing edge, d/Cax, at slightly different speeds. The correlation
between Ṡvisc and Ṡtherm comes from the fact that the viscous and thermal irreversibilities in the wake
area share the same origin—the wake vortex. On the one hand, the vortex not only introduces a strong
disturbance to the velocity field, as can be seen in Figure 8, but also introduces disturbance to the
temperature field, as indicated by the low temperature spots in Figure 16. Thus, the area with high
temperature changes corresponds to the area with high velocity changes since they both come from
the effects of the vortex. On the other hand, the velocity gradient enhances the thermal conductivity, k.
This also contributes to the correlation between Ṡvisc and Ṡtherm in the wake area.

The Be is about the magnitude of 10−2, which indicates that the viscous effects are the main cause
of the total entropy generation. The peaks increase when the wake vortex starts to interact with the
pressure waves and decrease dramatically after the interaction, while not changing significantly in the
process of its interaction with the shock wave. This implies that the pressure waves have a stronger
effect than the shock wave on the wake and help dissipate the wake vortex in this case. The peaks also
increase at first when the wake vortex interacts with pressure waves and decrease dramatically after
the interaction. For the time-average result in Figure 15, the Be is quite comparable to the instantaneous
result in terms of magnitude and changing trend. The Ṡvisc and Ṡtherm decrease with the increase of
d/Cax. However, the magnitude of Ṡvisc and Ṡtherm is almost one order lower than the Ṡvisc and Ṡtherm
of the instantaneous result. The deviation indicates that the turbulent fluctuations contribute most of
the dissipation in the wake area, as has been discussed in the last subsection.

Figure 14. Instantaneous mass-averaged entropy generation rate in the wake area.
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Figure 15. Time-averaged mass-averaged entropy generation rate in the wake area.

Figure 16. Temperature field of an instantaneous result.

6. Conclusions

The flow field through a high-pressure turbine vane is simulated with URANS and DDES
approaches. DDES produces more accurate results and details than URANS does. With the capability
of modeling the wake vortex and describing flow details by DDES, further investigation on the wake
vortex and local loss analysis in high pressure turbines is achieved. The conclusions of this study can
be listed briefly as follows:

• The accuracy of flow modeling and details of flow structures are the cornerstone of accurate local
loss analysis. URANS fails to accurately capture the length characteristics of the wake vortex due
to its incapability in modeling such flow. DDES can accurately produce the flow structures with
abundant details that are comparable to LES results. The DDES method is validated by several
previous experimental findings. This establishes a solid foundation of accurate losses prediction.
The local loss analysis based on DDES is more reliable than that based on URANS for complex
flows inside the high-pressure turbine vane.
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• In the high-pressure turbine vane, the viscous irreversibility is the main contributor to the total
losses, while the heat transfer irreversibility accounts for less than 10% for both instantaneous and
time-averaged field. The boundary layer, wake vortex, shock wave and pressure waves give rise
to high losses. The suction side of the vane has a thicker high Ṡvis layer than the pressure side
because the suction side has a thicker momentum boundary than the pressure side, while the high
Ṡtherm layers over the two sides have comparable thickness resulting from similar temperature
boundary layer thicknesses. The wake vortex is the main origin of both unsteadiness and losses.

• Losses due to unsteady effects are much higher than that due to steady effects. The unsteadiness
propagates upstream by the pressure waves and downstream by the motion of the vortex.
The unsteadiness in the flow passage is with different strengths at different positions.
The unsteadiness before the axial position X/Cax = 0.3 is not significant and becomes very
strong in the rear part of the vane and downstream of the trailing edge. This points out that the
unsteady effects are very important and should not be omitted in the design system.

• The entropy generation rate analysis in the wake area also finds that the interaction between the
wake vortex and pressure waves is stronger than the interaction between the wake vortex and
shock wave in terms of loss generation. In the wake region, the thermal irreversibility and the
viscous reversibility decrease at slightly different speeds. In general, thermal and viscous losses
in the wake region have positive correlation, and this is good for losses reduction since they can
be reduced simultaneously.

In future work, unsteady optimization of the turbine profile using the DDES-based entropy
generation rate will be attempted. Losses due to unsteady effects and turbulence in the high pressure
turbine will be taken into account.
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Nomenclature

Be Bejan number
C chord, stagnation pressure loss coefficient
f any flow variable
h enthalpy
k thermal conductivity
Ma Mach number
P pressure
PSD power spectral density
R gas constant
r radius, mixing length
Re Reynolds number
S mean strain, curvilinear abscissa
s entropy
T temperature
τ0 characteristic convective time
u axial velocity
v tangential velocity
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w span-wise velocity

Greek Letters

τ viscous stress tensor
κ von Karman constant
µ viscosity
ν kinematic viscosity
ρ density
Ω rotation rate, vorticity
ζ loss coefficient

Subscripts

is isentropic
ax axial
inl inlet
LE leading edge
m f a mass flow averaged variables
out outlet
TE trailing edge
re f reference condition
t turbulent
vortex vortex shedding
wall wall

Superscripts

∗ total
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