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Abstract: This study explored the effects of fatty infiltration on the signal uncertainty of ultrasound
backscattered echoes from the liver. Standard ultrasound examinations were performed on
107 volunteers. For each participant, raw ultrasound image data of the right lobe of liver were
acquired using a clinical scanner equipped with a 3.5-MHz convex transducer. An algorithmic
scheme was proposed for ultrasound B-mode and entropy imaging. Fatty liver stage was evaluated
using a sonographic scoring system. Entropy values constructed using the ultrasound radiofrequency
(RF) and uncompressed envelope signals (denoted by HR and HE, respectively) as a function of
fatty liver stage were analyzed using the Pearson correlation coefficient. Data were expressed as
the median and interquartile range (IQR). Receiver operating characteristic (ROC) curve analysis
with 95% confidence intervals (CIs) was performed to obtain the area under the ROC curve (AUC).
The brightness of the entropy image typically increased as the fatty stage varied from mild to severe.
The median value of HR monotonically increased from 4.69 (IQR: 4.60–4.79) to 4.90 (IQR: 4.87–4.92)
as the severity of fatty liver increased (r = 0.63, p < 0.0001). Concurrently, the median value of HE

increased from 4.80 (IQR: 4.69–4.89) to 5.05 (IQR: 5.02–5.07) (r = 0.69, p < 0.0001). In particular, the
AUCs obtained using HE (95% CI) were 0.93 (0.87–0.99), 0.88 (0.82–0.94), and 0.76 (0.65–0.87) for
fatty stages ≥mild, ≥moderate, and ≥severe, respectively. The sensitivity, specificity, and accuracy
were 93.33%, 83.11%, and 86.00%, respectively (≥mild). Fatty infiltration increases the uncertainty
of backscattered signals from livers. Ultrasound entropy imaging has potential for the routine
examination of fatty liver disease.
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1. Introduction

Hepatitis steatosis, which is the accumulation of fat in hepatocytes, may progress to nonalcoholic
steatohepatitis, fibrosis, cirrhosis, and hepatocellular carcinoma [1]. Nonalcoholic fatty liver disease
(NAFLD) is the type of hepatic steatosis that most commonly leads to chronic liver disease [2].
NAFLD is also related to metabolic risk factors, such as cardiovascular disease, obesity, diabetes
mellitus, and dyslipidemia [3]. How to characterize fatty liver is attracting growing medical and health
research interest.

Currently, biopsy is the gold standard for fatty liver assessment. However, biopsy examinations
have several limitations. A biopsy sample is smaller than the total mass of the liver and thus provides
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insufficient information for effective diagnosis [4,5]. Moreover, histological evaluations are subjective
and rely on the experience of pathologists. Furthermore, most patients with fatty liver do not have
clinical symptoms; thus, performing liver biopsies for these patients is not ethical and difficult in
routine examinations. Accordingly, noninvasive imaging techniques have gradually replaced liver
biopsy for clinical assessment of fatty liver.

Imaging-based evaluation of fatty liver is required in current clinical diagnoses. Computed
tomography (CT) is useful in assessing steatosis, with a sensitivity of 82%–95% and a specificity
approaching 100% [6,7]. However, CT scans expose patients to ionizing radiation and yield less
accurate results for patients with underlying liver disease [8]. Magnetic resonance spectroscopy (MRS)
is the most sensitive and specific tool for detecting steatosis, with an accuracy of approximately
100% [9]. Using MRS, fat fraction can be calculated for quantifying fatty liver severity. However, the
high cost of MRS reduces the clinical utility and availability of the technique. Compared with CT and
MRS, ultrasound imaging is much cheaper, faster, and more widely available for evaluating the degree
of fatty liver. According to a previous report [10], ultrasound has a sensitivity of 60%–94% and a
specificity of 66%–95% for fatty liver staging. Probably because of the system-dependent image quality
and interobserver variability of ultrasound screening, lower sensitivities are frequently observed when
patients experience mild fatty changes [10]. Therefore, a more objective ultrasound evaluation method
that is less affected by the imaging system and user experience is necessary.

When ultrasound scanning is performed, a liver parenchyma can be modeled as a scattering
medium consisting of numerous acoustic scatterers. Different arrangements or structures of scatterers
result in different acoustic interference effects that can be measured to characterize fatty liver.
For example, the attenuation [11,12] and backscatter coefficient [12] can be used to quantify the degree
of fatty liver. Previous studies have shown that changes in the microstructures of liver parenchyma
alter the speckle pattern and image texture of a B-mode image [13,14]. Therefore, the texture analysis
of the B-mode image has also been explored for fatty liver evaluations [15–17]. It should be noted
that calculating the backscatter coefficient needs the compensation of attenuation effect along the
acoustic path and a reference phantom for calibration. In particular, performing the texture analysis is
typically based on the processed grayscale image (not the raw data), and, thus, the performance of
characterizing tissues is system-dependent [18].

Notably, the speckle pattern is formed by ultrasound backscattered echoes, which are typically
treated as random signals. Thus, analyzing the statistical distribution of the echo amplitude (i.e., the
envelope signal) may provide useful clues associated with liver diseases. In general, the methods
for analyzing the echo amplitude distribution can be divided into two types. The first method is to
measure the degree of deviation from the Rayleigh distribution. The representative technique for
analyzing the echo amplitude distribution is acoustic structure quantification (ASQ), which has already
been commercialized through Toshiba ultrasound scanners. ASQ not only assesses liver fibrosis [19,20]
but also stages the degree of fatty liver [21–24], although it may be imprecise [25] and is affected by
fatty infiltration when characterizing liver fibrosis [23]. The second method uses statistical distributions
to model the echo amplitude distribution for a more accurate statistical analysis. This concept has been
realized using statistical models, such as K [26] and Nakagami distributions [27,28], indicating that the
echo amplitude distribution varies from pre-Rayleigh to Rayleigh with the formation of fatty liver.

One requisite of using statistical models to fit echo amplitude distributions is that the ultrasound
envelope data must conform to the used distribution [29–32]. This requirement may not always
be satisfied in practice because different systems have different hardware and software designs for
envelope detection. From this point of view, non-model-based parameters that can be calculated using
any type of data irrespective of the data distribution are suggested as alternatives for characterizing
tissues. Among non-model-based statistical parameters, entropy has been shown to correlate with
the parameters of the statistical models and the envelope statistics [33], which is a useful clue for
characterizing fatty liver [27,28]. Recall that Shannon established information theory and defined
entropy as a measure of information uncertainty [34]. Hughes pioneered using Shannon entropy for
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analyzing ultrasound signals, indicating that entropy is able to quantitatively describe changes in the
microstructures of scattering media [35–39]. According to the above literature review, we assume that
entropy (the signal uncertainty) may be used as a non-model-based approach for visualizing changes
in the statistical properties of ultrasound signals induced by fatty infiltration in the liver. To validate
the proposed idea, the objectives of this study include (i) exploring the relationship between entropy
and the stage of fatty liver and (ii) evaluating the performance of using entropy for the assessment of
fatty liver.

2. Materials and Methods

2.1. Entropy Estimation

Information is uncertain, not deterministic [40]; therefore, the concept of probability is employed
to develop information theory. In proposing information theory, Shannon defined entropy as a measure
of information [34]. For an ultrasound backscattered signal f(t), Shannon entropy is defined as the
negative of the logarithm of the echo amplitude distribution w(y) [36]:

H ≡ −
∫ ymax

ymin

w(y)log2 [w(y)] dy, (1)

where ymin and ymax represent the minimal and maximal values of y = f(t), respectively.

2.2. Data Collection

The collection and use of data in this study was approved by the Institutional Review Board
(IRB) of Chang Gung Memorial Hospital at Linkou, Taiwan. A total of 107 volunteers were recruited
to participate in the study. Before ultrasound scanning, the participants fasted for 8 h and signed
informed consent forms. A radiologist used a clinical ultrasound machine (Model 3000, Terason,
Burlington, MA, USA) equipped with a 3.5-MHz curve probe (Model 5C2A, Terason, Burlington,
MA, USA) to perform standard ultrasound examinations on right lobes of livers by using a subcostal
approach. The transducer pulse length was approximately 2.3 mm. Five scans were performed on
each patient to save the raw radiofrequency (RF) data of images for offline analysis using a personal
computer. Each RF datum was a matrix with a size of 1811 × 256 (256 scan lines; 1811 sample points
for each scan line under the sampling rate of 12 MHz). All image data were acquired using the same
settings (depth: 14 cm; focus: 8 cm; time gain compensation: off; image postprocessing: off).

2.3. Scoring System of Fatty Liver

The participants did not have alcoholism or medical histories associated with liver diseases; thus,
invasive biopsies were prohibited by the IRB. Four fatty liver stages (normal, mild, moderate, and
severe) was assigned by the same gastroenterologist using a sonographic scoring system based on
sonographic features (including echotexture, liver–diaphragm differentiation in the echo amplitude,
ultrasound penetration, and hepatic vessel clarity), which is a widely accepted diagnostic method for
clinical assessment of fatty liver, as shown in Table 1 [41]. In this study, a total of 107 participants were
recruited (normal: 30; mild: 30; moderate: 30; severe: 17).
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Table 1. Ultrasound scoring system of fatty liver. Overall scores of 1–3, 4–6, and 7–9 indicate mild,
moderate, and severe fatty liver changes, respectively [41]. The score of 0 means a normal liver.

US Features Score Definition

Liver echotexture

0
Echo level of the liver parenchyma is homogeneous and no
difference in contrast between liver parenchyma and
kidney parenchyma

1 Slightly increase in echo pattern of the liver

2 Intermediate between score 1 and 3

3 Gross discrepancy of the increased hepatic to renal
cortical echogenicity

Echo penetration and
visibility of diaphragm

0 Liver structure is clearly defined from the surface to the
diaphragm. The outline of the diaphragm is clearly visualized

1 Mild attenuation of sound beam through the liver

2 Intermediate between score 1 and 3

3 Marked attenuation of sound beam through the liver.
The diaphragm is not visualized

Clarity of liver vessel
structures (portal vein)

0 Vessel wall and lumen of the vessel can be clearly visualized

1 Slight decreased definition of portal venule walls

2 Intermediate between score 1 and 3

3 Only the main portal walls can be visualized with absence of
all smaller portal venule walls

2.4. B-Mode and Entropy Imaging

For each RF datum, the envelope image was constructed using the absolute value of the Hilbert
transform, and the B-mode image was formed using a logarithm-compressed envelope image at a
dynamic range of 40 dB. The RF data were used for entropy imaging by using a standard sliding
window algorithm [30,31] as follows: (i) A square window within the data was used to acquire local
RF signals. Different ultrasound systems may produce different dynamic ranges of RF signals (i.e.,
ymax − ymin); therefore, signal normalization was performed to limit the variance of signal amplitudes
between −1 and 1; (ii) The normalized RF signals were used for establishing the probability density
function w(y) (the statistical histogram using 200 bins was used; the width of a bin was 0.01) and
calculating the RF data-based entropy value (denoted by HR) by using Equation (1), which was
assigned as the new pixel located in the center of the window; (iii) The window was moved across the
entire range of image data in steps of the number of pixels corresponding to a 50% window overlap
ratio, and the first step was repeated to yield a HR parametric map. The uncompressed envelope
images with normalized amplitude between 0 and 1 were also used for constructing the parametric
images of entropy (denoted by HE) using the same algorithmic procedure, as shown in Figure 1.
The side length of the square sliding window was determined as being three times the transducer
pulse length (6.9 mm), as suggested for ensuring stable estimations for statistical parameters [30,31].
The programming was implemented using MATLAB software (Version R2012a, MathWorks, Inc.,
Natick, MA, USA).
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envelope image. The image RF and uncompressed envelope data were used for entropy estimation 
(HR and HE) and imaging by using a standard sliding window algorithm. 
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In the previous study [28], some basic criteria were suggested to select the region of interest 
(ROI) for liver image analysis: (i) using a relatively small ROI to locate on the liver parenchyma. A 
small ROI easily excludes blood vessels (e.g., portal venous branches or hepatic veins) to reduce the 
bias of analyzing liver parenchyma; (ii) the location of the ROI should be at the focal zone, reducing 
the effects of attenuation and diffraction on the image analysis; (iii) selecting one ROI in individual 
images obtained from multiple scans of liver for averaging the results. According to the above 
suggestions, a ROI with a size of 2 × 2 cm2 located at the focal depth in the B-mode image was 
manually selected by the other radiologist (blinded to the diagnosis of fatty liver) and applied to the 
corresponding entropy image to collect pixel values (17,746 samples) for averaging. Entropy values 
estimated using the RF and uncompressed envelope data (HR and HE) as a function of sonographic 
fatty stage was expressed as the median and the interquartile range (IQR). The Pearson correlation 
coefficient r and the probability value p were calculated for evaluating the correlation between the 
entropy and the fatty stage (p < 0.05 means a significant correlation). Then, the normality test was 
performed to examine whether the entropy values obtained from normal and fatty stages follow the 
normal distribution (p > 0.05 means a normal distribution). Receiver operating characteristic (ROC) 
curve analysis with 95% confidence intervals (CIs) was performed to obtain the area under the ROC 
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Figure 1. Algorithmic scheme designed for constructing the B-mode and information entropy images
by using the backscattered signals. The B-mode image was formed using a logarithm-compressed
envelope image. The image RF and uncompressed envelope data were used for entropy estimation
(HR and HE) and imaging by using a standard sliding window algorithm.

2.5. Statistical Analysis

In the previous study [28], some basic criteria were suggested to select the region of interest (ROI)
for liver image analysis: (i) using a relatively small ROI to locate on the liver parenchyma. A small
ROI easily excludes blood vessels (e.g., portal venous branches or hepatic veins) to reduce the bias
of analyzing liver parenchyma; (ii) the location of the ROI should be at the focal zone, reducing the
effects of attenuation and diffraction on the image analysis; (iii) selecting one ROI in individual images
obtained from multiple scans of liver for averaging the results. According to the above suggestions,
a ROI with a size of 2 × 2 cm2 located at the focal depth in the B-mode image was manually selected by
the other radiologist (blinded to the diagnosis of fatty liver) and applied to the corresponding entropy
image to collect pixel values (17,746 samples) for averaging. Entropy values estimated using the RF and
uncompressed envelope data (HR and HE) as a function of sonographic fatty stage was expressed as the
median and the interquartile range (IQR). The Pearson correlation coefficient r and the probability value
p were calculated for evaluating the correlation between the entropy and the fatty stage (p < 0.05 means
a significant correlation). Then, the normality test was performed to examine whether the entropy
values obtained from normal and fatty stages follow the normal distribution (p > 0.05 means a normal
distribution). Receiver operating characteristic (ROC) curve analysis with 95% confidence intervals
(CIs) was performed to obtain the area under the ROC curve (AUC). The predictive entropy values for
diagnosing (i) normal versus fatty livers (≥mild); (ii) normal—mild stages versus moderate—severe
stages (≥moderate), and normal—moderate stages versus severe stages (≥severe) were determined by
the closest point to (0, 1) on the ROC curve. Under this condition, sensitivity, specificity, and accuracy
were reported. All statistical analyses were performed using SigmaPlot software (Version 12.0, Systat
Software, Inc., Chicago, IL, USA).
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3. Results

Figure 2 shows the grayscale B-mode images obtained from participants with mild, moderate, and
severe fatty livers, respectively. For a normal liver, the diaphragm can be clearly visualized in a B-mode
image. With increasing degree of fatty liver, a slight increase in the echo brightness can be observed.
The acoustic attenuation became significant in severe fatty liver, rendering the diaphragm unable to be
visualized. Figures 3 and 4 show the entropy images corresponding to different stages of fatty liver.
The brightness of the entropy image typically increased as the fatty stages varied from mild to severe.
The entropy values corresponding to each fatty liver stage are presented in Figure 5. The entropy values
monotonically increased with fatty liver severity (HR: r = 0.63, p < 0.0001; HE: r = 0.69, p < 0.0001).
The median value of HR was 4.69 (IQR: 4.60–4.79) for normal, 4.83 (IQR: 4.77–4.89) for mild, 4.89 (IQR:
4.86–4.91) for moderate, and 4.90 (IQR: 4.87–4.92) for severe fatty livers. The median HE was 4.80 (IQR:
4.69–4.89) for normal, 4.99 (IQR: 4.90–5.02) for mild, 5.05 (IQR: 5.01–5.07) for moderate, and 5.05 (IQR:
5.02–5.07) for severe fatty livers. The ranges (i.e., the difference between the maximum and minimum
values) of (HR, HE) were (4.45–4.91, 4.58–4.99) for normal, (4.46–4.96, 4.68–5.09) for mild, (4.69–4.96,
4.82–5.09) for moderate, and (4.83–4.94, 4.97–5.10) for severe fatty livers. The normality test showed
that the HR and HE values of normal cases obeyed a normal distribution (p > 0.05), but those of fatty
subjects followed a left-skewed distribution (p < 0.05), implying that patients with fatty livers tend to
have a higher entropy values. The ROC curves for diagnosing different fatty liver stages are presented
in Figure 6. The AUCs of (HR, HE) were (0.88, 0.93), (0.85, 0.88), and (0.74, 0.76) for fatty stages ≥mild,
≥moderate, and ≥severe, respectively. The performance profile for ultrasound entropy imaging is
presented in Tables 2 and 3.
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Figure 2. Grayscale B-mode images obtained from the participants with (a) normal; (b) mild;
(c) moderate; and (d) severe fatty livers. The square windows with white dotted lines represent
ROIs. The text “P” means the liver parenchyma. The white and orange arrows indicate the diaphragm
and vessels (portal vein), respectively.
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corresponding to (a) normal; (b) mild; (c) moderate; and (d) severe fatty livers. The square windows
with white dotted lines represent ROIs.



Entropy 2016, 18, 341 8 of 12
Entropy 2016, 18, 341 8 of 12 

 

Figure 5. Entropy values corresponding to each fatty liver stage (a) HR value; (b) HE value. Entropy 
as a function of sonographic fatty stage is expressed as the median and IQR. The median HR value 
increased from 4.69 (IQR: 4.60–4.79) to 4.90 (IQR: 4.87–4.92) with fatty liver severity (r = 0.63, p < 
0.0001). Concurrently, the median HE value increased from 4.80 (IQR: 4.69–4.89) to 5.05 (IQR: 5.02–5.07), 
corresponding to a larger range and a higher correlation coefficient (r = 0.69, p < 0.0001). 

Figure 6. ROC curves for diagnosing different fatty liver stages using entropy imaging based on  
(a) HR and (b) HE. The AUCs obtained using HR (95% CIs) were 0.88 (0.81–0.95), 0.85 (0.78–0.92), and 
0.74 (0.64–0.85) for fatty stages ≥mild, ≥moderate, and ≥severe, respectively. The AUCs of HE (95% 
CIs) were 0.93 (0.87–0.99), 0.88 (0.82–0.94), and 0.76 (0.65–0.87) for fatty stages ≥mild, ≥moderate, and 
≥severe, respectively. Compared with HR, using HE for ultrasound entropy imaging provided an 
improved performance in detecting fatty liver. 

Table 2. Clinical performance of ultrasound entropy imaging in the assessment of fatty liver 
(obtained using the RF signals). 

Parameter ≥Mild ≥Moderate ≥Severe 
Cutoff value of HR 4.81 4.83 4.88 

Sensitivity, % 84.42 89.36 70.59 
Specificity, % 86.67 70.00 64.44 
Accuracy, % 85.04 79.43 66.35 

LR+ 6.33 2.97 1.98 
LR− 0.17 0.15 0.45 

PPV, % 68.42 89.58 92.18 
NPV, % 94.20 71.18 27.90 

AUC (95% CI) 0.88 (0.81–0.95) 0.85 (0.78–0.92) 0.74 (0.64–0.85) 
LR+: positive likelihood ratio; LR−: negative likelihood ratio; PPV: positive predictive value;  
NPV: negative predictive value, AUC: area under the receiver operating characteristics curve. 

Figure 5. Entropy values corresponding to each fatty liver stage (a) HR value; (b) HE value. Entropy
as a function of sonographic fatty stage is expressed as the median and IQR. The median HR value
increased from 4.69 (IQR: 4.60–4.79) to 4.90 (IQR: 4.87–4.92) with fatty liver severity (r = 0.63, p < 0.0001).
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Figure 6. ROC curves for diagnosing different fatty liver stages using entropy imaging based on
(a) HR and (b) HE. The AUCs obtained using HR (95% CIs) were 0.88 (0.81–0.95), 0.85 (0.78–0.92),
and 0.74 (0.64–0.85) for fatty stages ≥mild, ≥moderate, and ≥severe, respectively. The AUCs of HE

(95% CIs) were 0.93 (0.87–0.99), 0.88 (0.82–0.94), and 0.76 (0.65–0.87) for fatty stages ≥mild, ≥moderate,
and ≥severe, respectively. Compared with HR, using HE for ultrasound entropy imaging provided an
improved performance in detecting fatty liver.

Table 2. Clinical performance of ultrasound entropy imaging in the assessment of fatty liver (obtained
using the RF signals).

Parameter ≥Mild ≥Moderate ≥Severe

Cutoff value of HR 4.81 4.83 4.88
Sensitivity, % 84.42 89.36 70.59
Specificity, % 86.67 70.00 64.44
Accuracy, % 85.04 79.43 66.35

LR+ 6.33 2.97 1.98
LR− 0.17 0.15 0.45

PPV, % 68.42 89.58 92.18
NPV, % 94.20 71.18 27.90

AUC (95% CI) 0.88 (0.81–0.95) 0.85 (0.78–0.92) 0.74 (0.64–0.85)

LR+: positive likelihood ratio; LR−: negative likelihood ratio; PPV: positive predictive value; NPV: negative
predictive value, AUC: area under the receiver operating characteristics curve.
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Table 3. Clinical performance of ultrasound entropy imaging in the assessment of fatty liver (obtained
using the uncompressed envelope signals).

Parameter ≥Mild ≥Moderate ≥Severe

Cutoff value of HE 4.96 4.99 5.01
Sensitivity, % 93.33 76.66 64.44
Specificity, % 83.11 87.23 82.35
Accuracy, % 86.00 81.30 67.28

LR+ 5.52 6.00 3.65
LR− 0.08 0.26 0.43

PPV, % 68.29 88.46 95.08
NPV, % 96.96 74.54 30.43

AUC (95% CI) 0.93 (0.87–0.99) 0.88 (0.82–0.94) 0.76 (0.65–0.87)

4. Discussion

4.1. Significance of the Study

This study examined ultrasound entropy imaging, an ultrasound parametric imaging technique
for signal uncertainty analysis, and explored the effects of fatty infiltration on the entropy value
measured from the liver. The experimental results obtained from clinical data showed that fatty
infiltration in the liver results in an increase in entropy value corresponding to the increase in signal
uncertainty. The current findings indicate that fatty liver severity correlates to the uncertainty of
ultrasound backscattered signals.

4.2. Effects of Fatty Infiltration on Ultrasound Entropy

The liver is an organ involved in lipogenesis, gluconeogenesis, and cholesterol metabolism [42].
Insulin and other metabolic hormones control the metabolic function of the liver [43]. In the
prandial state, fatty acids are synthesized from glycolytic products through de novo lipogenesis
for incorporation into triacylglycerol, phospholipids, and cholesterol esters in hepatocytes. In the
postprandial state, the liver secretes glucose through both glycogenolysis and hepatic gluconeogenesis,
which is the primary source for endogenous glucose production [43,44]. However, a problematic
metabolism in the liver promotes insulin resistance, diabetes, and nonalcoholic fatty liver diseases [43].
Excess dietary fat, increased delivery of free fatty acids to the liver, inadequate fatty acid oxidation,
and increased de novo lipogenesis cause the accumulation of fat in the liver [44].

In general, hepatic steatosis is usually seen as macrovesicular steatosis (large droplet steatosis) in
which a single large vacuole of fat fills the hepatocyte and displaces the nucleus to the periphery [45].
Therefore, an acoustic model for a fatty liver may be simply simulated using a scattering medium
with numerous randomly distributed acoustic scatterers (liver cells) in addition to scatterers with
different echogenicities and sizes (fatty vesicles). The aforementioned assumption implies that the
formation of fatty liver is a process involving the increasing number density of fatty vesicles in the
liver parenchyma. Increasing the scatterer concentration, not only generates a stronger effect of
constructive wave interference to cause the echo amplitude distribution to vary toward the Rayleigh
distribution [46], but also leads to a larger backscattered amplitude [47,48]. In this condition, various
echo amplitudes exist, and the signal uncertainty and unpredictability (entropy) increase [33].

4.3. Potential of Entropy Imaging in Evaluating Fatty Liver

The superiorities of entropy imaging in the assessment of fatty liver are discussed below.
Previously, the same clinical database was established to explore the performances of Nakagami [28]
and kurtosis [49] parametric imaging in staging fatty liver. The Nakagami parameter correlated with
the degree of fatty liver (r obtained from curve fitting = 0.84). The best performance of kurtosis imaging
was found when discriminating between normal and fatty livers (≥mild): the AUC was 0.92 (diagnostic
accuracy: 86.9%, sensitivity: 86.7%, and specificity: 87.0%). In the present work, entropy imaging
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constructed using the uncompressed envelope signals provided an improved sensitivity in identifying
fatty livers (≥mild), as supported by the results in Table 3 (the AUC of HE: 0.93, sensitivity: 93.33%).
As mentioned in Introduction, the sensitivity of conventional ultrasound for staging fatty liver varies
between 60% and 94% and is frequently lower when patients with mild fatty changes are examined [10].
A recently published report revealed that the sensitivity of using ASQ for the assessment of hepatic
steatosis was 86.2% [24]. The sensitivities of clinically used blood test and biomarkers also vary
between 33% and 89% [8]. Compared with the B-scan, quantitative ASQ, blood analysis, Nakagami,
and kurtosis imaging, entropy imaging efficiently discriminates between normal and fatty stages of
liver tissue with a high diagnostic sensitivity. This finding implies that entropy imaging has potential
in identifying the early stage of fatty liver. In particular, the proposed algorithmic scheme of entropy
imaging is compatible with standard B-mode scanners, making routine fatty liver evaluations possible.

5. Conclusions

In this study, clinical ultrasound image data were used for constructing entropy parametric
images, which were compared with sonographic fatty scores to explore the effects of fatty liver
on the signal uncertainty of ultrasound signals. The experimental results demonstrated that fatty
infiltration increases the uncertainty of backscattered signals from the liver, which can be visualized
using ultrasound entropy imaging. This is due to a process of increasing the number density of fatty
vesicles in the liver parenchyma, resulting in various echo amplitude values to increase the entropy.
The ROC curve analysis further indicated that entropy imaging constructed using uncompressed
envelope signals provided an improved sensitivity (93.33%) in identifying fatty liver. Information
entropy is suggested to be combined with standard ultrasound B-mode scanners for the routine
examination of fatty liver diseases.
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