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Abstract: Refractory high entropy alloys (HEA), such as BCC NbMoTaW, represent a promising
materials class for next-generation high-temperature applications, due to their extraordinary
mechanical properties. A characteristic feature of HEAs is the formation of single-phase
solid solutions. For BCC NbMoTaW, recent computational studies revealed, however, a
B2(Mo,W;Nb,Ta)-ordering at ambient temperature. This ordering could impact many materials
properties, such as thermodynamic, mechanical, or diffusion properties, and hence be of relevance
for practical applications. In this work, we theoretically address how the B2-ordering impacts
thermodynamic properties of BCC NbMoTaW and how the predicted ordering temperature itself
is affected by vibrations, electronic excitations, lattice distortions, and relaxation energies.
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1. Introduction

Refractory high entropy alloys (HEAs) such as BCC NbMoTaW are of great interest due to
their extraordinary mechanical properties [1–6]. Characteristic of HEAs is the lack of ordering
commonly attributed to the large configurational entropy [7–9]. For BCC NbMoTaW, no signature of
ordering has been experimentally found in the annealed state or at room temperature [3]. However,
thermodynamic equilibrium at experimental conditions is limited due to slow diffusion inherent in
refractory alloys. Recent theoretical works have reported a B2 ordering between mixed (Mo,W) and
(Nb,Ta) sites at ambient temperatures [10–14]. A recent first-principles study combining chemical
interactions from the generalized perturbation method with Monte Carlo simulations revealed an
ordering temperature of about 750 K [15]. However, lattice distortions as well as vibrations (phonons)
have not been taken into account within this approach, and their impact on the order–disorder
temperature remains unknown. Furthermore, the B2 ordering could also impact lattice excitations,
and hence thermodynamic properties such as the lattice expansion and the heat capacity.

In this work, we close the previous simulation gap. We theoretically address the question of how
local relaxations as well as vibrational and electronic entropies impact the theoretical B2 ordering
temperature. We also report how the B2 ordering affects the heat capacity, thermal expansion, and
bulk modulus of the alloy.

2. Materials and Methods

Density functional theory calculations have been carried out employing the VASP code [16,17]
and the projector-augmented wave (PAW) method [18] within the generalized gradient
approximation [19]. The semi core p states were treated as valence within the PAW potentials.
The planewave cutoff was set to 400 eV. Chemical disorder was simulated utilizing the concept of
special quasi-random structures (SQS) [20] for 128 atom supercells (4× 4× 4 unit cells). For B2, Mo
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and W (Nb and Ta) are randomly distributed on the first (second) sublattice. The employed SQS have
been constructed by minimizing the correlation functions of the first two nearest-neighbor shells. The
employed 128 atom cells provide a fair compromise between mimicking chemical disorder within a
limited supercell size and computational efficiency. For a recent discussion on the application of SQS
for HEAs, we refer to [21]. A 4× 4× 4 Γ-centered k-point mesh and the Methfessel–Paxton method
(order 1) with a smearing parameter of 0.1 eV were chosen for the total energy calculations. To study
the impact of lattice expansion, all calculations were performed at nine different lattice constants
around the theoretical equilibrium. The cubic cell shape was fixed, while the internal atom positions
have been fully relaxed.

Ground state volume, bulk modulus, and its derivative were obtained by parametrizing the
computed ground state energies, employing Vinet’s equation of state [22]. The electronic free energy
is derived by occupying the electronic density of states with the Fermi–Dirac distribution. The Gibbs
energy due to vibrations is computed by utilizing the Debye–Grüneisen model [23], as explained in
detail in [24].

3. Results and Discussion

Based on the previous findings, we constructed two supercells (shown in Figure 1) for the A2
(solid solution) in (a) and (b), as well as for the B2 phase (d) and (e). For both structures, we computed
the total energies

Eσ
tot(V) = Eσ

static(V) + ∆Eσ
relax(V) (1)

where σ indicates the A2 and B2 phase. As we are interested in the impact of internal atomic
relaxations, the total energy above is split into the contributions arising from the static bcc lattice,
Eσ

static, and the energy contribution due to internal relaxations, denoted as ∆Eσ
relax. Indeed, lattice

distortions constitute one of the main features in HEAs [7–9], and have been investigated, for
example, for the FeCoNiCrMn (Cantor) HEA recently [25]. For binary alloys, the importance
of relaxation energies to phase stability computations have been recognized some time ago
(e.g., [26–28]). For the here-considered refractory HEA, a similar analysis is, however, lacking so far.

The results for Eσ
tot(V) for the A2 and B2 phases are shown in Figure 1c,f, respectively. We

first notice that the B2 phase is lower in energy at zero K, compared to the A2 solid solution.
This is consistent with the B2 ordering at ambient temperatures found in previous works [10–15].
Considering the impact of atomic relaxations, we find that the A2 total energy is lowered by
≈ 12 meV per atom (difference between red line/circles and black line/squares in Figure 1c) whereas
there is only very little impact of atomic relaxations on the B2 total energy (< 1 meV) shown in
Figure 1f. The relaxation energies are also summarized in Table 1. The rather small impact of
atomic relaxations and relaxation energies can be intuited by examining the B2 ordered phase in
Figure 1e. The two sublattices are occupied by larger (Nb,Ta) and smaller (Mo,W) atoms, shown
in blue and red, respectively. Note that the atomic sizes of the larger Nb and Ta atoms (dark and
light blue) are exaggerated to facilitate the visualization. From the atomic arrangement of larger and
smaller atoms occupying distinct sublattices, only very little relaxations are indeed expected for the B2
phase. In contrast to this, the A2 phase shown in Figure 1a,b features a random distribution of larger
(Nb, Ta) and smaller (Mo,W) atoms, causing a significantly larger amount of local distortions, and
hence relaxation energies. From the different ∆Eσ

relax contributions for A2 and B2, we can conclude
that local atomic relaxations will have an impact on the ordering temperature, which we will
discuss below.
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Figure 1. Side and top view on the employed supercells for the high entropy alloy (HEA) in the A2 (a)
and (b), as well as for the B2 phase, (d) and (e). To facilitate the visualization the atomic sizes of the
larger atoms, Nb and Ta (in red and light red) are enhanced compared to the smaller Mo and W atoms
(in blue and light blue). Figures have been created employing the OVITO program package [29]. The
computed energy–volume per atom curves for both phases with and without relaxation energy (black
and red solid lines) are shown in (c) and (f).

Table 1. Ground state properties, Debye temperatures, and relaxation energies of the NbMoTaW A2
and B2(NbTa;MoW) phase.

Phase Method V0 (A3) B0 (GPa) B′ ∆Erelax (meV) ΘD (K)

B2(MoW;NbTa) PAW + SQS 16.98 233 4 - 296
PAW + SQS + relax 16.97 233 4 0.6 296

A2 solid solution

PAW + SQS 16.97 232 4 - 296
PAW + SQS + relax 16.99 231 4 12.5 295
PAW + SQS + relax [30] 17.08 228 n/a n/a n/a
Experiment [4] 16.70 220 - - -

Before discussing the ordering temperature, we first investigate the impact of B2 ordering on
ground state and thermodynamic properties. In Table 1, we summarize the ground state volume, V0,
bulk modulus, B0, and its derivative, B′, derived from the ground state energies in Figure 1. Although
the relaxation energy for A2 is not negligible, the impact on the ground state properties is rather small.
This indicates an almost constant and volume-independent ∆Eσ

relax. We note that our results are also
in good agreement with previous calculations [30]. In order to evaluate the impact of B2 ordering on
the thermodynamic properties, we compute the Gibbs energies of both phases, Gσ(T), from which
thermodynamic properties such as the volume expansion or heat capacity can be derived.

The Gibbs energies of the B2 and A2 solid solution at ambient pressure are given in the adiabatic
approximation as

Gσ(T) = Hσ
tot + Gσ

el(T) + Gσ
vib(T)− TSσ

conf (2)
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where Hσ
tot is the enthalpy, Gσ

el(T) is the electronic Gibbs energy, Gσ
vib(T) is the vibration Gibbs

energy, and Sσ
conf denotes the configuration entropy. The ideal configuration entropy for B2 (with

disordered Nb,Ta and Mo,W on each sublattice) is SB2
conf = log(2), and for the A2 solid solution

SA2
conf = log(4). Note that configuration entropy is, in general, temperature dependent (e.g., [15,31]),

as discussed below.
The vibration contribution, Gσ

vib(T), is modeled within the quasi-harmonic Debye–Grüneisen
model [23], as described in detail in [24]. A similar approach has recently been employed to study
thermodynamic properties of other refractory alloys (HfNbZr, HfNbTiZr, and HfNbTaTiZr) [32]. Note
that despite recent progress in the computation of phonons for disordered binary alloys [33,34], these
methods have not yet been advanced to the stage where they are applicable to multi-componen alloys.

The key ingredient for our Debye model is the Debye temperature, ΘD, which can be derived
from the ground state properties. The values for ΘD are listed in Table 1. For B2 and A2, the same ΘD
of 296 K is found. Only a marginal reduction of ≈ 1K is found for ΘD of the A2 when the effects of
local relaxations are included.

From Equation (2) we compute for both phases (B2 and A2) the specific heat capacity, CP(T), the
volume expansion, V(T), as well as the bulk modulus, B(T). The results for B2 and A2 are shown in
Figure 2 as black and red solid lines, respectively. The dashed lines show the results without taking
electronic excitations into account. For all considered temperatures, the impact of B2 ordering turns
out to be negligible. This is consistent with the very similar ground state properties and ΘD listed
in Table 1 derived for both phases. The impact of B2 ordering on the electronic contribution is also
negligible, although Gσ

el is of course important for accurate thermodynamic predictions—e.g., for the
specific heat capacity in Figure 2a.
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Figure 2. (a) Specific heat capacity, (b) volume expansion, and (c) bulk modulus versus temperature
are shown for the B2 (NbTa;MoW) (black lines) and A2 (NbMoTaW) solid solution (red lines), with and
without (solid/dashed lines) electronic contributions. The predicted B2-ordering temperatures from
the Gibbs energy analysis are indicated in (b). The B2 ordering has little impact on thermodynamic
properties (see text for details).

We can therefore conclude that the B2 ordering has practically no impact on the lattice parameter
or the bulk modulus, and probably not on the elastic properties either. The heat capacities of B2 and
A2 do not differ significantly from one another. Note, however, that Figure 2 does not contain the
contributions of chemical short-range order, which gives a non-vanishing contribution to the heat
capacity around the phase transition.

From the computed Gibbs energies (Equation 2), we can relate the ordering temperature to the
Gibbs energy difference between the A2 and B2 phase; i.e.,

∆GA2−B2(T) = GA2(T)− GB2(T) = ∆Htot + ∆Gel(T) + ∆Gvib(T)− T∆Sconf (3)

From above equation, we estimate the ordering temperature via ∆GA2−B2(Tord) ≡ 0. An advantage of
our theoretical approach is that it allows us to “switch on” and “off” different contributions entering
Equation (3), and thus to estimate their individual importance on Tord.
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We first assume an ideal bcc lattice without taking local atomic relaxations into account; i.e.,
Eσ

tot ≡ Eσ
static and ∆Eσ

relax = 0. If only configurational entropy in Equation (3) is taken into account,
a transition temperature of 717 K is obtained (see also Table 2), being in good agreement with our
previous result of ≈ 750 K based on the generalized perturbation method derived on the static lattice
and Monte Carlo simulations [15]. The slightly lower ordering temperature derived here compared
to [15] can be partially attributed to the overestimated ideal configurational entropy SA2

conf in the
present work. Neither the inclusion of vibrations nor of electronic contributions change the transition
temperature. This is consistent with the very similar ground state properties (in particular, bulk
modulus and Debye temperature) of the A2 and B2 phase in Table 1 and the negligible impact of B2
ordering on thermodynamic properties in Figure 2.

Table 2. Enthalpy difference at T = 0 K between B2(NbTa;MoW) and A2(NbMoTaW) solid solution, as
well as predicted B2-ordering temperatures if configuration entropy, lattice excitations, and electronic
contributions are taken into account.

Method ∆HA2−B2
tot (meV) Tconf

ord (K) Tconf+vib
ord (K) Tconf+vib+el

ord

PAW + SQS 42.8 717 717 717
PAW + SQS + relax 30.9 517 508 508

We now include atomic relaxations, which, as discussed above, lowers the A2 energy by about
12 meV compared to the B2 phase, which has been neglected in [15]. Indeed, if the relaxation
energies, ∆Eσ

relax, are included, the ordering temperature is reduced by almost 30% down to 517 K.
Similar to the unrelaxed scenario, vibrations do not significantly change the ordering temperature
(< 10 K), revealing a final predicted ordering temperature of 508 K if relaxations, vibrations, electronic
excitations, and configurational entropy are taken into account. We can therefore conclude that
vibrations and electronic excitations are not critical for the phase stability analysis in NbMoTaW
HEAs, while local atomic relaxations and relaxation energies turn out to be significant.

4. Conclusions

We studied the A2–B2 ordering in NbMoTaW refractory alloys, in particular the impact of
vibrations, electronic excitations, and lattice distortions on the ordering temperature, as well as the
impact of B2 ordering on thermodynamic properties. We find that relaxations and B2 ordering have
only marginal impact on the ground state volume and bulk modulus. The heat capacity of B2 and A2
differ little, although there is of course a significant contribution due to long and short-range order
around the order–disorder temperature. The volume expansion and bulk modulus do not appear to
be affected by the B2 ordering.

Based on total energy calculations and ideal configurational entropy, the A2–B2 ordering
temperature is found to be in good agreement with previous works. Vibrations are found to play
a minor role in determining the ordering temperature. In contrast to the A2 phase, the B2 phase is
only slightly affected by atomic relaxations, due to the similar size of Nb and Ta as well as Mo and W.
Regarding the competition of A2 and B2 Gibbs energies, the lattice relaxations turn out to significantly
reduce the predicted ordering temperature by almost 30%.

Our results suggest that although thermodynamic properties of the refractory NbMoTaW
HEA can be efficiently modeled based on static lattice calculations, accurate ordering temperature
computations require the inclusion of local atomic relaxations.
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