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Abstract: A feature selection method based on the generalized minimum redundancy and maximum
relevance (G-mRMR) is proposed to improve the accuracy of short-term load forecasting (STLF).
First, mutual information is calculated to analyze the relations between the original features and the
load sequence, as well as the redundancy among the original features. Second, a weighting factor
selected by statistical experiments is used to balance the relevance and redundancy of features when
using the G-mRMR. Third, each feature is ranked in a descending order according to its relevance
and redundancy as computed by G-mRMR. A sequential forward selection method is utilized for
choosing the optimal subset. Finally, a STLF predictor is constructed based on random forest with the
obtained optimal subset. The effectiveness and improvement of the proposed method was tested
with actual load data.

Keywords: short term load forecasting; generalized minimum redundancy and maximum relevance;
random forest; sequential forward selection

1. Introduction

A short-term load forecasting (STLF) predicts future electric loads with a particular prediction
limit from one hour extending up to several days. The primary target of smart grids, such as reducing
the difference between peak and valley electric loads, large-scale renewable energy absorption, demand
side response, and optimal economic operation of the power grid, needs accurate STLF results [1].
In addition, with the development of competitive electricity markets, an accurate STLF is an important
basis for drafting a reasonable electricity price and improving the stability of electricity market
operation [2].

The existing STLF methods can be divided into traditional methods and artificial intelligence
methods. In the traditional methods, such as autoregressive integrated moving average (ARIMA) [3]
and regression analysis [4], Kalman filter [5] and exponential smoothing [6] are commonly used.
The combination of autoregressive and moving average in ARIMA is a better time series model for
STLF [7]. According to the historical time-varying load data, the ARIMA is established and applied
for predicting the forthcoming electrical load. The regression analysis uses historical data to establish
simple but highly efficient regression models [8]. The Kalman filter improves the accuracy of STLF
by estimating each component of load which is apportioned into random and fixed components.
The exponential smoothing eliminates the noise in the load time series, and the degree of future
load influenced by recent load data can be reflected by adjusting the weight of both data, which is
helpful for improving the accuracy of STLF [9]. Overall, the traditional STLF methods can analyze
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the linear relationships between input and output, but not the nonlinear relationships [10]. If the load
presents large fluctuations caused by environmental factors, the traditional methods may provide
inaccurate forecasts.

In recent years, predictors based on artificial intelligence algorithms were widely used in the STLF
of power systems [10–17]. Such processes like fuzzy logic [14], expert systems [16,17], artificial neural
networks (ANNs) [18,19], and support vector machines (SVMs) [20,21] are currently used in STLF.
Fuzzy logic methods divide the input and the output into different kinds of membership functions,
and then the relationship between input and output is established by a set of fuzzy rules for fuzzy
systems for STLF [22]. However, the fuzzy systems with single if-then rules lack self-learning and
adaptive ability to be able to learn the input information effectively. An ANN acquires the complicated
non-linear relationship between input and output variables by learning the training samples. However,
there is no scientific way of acquiring the optimal network architecture when establishing an ANN
model. In addition, it also encounters the problems of falling into local optima and over-fitting [15,23].
SVMs overcome the deficiencies of ANNs by dealing with quadratic programming problems in
acquiring the global optimal solution. As compared to an ANN, the SVM has many advantages.
However, the SVM parameters, such as the type and variance of the kernel function, and penalty
factor, are selected empirically. To achieve the optimal parameters, a SVM combined with genetic and
particle swarm optimization algorithm is utilized [24,25]. The random forest (RF) is a combination of
classification and regression trees (CARTs) and a bagging learning method. Randomly, by sampling
from the training samples and selecting features for splitting node, the RF provides the ability to resist
noise and is free from over-fitting problems [26]. Furthermore, in actual practice, there are only two
parameters (the tree number and the number of the features for node splitting) that need to be set
when RF is applied for STLF [15], making RF highly suitable for STLF.

Considering the effect of various factors, artificial intelligence methods analyze the complicated
nonlinear relationships between power load and related factors to achieve higher precision of
prediction. However, the features that the predictor employs will influence the accuracy and efficiency
of STLF. Therefore, a feature selection schedule should be generated for choosing the optimal feature
subset for a predictor. The common features, including historical load, time, and meteorology, are used
for STLF modeling [11,27,28]. Historical load can reflect the variation of load accurately, which contains
plenty of information. The features of time, such as hour point, day of week, and on/off work day,
can also indirectly show the load pattern. In addition, a short-term power load is mainly affected by
the changing weather conditions which have a strong correlation with load demand. The accurate
meteorological information of the numerical weather prediction (NWP) can improve the accuracy of
STLF effectively. Consequently, NWP errors will reduce the accuracy of STLF [29].

A feature selection is a process of choosing the most effective features from an original feature
set. The optimal feature subset extracted from a given feature set can improve the efficiency and
accuracy of predictor in STLF [30]. Nowadays, the manner of selecting the features has become a hot
topic in short-term load forecasting research. Reference [31] adopted conditional mutual information
for feature selection. The mutual information values between features and load was measured and
subsequently ranked through their values. The first 50 features were used as a threshold parameter
for filtering out the irrelevant and weakly relevant features. Reference [10] constructed an original
feature set by using the phase space reconstruction theory. The correlation between features and load
was analyzed, discovering the optimal feature subset. In reference [29], the mutual information was
applied for extracting the effective features from the weather features, as well as, the historical load data
features were also extracted for improving the accuracy of holiday load forecasting. Reference [32] used
a memetic algorithm to extract a proper feature subset from an original feature set for medium-term
load forecasting. Reference [33] analyzed the daily and weekly pattern by autocorrelation function,
and chose 50 features as the best features for very short-term load forecasting. The mutual information
based on feature selection was used in reference [23]. By calculating the mutual information values
between feature vectors and target variable, we can temporarily define a lower boundary criterion
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to filter the features. The optimal feature subset with best features was achieved for STLF. All of the
researches [10,23,29,31–33] made important contributions to the feature selection in STLF. However,
these feature selection methods were just carried out by analyzing the correlation between features
and load and the redundancy among these features was not considered.

To improve the accuracy of STLF, the mutual information based on generalized minimum
redundancy and maximum relevance feature selection and RF for STLF is proposed. First, an original
feature set is formed by extracting historical load features and time features from the original load
data. Second, G-mRMR is used for generating the candidate feature, which is ranked in a descending
order. Third, the sequential forward selection (SFS) method and a decision criteria based on mean
absolute percentage error (MAPE) are utilized for obtaining optimal feature subset by adding one
feature at a time to the input feature set of RF. Finally, the RF-based predictor is constructed with the
optimal feature subset to achieve the optimal predictor. The proposed method is validated through
STLF experiments using the actual load data from a city in Northeast China. The experimental results
are compared with different feature selection methods and predictors.

2. Methodology

2.1. Mutual Information-Based Generalized Minimal-Redundancy and Maximal-Relevance

The minimum-redundancy and maximum-relevance (mRMR) is the method which uses mutual
information (MI) to measure the dependence between two variables. The MI-based mRMR not only
considers the effective information between feature and target variable, but also acquires the repetitive
information among features [34]. It has the advantage of obtaining helpful features accurately when
dealing with high dimensional data.

Given two random variables X and Y, the MI between them can be estimated as:

I(X, Y) = ∑
X,Y

P(x, y)log
P(x, y)

P(x)P(y)
(1)

where P(x) and P(y) are the marginal density functions, and P(x, y) is the joint probability
density function.

The target of feature selection methods based on MI is finding a feature subset J with n features
which reflect the largest dependency on the target variable l from a feature set Fm with m features
(n� m).

The maximum-relevance criterion uses the mean value of MI between feature xi and target l is
described as follows:

maxD(J, l), D =
1
|J| ∑xi∈J

I(xi, l) (2)

The redundancy indicated by MI value describes the overlapping information among features,
wherein a larger MI signifies more overlapping information and vice versa. In the process of feature
selection, the features selected by maximum-relevance criterion can have more redundancy, and the
redundant features have similar information as the prior selected feature cannot improve the accuracy
of predictor. Therefore, the redundancy among features should also be evaluated in the process of
feature selection.

The minimum-redundancy requires a minimum dependency among each feature:

minR(J), D =
1

|J|2 ∑
xi ,xj∈J

I(xi, xj) (3)

The mRMR criterion combined with Equations (2) and (3) is computed as follows:

maxψ(D, R), ψ = D− R (4)
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Generally, an incremental search method is used to search for the optimal features [34]. Supposing
there is a feature set Jn−1 with n−1 features that has been selected. The aim is to select the nth feature
from the rest of set {Fm-Jn−1} according to Equation (4). The incremental search method with respect to
the condition is as follows:

mRMR : max
xj∈Fm-Jn−1

[
I(xj, l)− 1

|Jn−1| ∑
xi∈Jn−1

I(xj, xi)

]
(5)

where |Jn−1| refers to the number of features in Jn−1.
Restructuring Equation (5) by using a weighting factor to balance the redundancy and relevance

of feature subset develops into the generalized mRMR (G-mRMR) presented as follows [35]:

G-mRMR : max
xj∈Fm-Jn−1

[
I(xj, l)− α ∑

xi∈Jn−1

I(xj, xi)

]
(6)

2.2. Random Forest

The random forest (RF) is a kind of machine learning algorithm presented by Leo Breiman, who
integrates classification and regression tree (CART) and bagging algorithm [26]. A RF generates many
different CARTs by sampling with replacement, wherein each CART achieves one result. The final
forecasting result is achieved by computing the average value of all CARTs’ results.

2.2.1. CART

The CART employs binary recursive partitioning technology for solving classification and
regression issues [36]. A CART, which consists of a root node, non-leaf nodes, branches, and leaf
nodes, is shown in Figure 1. Each non-leaf node must be divided according to the Gini index when
CART grows.
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Supposing there is a dataset D with d samples which includes C classes, the Gini index of D can
be defined as:

G(D) = 1−
C

∑
i=1

(
di
d

)2

(7)

where di is the number of ith class.
Afterward, the feature f is used to divide D into D1 and D2 subset, wherein the Gini index after

the split is:

Gsplit(D) =
d1

d
G(D1) +

d2

d
G(D2) (8)
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2.2.2. Bagging

The bagging is an integrated learning algorithm proposed by Leo Breiman [37]. Given dataset
B with M features and learning rule H, a bootstrapping is carried out to generate training sets{

B1, B2, . . . , Bq}. The samples in dataset B may be appraised many times or not at all. A forecasting
system consists of a group of learning rule

{
H1, H2, . . . , Hq} which have learned the training set is

achieved. Breiman pointed out that bagging can improve the accuracy of predicting the instability of
learning algorithms such as CART and ANN [37].

2.2.3. RF

The RF is a group of predictors {p(x, Θk), k = 1, 2, . . .}, which is composed of numbers of CARTs,
where x is the input vector and {Θk} represents the independent identically distributed random
vectors. The modeling process of RF is:

(1) k training sets are sampled with replacement from the dataset B by bootstrap.
(2) Each training set grows up to a tree according to CART algorithm. Supposing dataset B has

M features and mtry features are randomly selected from B for each non-leaf node. Afterward,
the node is split by a feature selected from these mtry features.

(3) Each tree grows completely without pruning.
(4) The forecasting result is solved by calculating the mean value of the consequences of each

tree predicted.

The flow chart of RF model is illustrated in Figure 2.
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(1) The same capacity of the training set sampled by bootstrap guarantees each sample in dataset B
to be appraised equally. A situation that one sample may appear many times in the same training
set and some may not causes low correlation among the trees.

(2) The manner of selecting feature for node split applies randomness, and ensures the generalized
performance of RF.

The number of feature mtry and the number of tree of RF nTree should be set when applying RF.
Generally, mtry suggested setting is either mtry = [log2 (M) + 1] or mtry =

√
M or mtry = M/3. The scale

of RF generally selected empirically the largest size in order to improve the diversity of trees and
guarantee the performance of RF.

3. Data Analysis

The historical load data used in this paper is archived data from a city in Northeast China from
2005 to 2012. As shown in Figure 3a,b, the load demand from 2005 to 2012 increased rapidly with
the increase in population and development of the local society. It is difficult to generate a highly
accurate STLF in this kind of load pattern. Figure 3c shows the correlation analysis results of the
historical load by autocorrelation function [38]. Evidently, the autocorrelation coefficient is reduced
gradually along with the increasing of hour lag. According to Figure 3c, the load far from current has
low correlation. Only the correlation of the load data from 2011 to 2012 is above the confidence interval
which is positive correlation (above of the blue line). With the increasing of the load, the historic load
with large lag has very low correlation with the forecasting point. Therefore, we prefer the data from
2011 to 2012 to be used for further research.
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Figure 4 shows the average daily load pattern occurring in different seasons. These loads have
visibly different patterns which are caused by the varying climate.
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Figure 4. Four seasons average daily load profile from December 2010 to November 2011.

By observing Figure 5, it is possible to know that the load demand presents a kind of cycling mode
with a period of 7 days. The load demand from Monday to Friday is similar, whereas on Saturday and
Sunday they are dissimilar from each other. This pattern is due to the concurrent changing of load
level with the varying electricity consumption behavior of people within a week.
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The load point predicts the highly correlated load points similar from the day before as well as
relevant with previous week. As shown in Figure 6, the load points throughout the week at lag 1,
lag 24, lag 48, lag 72, lag 96, lag 120, lag 144, and lag 168 have strong relevance assuming each lag is
1 h difference. Furthermore, other moment load values also have different dependence.
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The original feature set for STLF can be achieved based on the above analysis. The 168 load
variables {Lt-168, Lt-167, . . . , Lt-2, Lt-1} are extracted as part of original feature set. When doing a day
ahead load forecasting, assuming the current moment is t, the load values from the moment t-1 to t-24
are unknown. Therefore, the variables {Lt-24, Lt-23, . . . , Lt-1} are eliminated from the original feature
set. In addition, the features, such as hour of day, the day is within weekday or weekend, day of week
and season, are considered for constructing the original feature set.

Though meteorological factor affects the load demand, it is not considered in this paper because
the error of NWP influences the accuracy of STLF [29]. If needed, the meteorological can be added into
the original feature set for feature selection in the same manner. There are 168 features in the original
feature set F, as shown in Table 1.

Table 1. The original feature set.

Feature Type Original Feature

Exogenous features 1.FHour, 2.FWW, 3.FDW, 4.FS

Endogenous features
5.FL(t-25), 6.FL(t-26), 7.FL(t-27), 8.FL(t-28), . . . ,

146.FL(t-166), 147.FL(t-167), 148.FL(t-168)

The meaning of features in Table 1 is:
Exogenous features:

FHour means the moment of hour, which is tagged by the numbers from 1 to 24.
FWW is either weekday or weekend marked by binary numbers, wherein 0 means weekend and
1 means weekday.
FDW refers to the day of week, which is labeled by the numbers from 1 to 7.
FS uses the numbers from 1 to 4.

Endogenous features:

FL(t-25) is the load 25 h before, FL(t-26) means the load 26 h before, and so on.

4. The Proposed Feature Selection Method and STLF Model

A feature selection method combined with G-mRMR and RF is proposed. First, the redundancy
of features in F and the relevance between features and load are measured by G-mRMR. Each feature
with mRMR value is ranked in a descending order. Afterward, a SFS-based RF is used to search for the
optimal feature subset. The MAPE used as a performance index in the feature subset selection process
is defined as:

MAPE =
1
N

N

∑
i=1

∣∣∣∣Zi − Ẑi
Zi

∣∣∣∣× 100% (9)

where Zi is the actual value of load, Ẑi is the forecasting value, N is the number of sample.

4.1. G-mRMR for Feature Selection

Supposed an original feature set Fm including m features and a selected feature set J. The detail of
feature selection process is enumerated below:

(1) Initialization Ø→J.
(2) Compute the relevance between each feature and target variable l. Pick out the feature from Fm

which satisfies Equation (2) and add it into J.
(3) Find the feature in the rest of m−1 features in Fm that satisfies Equation (4) and add it in to J.
(4) Repeat step (3) until Fm becomes Ø.
(5) Rank the features in feature set J in descending order in accordance with the measured

mRMR value.
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4.2. Wrapper for Feature Selection

The common wrapper is a sequential forward and backward selection, both of which do not
consider the feature weighting [34,39]. Therefore, the effects of different dimensional features are must
be measured, making wrapper a complex and computational feature selection method. According to
the result of feature selection of G-mRMR, a wrapper for finding a feature subset can be applied
in simpler manner. Considering the features selected by mRMR are ranked in a descending order,
the features in the front of the ranking list contain more effective information, thus SFS is used for
finding a small feature subset.

A SFS, in which features are sequentially added to an empty candidate set until the addition of
another features, does not decrease the criterion. By defining an empty set S and an original feature set
Fm, in the first step, the wrapper searched for the feature subset with only one feature, marked as S1,
wherein the feature x1 selected in S1 leads to the largest prediction error reduction. In the second step,
the wrapper selects the feature x2 from {Fm-S1} and combines with S1 lead to the largest prediction
error reduction. The search schedule is repeated until the prediction stops decreasing.

4.3. The Proposed STLF Model

Based on the methods in Sections 4.1 and 4.2, the method of feature selection with RF for STLF is
proposed. The feature selection and short-term load forecasting process are shown in Figure 7, where p
is the number of feature and α is the weighting factor from 0.1 to 0.9, with an increment of 0.1.
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5. Case Study and Results Analysis

The data for the experiment consists of the actual data from 2011 to 2012 from a city in Northeast
China. For the purpose of feature selection and STLF, the data is divided into three parts: (1) training
set (extract eight months randomly from 2011); (2) validation set (the remaining four months of 2011);
and (3) test set (extract one week from each season from the data of 2012). More information about the
data set is shown in Table 2.

Table 2. Detail information about the data set.

Data Set Information Purpose

Training Set January, February, May, June, August,
September, October, December Train RF

Validation Set March, April, July, November Use for obtain the best weighting factor

Test Set

23–29 February 2012 (Winter)
13–19 May 2012 (Spring)

21–27 August 2012 (Summer)
24–30 November 2012 (Fall)

Test performance of RF

The number of variable mtry, which RF is not overly sensitive to, is recommended as
mtry = p/3 [40]. The complexity of RF is affected by the number of tree. Under the premise of
non-reduction of prediction accuracy, the initial number of trees nTree is set as 500 [15].

Let Equation (9) to be one of the criteria of RF. In addition, the root mean square error (RMSE) is
also used. The RMSE is defined in the follow equation:

RMSE =

√√√√ 1
N

N

∑
i=1

(Zi − Ẑi)
2 (10)

5.1. Feature Selection Results Based on G-mRMR and RF

In this subsection, the optimal subset is achieved according to the minimum MAPE by setting
different weighting factor values of G-mRMR. Figure 8 shows the MAPE curves of the results from
RF predictions under different weighting factor α. As shown in Figure 8a, the MAPE is reduced
and reaches a minimum value with the increase in the number of feature. Subsequently, it ceases
to decrease and gradually increases, indicating that the later addition of features does not improve
the performance of RF, but only brings adverse effect. As shown in Figure 8b, the error is reduced
rapidly when adopting a small value of α, for instance α = 0.1, which indicates that features have
useful information for improving the performance of RF. By excessively considering the redundancy
among features when using a large value of α, the selected feature subset does not provide enough
relevant information for the prediction of RF-based predictor.
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Table 3 presents the results of feature selection. When α = 0.4, the feature subset has the least
number of feature and the RF generates the minimum MAPE. The optimal feature subset is selected.

Table 3. Feature subsets selected by minimum MAPE under different weighting factors.

α Min MAPE (%) Number of Features Feature Subset

0.1 2.5640 26

FL(t-168), FL(t-25), FL(t-48), FL(t-144), FL(t-72), FHour, FL(t-47),
FL(t-26), FL(t-120), FL(t-167), FWW, FS, FDW, FL(t-34),
FL(t-158), FL(t-103), FL(t-27), FL(t-96), FL(t-162), FL(t-132),
FL(t-44), FL(t-88), FL(t-149), FL(t-153), FL(t-37), FL(t-107)

0.2 2.5857 25

FL(t-168), FL(t-25), FL(t-48), FL(t-144), FHour, FS, FWW,
FL(t-71), FDW, FL(t-27), FL(t-106), FL(t-162), FL(t-38), FL(t-127),
FL(t-93), FL(t-156), FL(t-88), FL(t-32), FL(t-29), FL(t-96), FL(t-44),
FL(t-134), FL(t-26), FL(t-166), FL(t-59)

0.3 2.5858 27

FL(t-168), FL(t-25), FL(t-48), FHour, FWW, FS, FL(t-144),
FDW, FL(t-103), FL(t-37), FL(t-162), FL(t-70), FL(t-131),
FL(t-28), FL(t-88), FL(t-153), FL(t-106), FL(t-75), FL(t-159),
FL(t-34), FL(t-125), FL(t-96), FL(t-43), FL(t-165), FL(t-109),
FL(t-31), FL(t-26)

0.4 2.5597 15
FL(t-168), FL(t-25), FL(t-48), FWW, FS, FL(t-127), FL(t-85),
FL(t-139), FDW, FL(t-34), FL(t-160), FL(t-70), FL(t-28),
FL(t-120), FL(t-141)

0.5 2.5897 80

FL(t-168), FL(t-25), FL(t-47), FWW, FS, FL(t-127), FL(t-86),
FDW, FL(t-139), FL(t-35), FL(t-99), FL(t-160), FL(t-69), FL(t-29),
FL(t-154), FL(t-120), FL(t-41), FL(t-81), FL(t-133), FL(t-148),
FL(t-166), FL(t-32), FL(t-63), FL(t-92), FL(t-26), FL(t-108),
FL(t-162), FL(t-78), . . .

0.6 2.5868 46

FL(t-168), FL(t-25), FHour, FL(t-47), FS, FL(t-127), FL(t-88),
FDW, FL(t-156), FL(t-139), FL(t-76), FL(t-34), FL(t-110), FL(t-69),
FL(t-149), FL(t-120), FL(t-41), FL(t-81), FL(t-27), FL(t-165),
FL(t-37), FL(t-162), FL(t-98), FL(t-30), FL(t-131), FL(t-159),
FL(t-104), FL(t-44), . . .

0.7 2.5891 88

FL(t-168), FL(t-25), FWW, FS, FL(t-103), FL(t-61), FL(t-139),
FDW, FL(t-47), FL(t-160), FL(t-82), FL(t-124), FL(t-30), FL(t-93),
FL(t-156), FL(t-41), FL(t-146), FL(t-33), FL(t-110), FL(t-72),
FL(t-152), FL(t-164), FL(t-27), FL(t-90), FL(t-131), FL(t-39),
FL(t-118), FL(t-77), . . .

0.8 2.6046 93

FL(t-168), FL(t-25), FWW, FS, FL(t-103), FL(t-61), FL(t-139),
FDW, FL(t-47), FL(t-160), FL(t-82), FL(t-124), FL(t-30), FL(t-93),
FL(t-156), FL(t-41), FL(t-146), FL(t-33), FL(t-110), FL(t-166),
FL(t-75), FL(t-152), FL(t-90), FL(t-72), FL(t-44), FL(t-131),
FL(t-28), FL(t-39), . . .

0.9 2.5918 35

FL(t-168), FL(t-25), FWW, FS, FL(t-103), FL(t-67), FL(t-133),
FDW, FL(t-34), FL(t-160), FL(t-46), FL(t-148), FL(t-96), FL(t-29),
FL(t-84), FL(t-140), FL(t-39), FL(t-153), FL(t-75), FL(t-114),
FL(t-165), FL(t-56), FL(t-122), FL(t-62), FL(t-155), FL(t-126),
FL(t-41), FL(t-119), . . .

The RF will do poor forecasting with less trees, while excessive trees will make it a complicated
predictor. In order to obtain a reasonable number of trees of RF, an experiment is designed as follows:

(1) The training set and test set with optimal features are used for the experiment.
(2) The initial number of tree nTree = 1.
(3) Training RF and testing with different nTree value with increment of 1 until nTree = 500.

The experimental result is shown in Figure 9.
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The prediction error decreases with the increasing number of tree. When nTree > 100, the error
tends to be steady. By analyzing the result, nTree = 184 with minimum MAPE = 2.5389% is obtained,
using this number of trees as the parameter of RF in the future experiment.

5.2. Comparison Experiments for STLF

The data shown in Table 2 are used in the comparison of experiments.

5.2.1. Comparison of Different Feature Selection Methods

By using RF as the predictor, the feature selection methods such as Pearson Correlation Coefficient
(PCC), MI, and SFS, are compared with the proposed method for estimating the effect of feature
selection of G-mRMR. The results of these feature selection methods are presented in Figure 10.

In Figure 10, with the same predictor, the SFS provides the best performance, followed by
G-mRMR (α = 0.4) and MI, and finally the PCC. The SFS, which convolves with RF, selects 22 features
and achieves the minimum MAPE = 2.4925%. Considering the relevance between feature and load
and the redundancy among features, G-mRMR (α = 0.4) selects 15 features with the minimum
MAPE = 2.5597%. The feature subset selected by MI, which does not consider the redundancy among
features, is higher than G-mRMR (α = 0.4). Only the PCC analyzes the linear relation between features
and load, however the feature subset selected through this method is not as good as G-mRMR (α = 0.4).
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In order to verify the validity of the feature subset applied for STLF, there were four weeks
distributed among four seasons in 2012 are used to test each feature subset with RF. For comparison,
the full set of features with RF is also tested. The experimental results is shown in Figure 11.
By examining the results in Figure 11a–d, generalized minimum redundancy and maximum
relevance-random forest (G-mRMR-RF) (α = 0.4), mutual information-random forest (MI-RF),
sequential forward selection-random forest (SFS-RF), and RF (full features) can fit with true load
value accurately, whereas the accuracy of pearson correlation coefficient-random forest (PCC-RF)
is low. The results of fifth day prediction in Figure 11a and the seventh day in Figure 11c show
G-mRMR-RF has a better fit than MI-RF, indicating the necessity of considering the redundancy
among features. The results of fifth day prediction in Figure 11a show that SFS-RF has better
prediction performance than G-mRMR, while the seventh day prediction results in Figure 11c indicates
G-mRMR-RF predicts better.
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By analyzing Figures 10 and 11 and Tables 4–7 comprehensively, although SFS achieved the best
forecasting results in the feature selection process, the proposed method achieved the better result in
the testing schedule. When predicting the 28 days in the test set, the proposed method yields the best
forecasting in 20 days and the MAPE in the remaining eight days is higher than other methods, ranging
from 0.04% to 0.37%. The average MAPE and the average RMSE indicate G-mRMR-RF performs the
best among the methods which demonstrates the validity and advancement of G-mRMR.

The new method also has the minimum value of the maximum error of STLF in the testing set.
As shown in Table 6, the maximum MAPE and maximum RMSE of the proposed method are 6.12%
and 208.00 MW. Although the maximum error of the new method is high, but compared with other
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methods, the proposed method still performed better. The high prediction error can be caused by two
factors. On the one hand, the load of forecasting day is much larger than the historical load data in the
training set. In this paper, most features in the original feature set are extracted from the historical
load data. Without the consideration of other features, the prediction results cannot advance just
by improving the feature selection and forecasting method. On the other hand, with the significant
economic rise of China from 2005 to 2012, the growth rate of gross domestic product of the city is
more than 10%. Under this premise, the electric load of the city increases rapidly which makes STLF
a challenging work.

Table 4. Comparison of prediction error (MAPE (%) and RMSE (MW)) from 23 to 29 February 2012.

Day
G-mRMR-RF

(α = 0.4) MI-RF PCC-RF SFS-RF RF with
Full Features

MAPE RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE RMSE

Day 1 1.93 75.24 1.79 69.42 10.28 401.01 2.07 79.58 1.91 70.74
Day 2 1.77 66.63 1.78 67.90 9.78 388.26 2.22 79.46 1.80 69.13
Day 3 1.58 53.24 1.63 51.63 7.59 285.51 1.47 49.33 1.50 50.49
Day 4 1.69 79.28 1.59 70.02 5.35 189.65 2.52 105.32 1.98 76.33
Day 5 2.26 90.72 2.66 104.16 11.14 440.91 2.04 83.68 2.91 113.32
Day 6 1.58 57.73 2.37 83.87 9.78 396.44 1.61 57.41 2.54 87.59
Day 7 1.28 51.92 0.97 36.35 9.26 362.46 1.87 73.03 1.29 44.60

Average 1.72 67.82 1.82 69.05 9.02 352.03 1.97 75.40 1.99 73.17

Table 5. Comparison of prediction error (MAPE (%) and RMSE (MW)) from 13 to 19 May 2012.

Day
G-mRMR-RF

(α = 0.4) MI-RF PCC-RF SFS-RF RF with
Full Features

MAPE RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE RMSE

Day 1 1.20 42.36 1.22 39.15 3.76 110.39 1.43 50.90 1.57 47.92
Day 2 1.64 60.32 1.33 50.26 8.98 273.78 1.28 46.10 1.37 53.34
Day 3 2.04 66.88 2.04 67.09 6.56 246.64 2.03 69.43 2.00 66.78
Day 4 0.94 34.38 0.96 34.48 7.04 263.29 0.89 34.98 1.11 41.54
Day 5 1.55 53.26 1.40 46.62 7.17 261.54 1.40 50.04 1.50 52.38
Day 6 1.28 41.45 1.34 44.68 6.66 237.55 1.28 40.22 1.45 40.03
Day 7 0.84 26.82 0.99 36.97 5.51 178.83 0.92 50.61 1.01 49.05

Average 1.35 46.49 1.33 48.03 6.53 224.57 1.32 48.90 1.40 50.15

Table 6. Comparison of prediction error (MAPE (%) and RMSE (MW)) from 21 to 27 August 2012.

Day
G-mRMR-RF

(α = 0.4) MI-RF PCC-RF SFS-RF RF with
Full Features

MAPE RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE RMSE

Day 1 2.88 92.71 2.61 83.05 6.69 258.31 3.32 104.41 2.89 90.68
Day 2 1.48 55.30 1.55 56.81 8.22 319.74 1.77 62.53 1.59 57.62
Day 3 0.91 31.93 0.82 29.02 7.04 263.33 1.00 38.68 1.07 36.28
Day 4 1.88 76.95 2.27 90.86 8.97 344.82 1.99 84.88 2.17 87.44
Day 5 1.77 54.77 1.87 56.56 6.42 227.25 2.16 70.95 1.91 58.15
Day 6 2.08 73.60 1.78 71.44 5.91 181.33 1.71 65.13 1.86 74.78
Day 7 6.12 208.00 6.77 237.00 11.26 458.19 6.98 247.66 6.57 227.17

Average 2.45 72.83 2.52 89.25 7.79 293.28 2.70 96.32 2.58 90.30
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Table 7. Comparison of prediction error (MAPE (%) and RMSE (MW)) from 24 to 30 November 2012.

Day
G-mRMR-RF

(α = 0.4) MI-RF PCC-RF SFS-RF RF with
Full Features

MAPE RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE RMSE

Day 1 1.61 58.60 1.64 58.26 6.80 263.40 1.96 68.90 1.78 63.62
Day 2 1.05 48.24 1.12 43.26 6.97 242.74 2.11 78.43 1.09 40.30
Day 3 1.98 74.62 2.06 74.67 10.78 427.39 1.98 73.90 2.12 76.64
Day 4 1.47 57.14 1.33 48.09 9.21 387.30 1.80 67.13 1.50 57.63
Day 5 1.12 42.84 0.90 33.83 10.29 413.17 1.15 46.87 1.26 45.01
Day 6 1.31 53.79 1.33 52.33 9.03 389.52 1.32 54.74 1.23 47.40
Day 7 1.10 42.86 1.22 45.31 9.53 387.69 1.06 44.21 1.18 43.42

Average 1.38 54.01 1.37 50.82 8.93 358.74 1.63 62.02 1.45 53.43

5.2.2. Comparison of Different Intelligent Methods

For comparing the influence of different predictors to STLF, support vector regression (SVR) and
back propagation neural network (BPNN) are examined with G-mRMR for feature selecting in this
subsection. The parameters of SVR are set as follows: the penalty factor is C = 100, the insensitive loss
function is ε = 0.1, and the kernel width is δ2 = 2 [41].

The parameters of BPNN are set as follows: the number of neurons in hidden layer is
Nneu = 2p+1 [42], and the iteration is T = 2000 [43].

Data consist of training set, validation set, and test set are similar with Section 4.2. The SVR and
BPNN are used to generate the optimal feature subsets.

Table 8 presents feature subsets that different intelligent STLF methods had selected. With different
predictors, the weighting factors are diverse, thus features are varying. Although the final number of
feature selected by SVR and BPNN are less than RF, the RF-based predictor has higher precision of
prediction which is the main target of STLF.

Table 8. The optimal subset selected by using different intelligent STLF methods.

Predictor Min MAPE (%) Number of Features Feature Subset

G-mRMR-RF
(α = 0.4) 2.5389% 15

FL(t-168), FL(t-25), FL(t-48), FWW, FS, FL(t-127),
FL(t-85), FL(t-139), FDW, FL(t-34), FL(t-160), FL(t-70),
FL(t-28), FL(t-120), FL(t-141)

G-mRMR-SVR
(α = 0.3) 3.3293% 5 FL(t-168), FL(t-25), FL(t-48), FHour, FWW

G-mRMR-BPNN
(α = 0.1) 2.7186% 11

FL(t-168), FL(t-25), FL(t-48), FL(t-144), FL(t-72),
FHour, FL(t-47), FL(t-26), FL(t-120), FL(t-167), FWW

The test sets, with four weeks being distributed over the four seasons, are used for estimating
each predictor with the features chosen above. Figure 12 shows the MAPE for comparison and
Table 9 gives the predictive accuracy of each model through maximum, minimum, and average
MAPE. In addition, a direct comparison between G-mRMR-RF, generalized minimum redundancy and
maximum relevance-back propagation neural network (G-mRMR-BPNN), and generalized minimum
redundancy and maximum relevance-support vector regression (G-mRMR-SVR), in terms of MAPE,
are also presented in this figure. Except for the MAPE prediction in the seventh day, as shown in
Figure 12c, the accuracy of G-mRMR-RF is between 1% and 2%; one point is above 2%. In the
whole experiment, only four days show that G-mRMR-RF forecasted worse than other models.
Clearly, the G-mRMR-RF is the best prediction model for its low MAPE and small fluctuation of
error. The G-mRMR-BPNN shows a little better performance than G-mRMR-SVR. We can observe
the maximum MAPE of these four weeks of G-mRMR-RF is 2.26%, 2.04%, 6.12%, 1.98%, respectively,
which is smaller than other models. Same conclusion can be drawn by analyzing the minimum and
average MAPE.
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Figure 12. Forecasting error profiles of different predictors: (a) Forecasting from 23 to 29 February 2012;
(b) Forecasting from 13 to 19 May 2012; (c) Forecasting from 21 to 27 August 2012; (d) Forecasting from
24 to 30 November 2012.

Table 9. Max, Min and Average daily MAPEs of test set corresponding to different predictors.

Test Set MAPE (%) G-mRMR-RF G-mRMR-ANN G-mRMR-SVR

23–29 February 2012
(Winter)

Max 2.26 3.72 4.24
Min 1.28 1.23 1.37
Ave 1.72 2.18 2.61

13–19 May 2012
(Spring)

Max 2.04 3.14 4.42
Min 0.84 1.24 1.87
Ave 1.35 2.05 2.78

21–27 August 2012
(Summer)

Max 6.12 6.32 7.68
Min 0.91 1.78 1.69
Ave 2.45 2.87 3.50

24–30 November 2012
(Fall)

Max 1.98 2.84 4.01
Min 1.05 1.38 1.80
Ave 1.38 2.10 2.86

Based on the comprehensive analysis above, as compared to BPNN and SVR, the RF combines
with G-mRMR is more suitable for STLF.
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6. Conclusions

For the issues regarding the selection of reasonable features for STLF, a feature selection method
based on G-mRMR and RF is proposed in this paper. The experimental results show that the proposed
feature selection approach can select fewer features than other feature selection methods, and the
features identified by the proposed approach are useful for STLF. In addition, the experimental results
show that the forecasting consequences by RF are better than other predictors.

The advantages of the proposed method are as follows:

(1) MI is adopted as the criterion to measure the relevance between features and time series of load
and the dependency among features, which is the basis of quantitative analysis of feature selection
by mRMR.

(2) The correlation between features and load as well as the redundancy of these features are
considered. As compared to the maximum relevance method, the G-mRMR method for feature
selection reduces the number of optimal feature subset and avoids the association of STLF
accuracy with the redundancy of features. For the time being, the relevance and redundancy
are balanced by using a variable weighting factor. The features selected by G-mRMR make the
accuracy of RF more precise than mRMR.

(3) The optimal structure of RF is designed for reducing the complexity of the model and for
improving the accuracy of STLF.
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