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Abstract: This research focuses on entropy generation rate per unit volume in magneto-hydrodynamic
(MHD) mixed convection boundary layer flow of a viscous fluid over an inclined stretching sheet.
Analysis has been performed in the presence of viscous dissipation and non-isothermal boundary
conditions. The governing boundary layer equations are transformed into ordinary differential
equations by an appropriate similarity transformation. The transformed coupled nonlinear ordinary
differential equations are then solved numerically by a shooting technique along with the Runge-Kutta
method. Expressions for entropy generation (Ns) and Bejan number (Be) in the form of dimensionless
variables are also obtained. Impact of various physical parameters on the quantities of interest is seen.
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1. Introduction

Hydromagnetic (MHD) boundary layer flow over a stretching surface has vital importance
because of its ever-increasing usage in industrial applications such as the production of paper,
glassware, cable coatings, fabrication of adhesive tapes, artificial fibers, metal spinning, roofing
shingles, fine-fiber mats, and metallic plates to mention a few among others. In all such technological
processes, the kinematics of stretching and heat transfer have a significant impact in the improvement
of final product quality through control of the rate of cooling. Boundary layer flow over a moving
continuous flat surface was studied for the first time by Sakiadis [1]. Crane [2] obtained the closed form
similarity solution of the boundary layer flow over a linear stretching sheet. After the work of Crane [2],
several researchers revisited this problem addressing different aspects. Here we mention some very
recent studies [3–15] for the convenience of readers. All these studies have been restricted to the
situations in which flow is induced by horizontally/vertically stretching sheet. Haung et al. [16]
investigated the heat transfer analysis in the boundary layer flow of a viscous fluid caused by
an inclined stretching sheet. Qasim et al. [17] studied the effects of thermal radiation on mixed
convection flow of viscoelastic fluid along an inclined sheet. Sravanthi [18] studied the MHD slip
flow over an exponentially stretching inclined sheet by taking into account the Soret-Dufour effects.
MHD boundary layer flow over an inclined stretching sheet under the effects of mixed convection,
heat generation/absorption and blowing/suction was reported by Eldahad and Aziz [19].
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In all the above investigations, the objective was to understand the flow behavior, i.e., to find
the velocity profile and temperature distribution (first law analysis) in the boundary layer region.
Moreover, to understand the energy losses during the boundary layer flow, it makes sense to perform
a second law analysis. The losses of energy in the system during the process are proportional to the
entropy generation. Entropy production is the measure of irreversibility in the heat transfer problems.
The study of entropy generation within the system is important as it helps to trace the sources which
destroy available energy. Therefore, by knowing these factors or sources one can minimize the
entropy in order to retain the quality of energy, which is commonly referred to as entropy generation
minimization (EMG). At present the research topic of entropy generation minimization has acquired
special status amongst scientists worldwide who are re-examining all energy consuming, converting
and producing systems and developing new techniques in order to remove all sources that destroy the
available work. Bejan [20–22] calculated for the first time the volumetric entropy generation rate in a
fluid flow process. After the seminal work of Bejan, many researchers have performed thermodynamic
analysis of flows and heat transfers in order to minimize entropy production [23–30].

Despite the many studies on the second law analysis of boundary layer flows, the entropy
generation analysis of a boundary layer flow over an inclined impermeable stretching sheet under the
effects of magnetic field and viscous dissipation has not been reported in the literature. Motivated
by the abovementioned facts, the present research has been undertaken to perform an irreversibility
analysis of MHD mixed convection flow over an inclined stretching sheet.

2. Mathematical Formulation of the Problem

Consider the steady two dimensional boundary layer flow induced by the inclined stretching
sheet having the linear stretching velocity uw(x) = cx. A magnetic field Bo is applied normally to the
stretching sheet. Figure 1 shows the physical model and coordinates system. For boundary layer flow
the continuity, momentum and energy equations take the following forms:

∂u
∂x

+
∂v
∂y

= 0, (1)
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(
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In the above equations, u and v represent velocity components in the directions of the x and y axes,
T∞ shows the free stream temperature, g denotes gravitational acceleration, α* is the thermal diffusivity,
ρ is the density of the fluid, v is the kinematic viscosity of the fluid, Bo depicts the imposed magnetic
field, Cp represents the specific heat of the fluid at constant pressure, α is the inclination of the stretching
sheet and β represents the thermal coefficient. Here we consider the thermal expansion coefficient
β = mx–1 [31,32] and the surface temperature of the stretching sheet of the form Tw(x) = T∞ + ax2 [33–35]
in order to have a self-similarity equation.

The relevant boundary conditions are:

u = uw(x) = cx, v = 0, T = Tw(x) = T∞ + ax2 at y = 0 (4)

u→ 0, T → 0 as y→ ∞ (5)

in which Tw and uw respectively represent the temperature and velocity of the stretching boundary.
We look for a solution through the following transformation:

η =

√
c
ν

y, u = cx f ′, v = −
√

cν f , θ =
T − T∞

Tw − T∞
(6)
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Incompressibility condition (1) is now automatically satisfied, whereas the other equations lead
to the following expressions:

f ′′′ + f f ′′ − f ′2 + λθCosα−M2 f ′ = 0 (7)

1
Pr

θ′′ + f θ′ − 2 f ′θ + Ec f ′′2 = 0. (8)

The dimensionless numbers appearing in Equations (7) and (8) are:

M =
σB2

o
ρc

, (magnetic parameter)

λ =
Gr
Re2

x
=

gβ(Tw − T∞)x
u2

w
=

mg(Tw − T∞)

u2
w

=
mga
c2 , (thermal convective parameter)

Pr =
ν

α∗
, (Prandtl number)

Ec =
u2

w
Cp (Tw − T∞)

=
c2

Cpa
, (Eckert number)

While the boundary conditions, Equations (4) and (5) take the following form:

f (0) = 0, f ′(0) = 1, θ(0) = 1 (9)

f ′(η)→ 0, θ(η)→ 0 as η → ∞ (10)

The skin friction coefficient Cf and the Nusselt number Nux which are defined as:

C f =
2τw

ρu2
w

, Nux =
xqw

k(Tw − T∞)
(11)

where τw is the shear stress and qw is the heat flux and k is the thermal conductivity. Using variables (6),
we obtain:

Re1/2
x C f = f ′′ (0), Re−1/2

x Nux = −θ
′
(0) (12)
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3. Irreversibility Analysis

In the presence of magnetic field, the entropy generation rate per unit volume is given by:

.
S
′′′
gen =

k
T2 (∇T)2 +

µ

T
Φ +

1
T
[(J −QV)× (E + V × B)] (13)

In the above equation Φ represents the viscous dissipation function, J is the current density and
∇ ≡ î ∂

dx + ĵ ∂
dy + k̂ ∂

dz is the Del operator. In the present article it is supposed that the magnitude of QV
is negligible compared to the electric current density J and the electric force E has no significant effects
as compared to the magnetic force V × B. By taking these approximations and the Prandtl boundary
layer approximation as well Equation (14) reduces to:

.
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(
∂T
∂y

)2
+

µ
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∂u
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+

1
T

(
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0u2
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It is clearly seen from the above equation that there are three sources of entropy generation.
The first source is the heat transfer which is due the presence of a temperature gradient in the
problem, the second source is the viscous dissipation, which is due to the fluid friction, and the last
source is the magnetic field which cause Joule dissipation irreversibility. The entropy generation
number is the dimensionless form of volumetric entropy generation rate, which represent the
ratio between volumetric entropy generation rate (

.
S
′′′
gen) and characteristic entropy generation (

.
S
′′′
o ).

Using Equation (6) the entropy generation given in Equation (15) reduces to:
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.
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where
.
S
′′′
o = kc

v and Ω = T∞
Tw−T∞

represent the characteristic entropy generation and dimensionless
temperature parameter, respectively.

In many engineering problems engineers need to measure the relative importance of the sources
of entropy generation, and for this important measurement the Bejan number is defined as:

Be =
k

T2

(
∂T
∂y

)2

µ
T

(
∂u
∂y

)2
+ 1

T
(
σB2

0u2
) =

Conductive irreversibity
Viscous irreversibility + Magnetic irreversibility

By using similarity variables Be takes the following form:

Be =
θ′2

(θ + Ω)
(

M Ec Pr f ′2 + Ec Pr f ′′2
)

4. Results and Discussion

In this section our concern is to analyse the effects of important physical parameters on the
quantities of interest. Therefore Figures 2–5 have been plotted.

4.1. Effects of the Magnetic Field Parameter

Figure 2a displays the impact of the magnetic field parameter M on the velocity profile. It is seen
that the velocity decreases by increasing M. This is happening because the applied transverse magnetic
field generates a Lorentz force, which decelerates the fluid velocity. Figure 2b displays the effect of
M on the fluid temperature. It is seen that temperature rises with rising values of M. Physically, the
presence of M sets up a retarding force (Lorentz force), which boosts the fluid friction and this fluid
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friction is responsible for the rise of temperature. Figure 2c presents the variation of entropy generation
number for changing values of M. It is observed that Ns is increasing as a function of M which is
due to the resistive nature of the magnetic force, so we can achieve the main goal of the second law
of thermodynamics that is the minimization of entropy generation by reducing the magnetic field.
Figure 2d demonstrates the variation of Bejan number Be with an increase in M, where it is observed
that Be decreases as M increases. The graph depicts that with an increasing value of M, viscosity
and magnetic irreversibility dominate the heat transfer irreversibility at the surface of the stretching
sheet. The magnetic and viscosity irreversibility completely rule the thermal irreversibility for large
values of M (M > 2) at the surface. However, far away from the stretching sheet the dominancy effects
are reversed.

Entropy 2016, 18, 362 5 of 12 

 

( )

2

2

2
2 2
0

 
  1

k T
T y Conductive irreversibity

Be
Viscous irreversibility Magnetic irreversibilityu

B u
T y T
μ σ

 ∂
 ∂ = =

+ ∂ + ∂ 

 

By using similarity variables Be takes the following form: 

( )
2

2 2( )   Pr   Pr  
Be

M Ec f Ec f

θ
θ

′
=

′ ′′+ Ω +
 

4. Results and Discussion 

In this section our concern is to analyse the effects of important physical parameters on the 
quantities of interest. Therefore Figures 2–5 have been plotted. 

4.1. Effects of the Magnetic Field Parameter 

Figure 2a displays the impact of the magnetic field parameter M on the velocity profile. It is seen 
that the velocity decreases by increasing M. This is happening because the applied transverse 
magnetic field generates a Lorentz force, which decelerates the fluid velocity. Figure 2b displays the 
effect of M on the fluid temperature. It is seen that temperature rises with rising values of M. 
Physically, the presence of M sets up a retarding force (Lorentz force), which boosts the fluid friction 
and this fluid friction is responsible for the rise of temperature. Figure 2c presents the variation of 
entropy generation number for changing values of M. It is observed that Ns is increasing as a function 
of M which is due to the resistive nature of the magnetic force, so we can achieve the main goal of the 
second law of thermodynamics that is the minimization of entropy generation by reducing the 
magnetic field. Figure 2d demonstrates the variation of Bejan number Be with an increase in M, where 
it is observed that Be decreases as M increases. The graph depicts that with an increasing value of M, 
viscosity and magnetic irreversibility dominate the heat transfer irreversibility at the surface of the 
stretching sheet. The magnetic and viscosity irreversibility completely rule the thermal irreversibility 
for large values of M (M > 2) at the surface. However, far away from the stretching sheet the 
dominancy effects are reversed. 

(a) (b) 
Entropy 2016, 18, 362 6 of 12 

 

(c) (d) 

Figure 2. (a) Variation of f’(η) with M; (b) variation of θ(η) with M; (c) variation of Ns with M; 
(d)variation of Be with M.  

4.2. Effects of the Prandtl Number 

The impact of Prandtl number Pr on the fluid temperature is depicted in Figure 3a. The graph 
depicts that the temperature decreases with large values of the Pr number. Physically, a fluid with 
high Pr has low thermal diffusivity, which in turn reduces the temperature of the fluid. Figure 3b 
reveals that the dimensionless entropy generation Ns increases with the increasing value of Pr. This 
happens because with an increase in Pr increases the temperature gradients in the boundary layer, 
which in turn increases the Ns. Figure 3c demonstrates the influence of Pr on the Bejan number. The 
plot shows that for a fixed value of η the Bejan number decreases when Pr increases. It is also clear 
that near the surface of the stretching sheet, Be is close to zero, which means that the magnetic field 
intensity and fluid friction both play more important roles in the total entropy generation. Further, it 
is observed that far away from the stretching surface, the heat transfer contribution in the total 
entropy plays a substantial part. 

(a) (b) 

Figure 2. (a) Variation of f’(η) with M; (b) variation of θ(η) with M; (c) variation of Ns with M;
(d) variation of Be with M.

4.2. Effects of the Prandtl Number

The impact of Prandtl number Pr on the fluid temperature is depicted in Figure 3a. The graph
depicts that the temperature decreases with large values of the Pr number. Physically, a fluid with high
Pr has low thermal diffusivity, which in turn reduces the temperature of the fluid. Figure 3b reveals
that the dimensionless entropy generation Ns increases with the increasing value of Pr. This happens
because with an increase in Pr increases the temperature gradients in the boundary layer, which in
turn increases the Ns. Figure 3c demonstrates the influence of Pr on the Bejan number. The plot shows
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that for a fixed value of η the Bejan number decreases when Pr increases. It is also clear that near the
surface of the stretching sheet, Be is close to zero, which means that the magnetic field intensity and
fluid friction both play more important roles in the total entropy generation. Further, it is observed
that far away from the stretching surface, the heat transfer contribution in the total entropy plays a
substantial part.
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4.3. Effects of the Mixed Convective Parameter

Figure 4a illustrates the effect of the mixed convection parameter λ on velocity. It is anticipated
that velocity increases by increasing the mixed convection parameter λ. Physically with an increase
in λ the buoyancy force increases, which results in an enhancement of the velocity profile. Figure 4b
shows the effect of the buoyancy parameter on the temperature profile. It is seen that the thermal
convective parameter decreases the temperature of the fluid. Figure 4c represents the variation of
entropy generation number Ns versus different values of λ. Ns decreases near the boundary when λ

increases and goes to zero asymptotically as we move away from the boundary. Figure 4d displays
the effect of buoyancy parameter on the Bejan number. Be increases with the increasing value of λ.
Also, the contribution of fluid friction and magnetic field in the entropy generation dominate the heat
transfer effect at the surface. Further, it is perceived that far away from the boundary the effective
source of the production of entropy is the conductive irreversibility.
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4.4. Effects of Eckert Number

Figure 5a shows that Ns increases with the increasing value of Ec, so by decreasing the Eckert
number Ec one can achieve the main objective of the second law of thermodynamics, the minimization
of entropy production rate per unit volume. The effect of increasing the Ec on the entropy production
is prominent near the surface of the stretching sheet, while it has no significant effect in the main flow
region. The effect of Ec on Be is plotted in Figure 5b. It is observed that an increase in Ec decreases
the Bejan number Be. On the surface of the stretching sheet the effects of magnetic and viscous
irreversibility dominate the conductive irreversibility, whereas far away from the stretching sheet the
contribution of heat transfer in the generation of entropy is prominent.

4.5. Effects of the Dimensionless Temperature Parameter

The variation of Ns with the increasing value of the dimensionless temperature parameter is
portrayed in Figure 6a. This figure shows that Ns increases with the increasing value of Ω. It is
verified that Ns asymptotically goes to zero as we move away from the boundary. Figure 6b shows
the variation of Be with different values of Ω. It is clearly seen that near the stretching sheet the fluid
friction and magnetic field irreversibility dominate. It is also observed that with increasing value of Ω
the Be decreases and for small values of Ω the effect due to heat transfer dominates far away from the
stretching sheet.
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Table 1. Numerical values for skin friction coefficient and local Nusselt number. 

 ࢛࢞ࡺ૚/૛ି࢞܍܀ ࢌ࡯૚/૛࢞܍܀− 
λ Pr = 0.7; Ec = 1.0; α = π/4; M = 1

0.0  
0.5  
1.0  
1.5 

1.4142  
1.2427  
1.0886  
0.9439 

0.5546  
0.6976  
0.7931  
0.8974 

M Pr = 0.7; Ec = 1.0; α = π/4; λ = 0.5 

0.0  
0.5  
1.0  
1.5 

0.8155  
0.9359  
1.2427  
1.6479 

0.9293  
0.8659  
0.6976  
0.4685 

Pr M = 1.0; λ = 0.2; α = π/4; Ec = 1.0 

Figure 6. (a) Variation of Ns with Ω; (b) Variation of Be with Ω.

5. Conclusions

The main conclusions of the present study are:

(1) It is observed that the velocity magnetic parameter M has a decreasing effect on the velocity while
the thermal convective parameter λ has an increasing effect on it.

(2) The thickness of the thermal boundary layer increases as the values of magnetic parameter and
Eckert number increase, while a decreasing effect has been observed with the variation of thermal
convective parameter and Prandtl number.

(3) Increasing in magnetic parameter and Eckert number enhance the entropy generation while
entropy generation decreases with the increasing values of the thermal convective parameter and
dimensionless temperature function.

(4) The Bejan number decreases by increasing the magnetic parameter, thermal convective parameter
and it is decreased by increasing the Prandtl number and Eckert number.

(5) The values of skin friction coefficient and local Nusselt number increases with the increase of Pr.
There is a decrease in local Nusselt number for large values of M and Ec (see Table 1).
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Table 1. Numerical values for skin friction coefficient and local Nusselt number.

−Re1/2
x Cf Re−1/2

x Nux

λ Pr = 0.7; Ec = 1.0; α = π/4; M = 1

0.0
0.5
1.0
1.5

1.4142
1.2427
1.0886
0.9439

0.5546
0.6976
0.7931
0.8974

M Pr = 0.7; Ec = 1.0; α = π/4; λ = 0.5

0.0
0.5
1.0
1.5

0.8155
0.9359
1.2427
1.6479

0.9293
0.8659
0.6976
0.4685

Pr M = 1.0; λ = 0.2; α = π/4; Ec = 1.0

0.3
0.7
1.2
1.5

1.3284
1.3424
1.3516
1.3552

0.3897
0.6219
0.8106
0.8962

Ec M = 1.0; λ = 0.2; α = π/4; Pr = 1.2

0.0
0.3
0.6
0.9

1.3603
1.3576
1.3551
1.3525

1.3873
1.2125
1.0393
0.8675
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Nomenclature

a positive constant
Bo applied constant magnetic field
Be Bejan number
c stretching velocity rate
Cp specific heat at constant pressure
Ec Eckert number
g acceleration due to gravity
Grx local Grashof number
J electric current density
k thermal conductivity of the fluid
M magnetic field parameter
Ns entropy generation number
Pr Prandtl number
Rex local Reynolds number
Ṡgen''' volumetric entropy generation rate
Ṡo''' characteristic volumetric entropy generation rate
T temperature of the fluid
Tw(x) wall temperature
T∞ ambient temperature



Entropy 2017, 19, 10 10 of 11

u velocity component in x direction
uw(x) velocity of the stretching surface
v velocity component in y direction
x, y Cartessian coordinates along the surface and normal to it respectively

Greeks Symbols

α inclination of the stretching sheet with y-axis
α* thermal diffusitivity
β coefficient of thermal expansion
η similarity variable
θ dimensionless temperature
µ dynamic viscosity
ν kinematic viscosity
ρ density of the fluid
σ electric conductivity
λ mixed convection parameter/buoyancy parameter
Ω dimensionless temperature parameter
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