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Abstract:



We derive exactly the differential entropy of the joint distribution of eigenvalues of Wishart matrices. Based on this result, we calculate the differential entropy of the joint distribution of eigenvalues of random mixed quantum states, which is induced by taking the partial trace over the environment of Haar-distributed bipartite pure states. Then, we investigate the differential entropy of the joint distribution of diagonal entries of random mixed quantum states. Finally, we investigate the relative entropy between these two kinds of distributions.
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1. Introduction


The notion of entropy is ubiquitous in diverse fields, such as physics, mathematics and information theory. It was given a number of meanings in various contexts. In fact, the entropy functions have their roots in statistical mechanics [1]; they originated in the work of Boltzmann, who studied the relation between entropy and probability in physical systems in the 1870s. In thermodynamics, entropy is commonly understood as a measure of disorder [2]. According to the second law of thermodynamics, the entropy of an isolated system never decreases; such a system eventually attains its maximum entropy. In information theory, Shannon entropy:


[image: there is no content]








of a discrete probability distribution was introduced by Shannon in his seminal papers in 1948 [3]. Shannon entropy provides an absolute limit on the best possible average length of lossless encoding or compression of an information source [4].



Differential entropy (also referred to as continuous entropy) is a measure of the average surprisal of a continuous random variable. The differential entropy of a related continuous probability density function [image: there is no content] is defined by:


[image: there is no content]











This seems to be the natural extension of discrete Shannon entropy. However, the differential entropy is a very different quantity, since it can be positive or negative.



For a given density matrix ρ (i.e., nonnegative matrix with unit trace), its von Neumann entropy is defined as:


S(ρ):=−Trρlnρ,








where [image: there is no content] is in the sense of the functional calculus of ρ. In fact, [image: there is no content], where [image: there is no content] stands for the eigenvalues of ρ.



There also exist some generalized entropies, such as the classical and quantum Rényi entropy, the Tsallis entropy and unified [image: there is no content]-relative entropy [5]. Additionally, they are generalizations of Shannon entropy and von Neumann entropy. They have many applications in statistical physics and information theory.



Recently, a handbook of differential entropy has been published [6]. This book is intended as a practical introduction to the topic of differential entropy in information theory. Although this book gives many computations about the differential entropies of various continuous probability densities, the computation of the differential entropy about the joint eigenvalue distribution of Wishart matrices is still missing. More recently, the differential entropy is used as a tool to study uncertainty relations based on entropy power [7]. In view of this, we will derive exactly the differential entropy of the joint distribution of eigenvalues of Wishart matrices. Based on this result, we calculate the differential entropy of the joint distribution of eigenvalues of random mixed quantum states induced by partial tracing over the environment of uniformly-distributed bipartite pure states. We derive the joint distribution of diagonal entries of random mixed quantum states induced in such a way. Moreover, we investigate the differential entropy of the joint distribution of diagonal entries of random mixed quantum states and obtain that it is not less than the differential entropy of the joint distribution of eigenvalues of random mixed quantum states in higher dimension. This fact could be put in relation with the so-called Schur’s theorem [8], which states that the vector consisting of diagonal entries of a matrix is majorized by the vector consisting of its eigenvalues, and hence, we get that the diagonal entropy of a quantum state ρ is no less than its von Neumann entropy. This is the similarity between von Neumann entropy and differential entropy, i.e., [image: there is no content]. Note that the entropy difference [image: there is no content] is a figure of merit for quantifying quantum coherence in the literature very recently [9].



This paper is organized as follows. In Section 2, we introduce a related random matrix model, i.e., Wishart random matrix ensemble, that of the induced random quantum states. This model is of central importance in quantum information theory. We present the joint distribution of eigenvalues of the Wishart random matrix ensemble. Section 3 deals with the calculation of the differential entropies of the joint distribution of eigenvalues of the Wishart ensemble. Then, the differential entropy of the joint distributions of eigenvalues and the diagonals of random quantum states are calculated, respectively, in Section 4 and Section 5. Finally, in Section 6, we investigate the relative entropy between these two kinds of distributions. We conclude the paper with Section 7. Additionally, some necessary materials are provided in Appendix A and Appendix B.




2. Wishart Matrices


We use the notation [image: there is no content] to indicate a Gaussian random real variable x with mean μ and variance [image: there is no content]. Let Z denote an [image: there is no content][image: there is no content] complex random matrix [10,11]. These elements are independent complex random variables subject to [image: there is no content] with Gaussian densities:


[image: there is no content]








where [image: there is no content] are independent identically distributed (i.i.d.) Gaussian random real variables with mean zero and variance [image: there is no content]. Such a random matrix Z is called a Ginibre random matrix.



Definition 1

(Wishart matrix [12]). With [image: there is no content] random matrices Z specified as above, define complex Wishart ensembles as consisting of matrices [image: there is no content]. The matrices [image: there is no content] are referred to as (uncorrelated) Wishart matrices. All such Wishart matrices form the so-called Wishart ensemble.





2.1. Joint Probability Density of the Eigenvalues of the Wishart Ensemble


Consider the elements of the matrices Z constituting the Wishart ensemble [image: there is no content] as complex zero-mean i.i.d. Gaussian variables with the variance [image: there is no content]. This case leads to the invariant class of ensembles referred to as Gaussian Unitary Ensembles (GUE). As chosen previously, [image: there is no content] for definiteness. The probability distribution followed by Z is:


Pr(Z)∝exp−12σ2TrZZ†,



(1)




where [image: there is no content] is the variance of each distinct real component of the matrix elements of Z. Indeed, let [image: there is no content] be a complex random matrix, where [image: there is no content] with [image: there is no content]. The probability distribution of Z is just the joint distribution of all matrix elements [image: there is no content] of Z. Thus:


Pr(Z)=∏i=1m∏j=1nPr(zij)=∏i=1m∏j=1nPrRe(zij),Im(zij)∝∏i=1m∏j=1nexp−12σ2Re(zij)2exp−12σ2Im(zij)2=∏i=1m∏j=1nexp−12σ2zij2=exp−12σ2∑i=1m∑j=1nzij2=exp−12σ2TrZZ†.











Let [image: there is no content], then [image: there is no content]. The respective joint probability density of eigenvalues ([image: there is no content]) of [image: there is no content] comes out as [13]:


[image: there is no content]



(2)







The normalization [image: there is no content] can be evaluated using Selberg’s integral [10] and turns out to be:


[image: there is no content]



(3)







Remarking that the density q is symmetric (i.e., [image: there is no content] for all permutations [image: there is no content], the symmetric group of [image: there is no content]), hence, we are dealing with integrals of the form:


[image: there is no content]



(4)







We shall perform the computations with any test function f, and we shall specialize the final result to the cases [image: there is no content] for any nonnegative integer k.



Proposition 1

([14]). Assume that [image: there is no content]. The following representation for [image: there is no content] holds for any suitable function f:


[image: there is no content]



(5)




where the function ϕ admits the following expression by means of generalized Laguerre polynomials:


[image: there is no content]











Here, the generalized Laguerre polynomials with parameter α [15] are defined by:


[image: there is no content]













Remark 1.

For example, for [image: there is no content], we have:


∫0∞μϕ(μ)dμ=Γ(m)Γ(n)∫0∞Lm−1(α+1)(μ)2−Lm−2(α+1)(μ)Lm(α+1)(μ)μα+1e−μ=Γ(m)Γ(n)∫0∞Lm−1(α+1)(μ)2μα+1e−μ=Γ(m)Γ(n)Γ(n+1)Γ(m)=n.



(6)







Because [image: there is no content] is also a probability density function, i.e., the distribution density of a single eigenvalue of the Wishart random matrix ensemble, we can still consider its differential entropy:


[image: there is no content]



(7)







However, exact calculation of this integral seems forbidden.






2.2. Joint Probability Density of the Eigenvalues of Random Density Matrices


For the mathematical treatment of a quantum system, one usually associates with it a Hilbert space whose vectors describe the states of that system. In our situation, we associate with A and B two complex Hilbert spaces [image: there is no content] and [image: there is no content] with respective dimensions m and n, which are assumed here to be such that [image: there is no content]. In these settings, the vectors of the spaces [image: there is no content] and [image: there is no content] describe the states of the systems A and B. Those of the tensorial product [image: there is no content] (of dimension [image: there is no content]) then describe the states of the combined system [image: there is no content].



It will be helpful throughout this paper to make use of a simple correspondence between the linear operator spaces [image: there is no content] and [image: there is no content], for given complex Euclidean spaces [image: there is no content] and [image: there is no content]. We define the mapping:


[image: there is no content]








to be the linear mapping that represents a change of bases from the standard basis of [image: there is no content] to the standard basis of [image: there is no content]. Specifically, in the Dirac notation, this mapping amounts to flipping a bra to a ket; we define:


[image: there is no content]








at this point, the mapping is determined for every [image: there is no content] by linearity [16]. For convenience, we denote [image: there is no content]. Clearly [image: there is no content] for [image: there is no content]. In this problem, we assume that [image: there is no content] and [image: there is no content].



If the bipartite pure state [image: there is no content] is randomized, it can be considered as a random vector [image: there is no content] with random coordinates [image: there is no content], [image: there is no content]; [image: there is no content], the probability distribution of which is the uniform distribution on the unit sphere [image: there is no content] of [image: there is no content]. That is, for any test function f:


[image: there is no content]








where [image: there is no content] denotes the unique, normalized, unitary invariant measure upon the pure state manifold of normalized state vectors [image: there is no content]. The most transparent realization of [image: there is no content] is offered by the following delta function prescription (in the sense of distribution) [17]:


[image: there is no content]








where [image: there is no content] stands for the volume element, defined by:


[image: there is no content]








for [image: there is no content] and [image: there is no content]. Besides, if we denote [image: there is no content], we see that the joint probability density function of [image: there is no content] is given by [18]:


[image: there is no content]











Consider the matrix elements [image: there is no content] as i.i.d. complex Gaussian variables with zero-mean, such that the fixed-trace condition [image: there is no content] is satisfied for [image: there is no content]. The random reduced density matrix [image: there is no content] associated with the random pure state [image: there is no content] is of the matrix form [image: there is no content], i.e., [image: there is no content] for [image: there is no content], where [image: there is no content] is a [image: there is no content] random rectangular matrix of the random coordinates [image: there is no content]. The corresponding random eigenvalues of [image: there is no content] are denoted by [image: there is no content]. The probability distribution for G is given by:


Pr(G)∝δ1−TrGG†.











Correspondingly, the joint probability density function of eigenvalues ([image: there is no content]) is obtained [19] as:


[image: there is no content]



(8)




where:


[image: there is no content]











The normalization constant in the above equation is:


[image: there is no content]



(9)




where [image: there is no content] is referred to (3) and [image: there is no content] is the Gammafunction defined for [image: there is no content].



In the following, we always let Γ(x),ψ(x) be the Gamma function and Digammafunction, respectively. It is well known that:


[image: there is no content]



(10)






[image: there is no content]



(11)




where [image: there is no content] and [image: there is no content] is Euler constant. We must note that [image: there is no content] is a restriction at any time.





3. The Differential Entropy of the Joint Distribution of the Eigenvalues of the Wishart Ensemble


In this section, we calculate the differential entropy of the joint distribution of eigenvalues of the Wishart ensemble. This differential entropy is given by the following integral:


[image: there is no content]



(12)




where:


q(μ1,…,μm)=Cq∏1⩽i<j⩽m(μi−μj)2∏k=1mμkn−me−μk,Cq=1∏k=1mk!(n−k)!.



(13)







Theorem 1.

The differential entropy of the joint distribution of eigenvalues of the Wishart ensemble is given by the following:


[image: there is no content]



(14)









Proof. 

Combining Conditions (12) and (13), we get that:


−h(q)=∫0∞⋯∫0∞∏k=1mdμkCq∏1⩽i<j⩽m(μi−μj)2∏k=1mμkn−me−μk×lnCq+ln∏1⩽i<j⩽m(μi−μj)2+ln∏k=1mμkn−m+ln∏k=1me−μk=Cq∫0∞⋯∫0∞∏k=1mdμk∏1⩽i<j⩽m(μi−μj)2∏k=1mμkn−me−μklnCq+Cq∫0∞⋯∫0∞∏k=1mdμkln∏1⩽i<j⩽m(μi−μj)2∏1⩽i<j⩽m(μi−μj)2∏k=1mμkn−me−μk+Cq∫0∞⋯∫0∞∏k=1mdμk∏1⩽i<j⩽m(μi−μj)2∏k=1mμkn−me−μkln∏k=1mμkn−m+Cq∫0∞⋯∫0∞∏k=1mdμk∏1⩽i<j⩽m(μi−μj)2∏k=1mμkn−me−μkln∏k=1me−μk=CqI1lnCq+CqI2+CqI3+CqI4.








where:


[image: there is no content]











Let:


[image: there is no content]











It is well known [10] that:


[image: there is no content]



(15)







Thus:


I1=Im(n−m,1)=1Cq,I2=∂∂rIm(α,r)(α,r)=(n−m,1).











By the equalities (10) and (11), we get that:


∂∂rIm(α,r)=∂∂r∏k=0m−1Γ(α+1+kr)Γ(1+(k+1)r)Γ(1+r)=Γ(α+1)∂∂r∏k=1m−1Γ(α+1+kr)×∏k=1mΓ(1+kr)Γ(1+r)=Γ(α+1)∂∂r∏k=1m−1Γ(α+1+kr)×∏k=1mΓ(1+kr)Γ(1+r)+Γ(α+1)∏k=1m−1Γ(α+1+kr)×∂∂r∏k=1mΓ(1+kr)Γ(1+r)=Im(α,r)∑k=1m−1kψ(α+1+kr)+Im(α,r)∑k=1mkψ(1+kr)−mψ(1+r)=Im(α,r)∑k=1m−1kψ(α+1+kr)+∑k=1mkψ(1+kr)−mψ(1+r).



(16)







Thus:


I2=∂∂rIm(α,r)(α,r)=(n−m,1)=Im(n−m,1)∑k=1m−1kψ(n−m+1+k)+∑k=1mkψ(1+k)−mψ(2)=1Cq∑k=n−m+1n(k−n+m−1)ψ(k)+∑k=1mkψ(1+k)−mψ(2).











Similarly,


I3=(n−m)∫0∞⋯∫0∞∏k=1mdμk∏1⩽i<j⩽m(μi−μj)2∏k=1mμkn−me−μkln∏k=1mμk=(n−m)∂∂αIm(α,r)(α,r)=(n−m,1)=(n−m)Im(α,r)∑k=0m−1ψ(α+1+kr)(α,r)=(n−m,1)=(n−m)Im(n−m,1)∑k=0m−1ψ(n−m+1+k)=n−mCq∑k=n−m+1nψ(k).



(17)







By the equalities (4) and (6), we have:


I4=−∫0∞⋯∫0∞∏k=1mdμk∏1⩽i<j⩽m(μi−μj)2∏k=1mμkn−me−μk∑k=1mμk=−m∫0∞⋯∫0∞∏k=1mdμkμ1∏1⩽i<j⩽m(μi−μj)2∏k=1mμkn−me−μk=−mCq∫μ1q(μ1,…,μm)∏k=1mdμk=−mCqn.











Therefore:


h(q)=−CqI1lnCq+CqI2+CqI3+CqI4=−lnCq+∑k=n−m+1n(k−n+m−1)ψ(k)+∑k=1mkψ(k+1)−mψ(2)+(n−m)∑k=n−m+1nψ(k)−mn=mn+mψ(2)−lnCq−∑k=n−mn−1kψ(k+1)−∑k=1mkψ(k+1).











That is, we have obtained the result. ☐





Remark 2.

The formula in (15) is key in the proof of the Theorem above. It is a direct consequence of Selberg’s integral formula [10]:


[image: there is no content]



(18)









Remark 3.

For [image: there is no content], we have:


[image: there is no content]











In order to reduce the above formula, we will use the following equality:


[image: there is no content]








which is the result (B4) in the Appendix B.


h(q)=ln∏k=1mk!(m−k)!+m2+m(1−γ)+m(Hm−γ)−2∑k=1mk(Hk−γ)=ln∏k=1mk!(m−k)!−m2Hm+(32+γ)m2+(12−γ)m.



(19)









Remark 4.

By (B5), we have:


[image: there is no content]



(20)







Taking the sum from one and m, we have:


[image: there is no content]



(21)







Similarly,


[image: there is no content]



(22)









By (B2) and the simple calculation, we have:


12(m+1)Hm−(m22+m)<∑k=1mlnk!−∑k=1mkψ(k+1)<12mHm−m22−m2+m2(m+1)12nHn−12(n−m)Hn−m−m(2n−m)2<∑k=1mln(n−k)!−∑k=n−mn−1kψ(k+1)



(23)






<12(n−1)Hn−12(n−m−1)Hn−m+m(m−2n+1)2



(24)







Combining (23), (24) and (14), we have:


(12(m+1)Hm−mγ)+(12nHn−12(n−m)Hn−m)<h(q)<12mHm+12(n−1)Hn−12(n−m−1)Hn−m+m(1−γ)+m2(m+1).



(25)







Again:


(12(m+1)Hm−mγ)+(12nHn−12(n−m)Hn−m)=(12mHn+12(m+1)Hm−mγ)+12(n−m)(Hn−Hn−m)⩾m(Hm−γ)+12(n−m)(Hn−Hn−m)>0,








hence [image: there is no content].




4. The Differential Entropy of the Joint Distribution of the Eigenvalues of Random Quantum States


In this section, we calculate the differential entropy of the joint distribution of eigenvalues of random quantum states. This differential entropy is given by the following integral:


[image: there is no content]



(26)




where:


p(λ1,…,λm)=Cp∏1⩽i<j⩽m(λi−λj)2∏k=1mλkn−m,(λ1,…,λm)∈Δm−1,Cp=(mn−1)!∏k=1m[k!(n−k)!].











Theorem 2.

The differential entropy of the joint distribution of eigenvalues of random density matrices induced by partial tracing over Haar-distributed bipartite pure states is given by the following:


h(p)=ln∏k=1mk!(n−k)!+mψ(2)−lnΓ(mn)+m(n−1)ψ(mn)−∑k=n−mn−1kψ(k+1)−∑k=1mkψ(k+1).



(27)









Proof. 

In fact,


[image: there is no content]











Let:


[image: there is no content]











Performing Laplace transform ([image: there is no content]) of [image: there is no content] leads to:


[image: there is no content]











By (8) and (13),


CpCq∏i=1meuiq(μ1,…,μm)=p(μ1,…,μm),p(μ1s,…,μms)=sm−nmp(μ1,…,μm).



(28)







Let [image: there is no content] for any [image: there is no content] By the relations (28), we have:


F˜(s)=−∫0∞⋯∫0∞CpCqsm−mnq(μ1,…,μm)lnCpCqsm−mnq(μ1,…,μm)exp∑j=1mμj∏j=1mdμjsm=−CpCqs−mn∫0∞⋯∫0∞q(μ1,…,μm)lnCpCqsm−mn+lnq(μ1,…,μm)+∑j=1mμj∏j=1mdμj=Γ(mn)smn−lnCpCqsm−mn+h(q)−m∫0∞⋯∫0∞μ1q(μ1,…,μm)∏j=1mdμj.











The last equality follows by Equation (9).



By Equations (6) and (9), we get:


F˜(s)=Γ(mn)smn−lnCpCqsm−mn+h(q)−mn=Γ(mn)smn(mn−m)lns+h(q)−lnΓ(mn)−mn=(mn−m)Γ(mn)s−mnlns+Γ(mn)smn(h(q)−lnΓ(mn)−mn).



(29)







By the properties of the Laplace transform in Appendix A, we have:


Llnt+γ(s)=L{lnt}(s)+γL{1}(s)=−lns+γs+γs=−lnss.











Performing the inverse of the Laplace transform and combining with the convolution property on the inverse of Laplace transform, then the following equalities hold:


[image: there is no content]











By:


[image: there is no content]



(30)




we get:


L−1s−mnlns(t)=−1Γ(mn−1)tmn−2∗lnt+γ=−1Γ(mn−1)∫0txmn−2(ln(t−x)+γ)dx=−1Γ(mn−1)∫0txmn−2ln(t−x)dx−γΓ(mn−1)∫0txmn−2dx=−1Γ(mn−1)∫0txmn−2ln(t−x)dx−γtmn−1Γ(mn).











Let [image: there is no content] then we get that:


L−1s−mnlns(t)=−tmn−1lntΓ(mn)−tmn−1Γ(mn−1)∫01(1−y)mn−2lnydy−γtmn−1Γ(mn)=−tmn−1Γ(mn)lnt+γ+(mn−1)∫01(1−y)mn−2lnydy.



(31)







Next, we calculate the following integral:


[image: there is no content]











Consider the Betafunction:


[image: there is no content]











We have now:


[image: there is no content]








and note that:


[image: there is no content]








then:


[image: there is no content]











Taking the above equality into (31), we have:


[image: there is no content]



(32)







Combining Equalities (29), (30) and (32), we have:


[image: there is no content]











Thus, we derive that:


[image: there is no content]








by the relation (14), we obtain:


h(p)=ln∏k=1mk!(n−k)!+mψ(2)−lnΓ(mn)+m(n−1)ψ(mn)−∑k=n−mn−1kψ(k+1)−∑k=1mkψ(k+1).








 ☐





Remark 5.

In particular, if [image: there is no content], by (B4) in Appendix B, we have:


h(p)=ln∏k=1mk!(m−k)!−m2Hm+(m2−m)Hm2−1−lnΓ(m2)+12m2+12m.



(33)







We already know that the discrete version of differential entropy is nothing but the Shannon entropy. However, differential entropy is not a proper entropy, but instead an information gain [3]. Analogously, we can follow Shannon to consider the entropy power for the joint distribution of eigenvalues of random density matrices. However, this is not the goal of this paper.





Remark 6.

Next, we give two bounds of [image: there is no content] It follows from (20) that:


[image: there is no content]



(34)




Combining (23), (24), (34) and (27), we obtain:


12(m+1)Hm+12nHn−12(n−m)Hn−m+(12−m)Hmn−1−(γ+32)+12mn<h(p)<(12−m)Hmn−1+m2Hm+12(n−1)Hn−12(n−m−1)Hn−m+(m−γ−1)+m2(m+1).











In particular, if [image: there is no content], we gain:


(12−m)Hm2−1+(m+12)Hm−(γ+32)+12m2<h(p)<(12−m)Hm2−1+(m−12)Hm+(m−γ−1)+12mm+1.














5. The Differential Entropy of the Joint Distribution of the Diagonal Entries of Random Density Matrices


We have presented the joint distribution of diagonal entries of random quantum states ρ as [20]:


[image: there is no content]








where [image: there is no content] and [image: there is no content]. Next, we calculate the differential entropy of the joint distribution of the diagonal part of random quantum states. This differential entropy is given by the following integral:


h(Ψ)=−∫δ1−∑j=1mρjjΨ(ρ11,…,ρmm)lnΨ(ρ11,…,ρmm)dρ11⋯dρmm=−lnCΨ−(n−1)CΨ∫δ1−∑j=1mρjjln∏j=1mρjj∏j=1m(ρjjn−1dρjj)



(35)







Theorem 3.

The differential entropy of the joint distribution of the diagonal entries of random density matrices induced by partial tracing over Haar-distributed bipartite pure states is given by the following:


[image: there is no content]



(36)







In particular, if [image: there is no content], then:


[image: there is no content]



(37)









Proof. 

Let us calculate:


[image: there is no content]











Now, we define:


[image: there is no content]



(38)







Performing the Laplace transform [image: there is no content] to [image: there is no content] and letting [image: there is no content] we get:


F˜(s):=∫0∞⋯∫0∞exp−s∑j=1mρjj∏j=1m(ρjjα−1dρjj)=s−αm∫0∞⋯∫0∞exp−∑j=1mxj∏j=1mxjα−1dxj=s−αmΓ(α)m,








implying that:


[image: there is no content]



(39)







Let [image: there is no content] in Relations (38) and (39), then we obtain:


[image: there is no content]











By taking the derivative with respect to α, we get:


[image: there is no content]











Taking [image: there is no content] in the above equality, we have:


[image: there is no content]











Taking the above equality into (35), we have:


[image: there is no content]








where [image: there is no content]. ☐





Remark 7.

In the following, we give upper and lower bounds of [image: there is no content]. By Equations (27) and (36), we see that:


h(p)−h(Ψ)=−mlnΓ(n)+m(n−1)ψ(n)+m(1−γ)−∑k=n−mn−1kψ(k+1)−∑k=1mkψ(k+1)+ln(∏k=1mk!(n−k)!)



(40)







It follows from (20) that:


[image: there is no content]



(41)







Together (23), (24), (41) with (40), we have:


12(m+1)Hm+12(n−m)(Hn−Hn−m)+(1n−γ−32)m<h(p)−h(Ψ)<12mHm+12(n−m−1)(Hn−Hn−m)−γm+m2n+m2(m+1).



(42)







In particular, if [image: there is no content], then:


12(m+1)Hm−(γ+32)m+1<h(p)−h(Ψ)<12(m−1)Hm−γm+1−12(m+1).











We see that when [image: there is no content] is nonnegative when m becomes large enough, that is, [image: there is no content] for large m, e.g., [image: there is no content]. Note that for the case where [image: there is no content], [image: there is no content], but however, [image: there is no content], [image: there is no content]. In summary, when the dimension [image: there is no content] is with the set [image: there is no content], the positivity of entropy difference is not deterministic. In higher dimension, the positivity is always invariant. The reason why this phenomenon appears is beyond the scope of the paper.





Remark 8.

We should at least briefly mention the body of work consisting of the so-called “Page’s conjecture” [21], which was subsequently solved in [22,23,24]. Although Page’s question is different than the one studied here, the two are related. Page asked what is the average von Neumann entropy of a random quantum state from the induced ensemble; we ask what is the differential entropy of the whole ensemble of random density matrices. Similarly, we give a compact formula of the average diagonal entropy for induced random quantum states in [20,25].





Remark 9.

In [26], the authors presented an exact relation between p and Ψ, which is described as follows:


[image: there is no content]



(43)




where [image: there is no content] is the Vandermonde determinant and [image: there is no content] the differential operator [image: there is no content]. Furthermore, we can consider their respective Fourier transformations [image: there is no content] and [image: there is no content] (see below for the meaning of notations) and establish uncertainty relations for Fourier transformations. Indeed, denote the joint probability density of the entries of induced random density matrices given by [27]:


P(ρ)∝δ(1−Trρ)Detn−m(ρ).



(44)







Theoretically, we can also calculate the differential entropy of [image: there is no content] as:


[image: there is no content]



(45)







Moreover, we can also ask for the relation between [image: there is no content] and [image: there is no content]. Denote its Fourier transformation by:


[image: there is no content]



(46)




where K is Hermitian. Clearly, [image: there is no content] for any unitary U by the unitary invariance; thus, we can write [image: there is no content], where κ is the eigenvalues of Hermitian K. In [26], Mejía et al. shows that:


[image: there is no content]



(47)







We find that ([7], Equation (11)):


[image: there is no content]



(48)







All potential problems mentioned here will be considered in future research.






6. Relative Differential Entropy [image: there is no content] and Ψ


The relative differential entropy of related continuous probability densities [image: there is no content] and [image: there is no content] is defined by:


[image: there is no content]











Similarly, we define the relative differential entropy between p and Ψ. That is,


[image: there is no content]



(49)






[image: there is no content]



(50)







Theorem 4.

The relative differential entropy of the joint distribution of the eigenvalues to diagonal entries of random density matrices induced by partial tracing over Haar-distributed bipartite pure states is given by the following:


h(p||Ψ)=−ln∏k=1mk!(n−k)!−mψ(2)+mlnΓ(n)−∑k=n−mn−1(n−k−1)ψ(k+1)+∑k=1mkψ(k+1)



(51)







In particular, if [image: there is no content], then:


[image: there is no content]













Proof. 

It suffices to calculate the second term in the right side of the Equation (49).


[image: there is no content]











Let:


[image: there is no content]











As in Section 5, we have:


f˜(s)=∫0∞⋯∫0∞∏1⩽i<j⩽m(λi−λj)2ln∏j=1mλj∏j=1me−sλjλjn−mdλj=s−mn∫0∞⋯∫0∞∏1⩽i<j⩽m(μi−μj)2ln∏j=1mμj∏j=1me−μjμjn−mdμj−ms−mnlns∫0∞⋯∫0∞∏1⩽i<j⩽m(μi−μj)2∏j=1me−μjμjn−mdμj.











Thus:


[image: there is no content]











By (30) and (32), we have:


f(t)=Cq−1∑k=n−m+1nψ(k)L−1(s−mn)−mCq−1L−1(s−mnlns)=∑k=n−m+1nψ(k)tmn−1Γ(mn)Cq−mtmn−1Γ(mn)CqHmn−1−lnt−γ.











Furthermore, by (9), we gain:


[image: there is no content]











This indicates that:


∫p(λ)lnΨ(λ)dλ=lnCΨ+(n−1)Cpf(1)=lnCΨ+(n−1)∑k=n−m+1nψ(k)−mψ(mn).



(52)







Taking (27) and (52) into (50), we gain (51). ☐





Theorem 5.

The relative differential entropy of the joint distribution of diagonal entries to the eigenvalues of random density matrices induced by partial tracing over Haar-distributed bipartite pure states is given by the following:


h(Ψ||p)=−m(n−1)ψ(mn)−ψ(n)−mlnΓ(n)+ln∏k=1mk!(n−k)!−Γ(mn)Γ(mn−m)ψ(n)(mn−12m2−12m)−mnψ(mn−m)−m(m−1)2γ.













Proof. 

It suffices to calculate the second term in the right side of the Equation (50).


∫Ψ(λ)lnp(λ)dλ=∫CΨ∏j=1mλjn−1lnCp∏1⩽i<j⩽m(λi−λj)2∏j=1mλjn−mdλ=lnCp+CΨ∫δ1−∑j=1mλj∏j=1mλjn−1ln∏1⩽i<j⩽m(λi−λj)2∏j=1mλjn−mdλ.











Let:


[image: there is no content]











we have:


[image: there is no content]











Let [image: there is no content] for any [image: there is no content] Then:


f˜(s)=∫sm−mn∏j=1me−μjμjn−1lns−mn∏1⩽i<j⩽m(μi−μj)2∏j=1mμjn−mdμ=−mnsm−mnlns∫∏j=1me−μjμjn−1du+sm−mn∫∏j=1me−μjμjn−1ln∏1⩽i<j⩽m(μi−μj)2∏j=1mμjn−mdμ.











Therefore, we have:


f(t)=−mnL−1(sm−mnlns)∫∏j=1me−μjμjn−1du+L−1(sm−mn)∫∏j=1me−μjμjn−1ln∏1⩽i<j⩽m(μi−μj)2∏j=1mμjn−mdμ.











Since [image: there is no content] we gain:


f(t)=−mntmn−m−1Γ(mn−m)ψ(mn−m)−lntΓ(n)m+tmn−m−1Γ(m(n−1))∫∏j=1me−μjμjn−1ln∏1⩽i<j⩽m(μi−μj)2∏j=1mμjn−mdμ.











Now, we calculate the following integral:


∫∏j=1me−μjμjn−1ln∏1⩽i<j⩽m(μi−μj)2∏j=1mμjn−mdμ=∫∏j=1me−μjμjn−1ln∏1⩽i<j⩽m(μi−μj)2+(n−m)∫∏j=1me−μjμjn−1ln∏j=1mμjdμ.











By (16) and (17), we have:


∫∏j=1me−μjμjn−1ln∏1⩽i<j⩽m(μi−μj)2=∂Im(α,r)∂r|(α,r)=(n−1,0)=m(m−1)2Γ(n)m(ψ(n)−γ),










∫∏j=1me−μjμjn−1ln∏j=1mμjdμ=∂Im(α,r)∂α|(α,r)=(n−1,0)=mψ(n)Γ(n)m.











Furthermore,


[image: there is no content]











This indicates that:


h(Ψ||p)=−h(Ψ)−lnCp−CΨf(1)=−m(n−1)ψ(mn)−ψ(n)+lnΓ(mn)Γ(n)m−lnΓ(mn)+ln∏k=1mk!(n−k)!−Γ(mn)Γ(n)mf(1)=−m(n−1)ψ(mn)−ψ(n)−mlnΓ(n)+ln∏k=1mk!(n−k)!−Γ(mn)Γ(mn−m)ψ(n)(mn−12m2−12m)−mnψ(mn−m)−m(m−1)2γ.








 ☐





Remark 10.

Here, we just calculate the differential relative entropies between p and Ψ. Clearly, they are different from the quantum relative entropy. That is, the differential relative entropy is just a numerical factor, but however, the quantum relative entropy is a trace quantity of the functions of density matrices ρ and σ, i.e., S(ρ||σ):=Trρ(lnρ−lnσ). Moreover, we cannot get the Pinsker-like inequality for the differential entropy of two probability distributions, just like the one for quantum relative entropy.






7. Conclusions


The preset paper deals with different entropic quantities associated with the Wishart random matrix model. More precisely, we compute the differential entropy (also known as the Gibbs–Boltzmann entropy) for the joint probability distribution of the eigenvalues of the Wishart ensemble. Then, we consider a related random matrix model, that of the induced random quantum states. This model is of central importance in quantum information theory. The differential entropy of the joint eigenvalue distribution of the random induced states is also computed, as well as that of the diagonal part. Finally, the relative entropy between the distribution of diagonal elements and that of the eigenvalues for random density matrices is computed. In the future research, we will focus on how to use differential entropy to quantify coherence. We hope that the methods and results in this paper can shed new light on the related problems in quantum information theory.
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Appendix A. Laplace Transform


The Laplace transform [28] is a frequency domain approach for continuous time signals irrespective of whether the system is stable or unstable.



Definition A1.

The Laplace transform of a function [image: there is no content], defined for all real numbers [image: there is no content], is the function [image: there is no content], which is a unilateral transform defined by:


[image: there is no content]



(A1)







The parameter s is the complex number frequency: [image: there is no content]. Other notations for the Laplace transform include [image: there is no content] or, alternatively, [image: there is no content] instead of F.





The inverse Laplace transform is given by the following complex integral:



Definition A2.

The inverse Laplace transform is defined as follows:


[image: there is no content]



(A2)




where r is a real number, so that the contour path of integration is in the region of convergence of [image: there is no content].





Given the functions [image: there is no content] and [image: there is no content] and their respective Laplace transforms [image: there is no content] and [image: there is no content]:


f(t)=L−1{F(s)}(t),g(t)=L−1{G(s)}(t),











The following table is a list of the properties of the unilateral Laplace transform used in the present paper:

	
Linearity: [image: there is no content].



	
Convolution: [image: there is no content].



	
q-th power (for complex q): [image: there is no content] for [image: there is no content] and [image: there is no content];



	
natural logarithm: [image: there is no content] for [image: there is no content], where γ is the Euler constant.









Appendix B. An Estimate on [image: there is no content]


First let us notice two properties for the k-th harmonic number. The first one is:


[image: there is no content]



(B1)







Indeed, [image: there is no content] for [image: there is no content], thus:


∑k=1nHk=Hn+∑k=1n−1Hk=Hn+∑k=1n−1Hn−1k+1+⋯+1n=nHn−∑k=2nk−1k=(n+1)Hn−n,



(B2)




therefore,


[image: there is no content]



(B3)







The second one is:


[image: there is no content]



(B4)







Let:


[image: there is no content]











Then:


∑k=1nkHk=sn+12(sn−s1)+⋯+1n(sn−sn−1)=1+12+⋯+1nsn−∑k=2nsk−1k=snHn−∑k=2nk−12=snHn−12sn−1.











Therefore:


[image: there is no content]











By [image: there is no content] we obtain the equality (B4).



Next, we will give an estimate on [image: there is no content] The following inequality [29] will be used: for any positive integer k,


[image: there is no content]











By taking the sum from one to m on the above equation, we get:


[image: there is no content]











It is equivalent to the following:


[image: there is no content]











Moreover, by (B1) and [image: there is no content], we have [image: there is no content]; hence:


[image: there is no content]











Therefore:


[image: there is no content]











Again, for any positive integer k, we obtain:


[image: there is no content]



(B5)







By taking the sum from one to m for the above inequalities, we get that:


(m+1)22Hm−m(m+1)232+γ<ln∏k=1mk!<(m+1)22Hm−m(m+1)232+γ+12(m+1−Hm+1).



(B6)







By a similar way, we have:


12n2Hn−12(n−m)2Hn−m+14m(3m−6n+1)+γ2m(m−2n+1)<ln∏k=1m(n−k)!<12(n2−1)Hn−12[(n−m)2−1]Hn−m+34m(m−2n+1)+γ2m(m−2n+1).



(B7)







Since [image: there is no content] and [image: there is no content], then by (B6) and (B7), we find that:


12n2Hn−12(n−m)2Hn−m+12(m+1)2Hm−12m(3n+1)−γmn<ln∏k=1mk!(n−k)!<12(n2−1)Hn−12[(n−m)2−1]Hn−m+12m(m+2)Hm−12m(3n+2γn−1)+12mm+1.



(B8)







In particular, if [image: there is no content] then:


m2+m+12Hm−32+γm2+12m<ln∏k=1mk!(m−k)!<m2+m−12Hm−32+γm2−12m+12mm+1.



(B9)
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