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Abstract: In this paper, we revisit the notion of the “minus logarithm of stationary probability”
as a generalized potential in nonequilibrium systems and attempt to illustrate its central role in
an axiomatic approach to stochastic nonequilibrium thermodynamics of complex systems. It is
demonstrated that this quantity arises naturally through both monotonicity results of Markov
processes and as the rate function when a stochastic process approaches a deterministic limit. We then
undertake a more detailed mathematical analysis of the consequences of this quantity, culminating in
a necessary and sufficient condition for the criticality of stochastic systems. This condition is then
discussed in the context of recent results about criticality in biological systems.
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1. Introduction

This is part II of a series on stochastic nonlinear dynamics of complex systems. Part I [1] presents
a chemical reaction kinetic perspective on complex systems in terms of a mesoscopic stochastic
nonlinear kinetic approach (e.g., Delbrück–Gillespie processes) as well as a stochastic nonequilibrium
thermodynamics (stoc-NET) in phase space. One particularly important feature of the theory in [1] is
that it takes the abstract mathematical concepts seriously—that is, it follows what the mathematics
tells us [2]. For example, it was shown that the widely employed local equilibrium assumption in the
traditional macroscopic theory of NET can be eliminated when one recognizes the fine distinction
between the set of random events, the S in a probability space (S ,F , P) and a random variable that
is defined as an observable on the top of the measurable space, x : S → R. The local equilibrium
assumption is needed only when one applies the phase space stoc-NET to physically measurable
transport processes [3].

The same chemical kinetic approach can be applied to other biological systems.
Biological organisms are complex systems with a large number of heterogeneous constituents,
which can be thought of as “individuals”. To be able to develop a scientific theory for such a
complex system with any predictive power, one must use a probabilistic treatment that classifies
the individuals into “statistically identical groups” [4–6]. Thermodynamics and statistical mechanics
provide a powerful conceptual framework, as well as a set of tools with which one can comprehend and
analyze these systems. The fully developed statistical thermodynamic theory taught in college physics
classes is mainly a theory of equilibrium systems. The application of its fundamental ideas, however,

Entropy 2016, 18, 309; doi:10.3390/e18080309 www.mdpi.com/journal/entropy

http://www.mdpi.com/journal/entropy
http://www.mdpi.com
http://www.mdpi.com/journal/entropy


Entropy 2016, 18, 309 2 of 20

is not limited to just equilibrium systems or molecular processes. Stoc-NET [3,7–10], along with the
information theoretical approach [6,11–14], is a further development in this area.

One of the key elements of the theory presented in [1] was the nonequilibrium steady state
(NESS) potential, or “energy”, defined as the minus logarithm of the stationary probability distribution
of a kinetic model. In the past, this quantity has appeared repeatedly in the literature [15–19], but most
of the studies focus on its computation. In this paper, we attempt to illustrate its central role as a novel
“law of force”, a necessary theoretical element in the stoc-NET of complex systems.

Once this connection between energy and probability is established, it is possible to formally
define probabalistic quantities analagous to other physical variables such as temperature and entropy.
(Notice that the term “entropy” is somewhat overloaded. In the context of probability distributions,
it typically refers to the Shannon entropy S =

∫
p(x) ln p(x)dx. In statistical physics, it is more

often used to refer to the Gibbs or Boltzmann entropy, both of which are defined in terms of the
volume of some region in the phase space of a Hamiltonian system. These various definitions are
related but not equivalent. In this work , particularly in Section 4.1, we define analogues of Gibbs
and Boltzmann entropies for probability distributions.) In particular, we extend the notion of critical
temperatures to the realm of stationary stochastic processes and find a necessary and sufficient
condition for the existence of such criticalities. Loosely speaking, at low temperatures, the dynamics
of a stochastic process are dominated by energy considerations and become nearly deterministic
(i.e., the system is almost always in a ground state). At high temperatures, the dynamics are dominated
by entropic considerations and become nearly uniform (i.e., the system traverses all states, regardless
of energy). The former occurs for any stationary process, and the rate of approach is given by the energy.
In contrast, the entropic effects typically dominate only at infinite temperatures, but some systems can
reach uniformity at a finite temperature. We define such a temperature as critical.

Note that we are not presenting an alternative to existing statistical mechanical literature on
criticality and phase transition. Instead, we are attempting to generalize these notions from statistical
mechanics to a much broader context where the concept of criticality does not yet exist. One can
certainly craft stationary distributions from an equilibrium statistical mechanics problem and apply
our theory, but this will not produce results that differ from classical approaches.

The paper is organized as follows: In Section 2, we provide a brief historical review of the use of the
negative logarithm of a stationary probability distribution as an energy potential. In Section 2.1, we first
look at the history of using minus-log-probability to equilibrium chemical thermodynamics and briefly
review Kirkwood’s fundamental idea of the potential of mean force and the notion of entropic force.
In Section 2.2, we describe two recent results identifying the minus-log-probability as “energy”:
a self-contained and consistent mesoscopic stoc-NET [20], and a precise agreement between its
macroscopic limit and Gibbs’ theory [21,22]. These two results provide strong evidence for the
validity of such an identification. In Section 2.3, we discuss the legitimacy and centrality of stationary
distribution in the “entropy inequality” for a Markov process from a mathematical standpoint.
In Section 3, we propose a definition of the “corresponding deterministic dynamics” of a stochastic
process using power-scaling of probability densities. In Section 3, we show that the rate of convergence
to this corresponding deterministic process coincides with the minus-log-probability definition of
energy. With the justifications given in Sections 2 and 3, we carry out a more detailed analysis of such a
probability distribution in Section 4. In Section 4.1, terms analogous to Boltzmann’s and Gibbs’ entropy
are defined, along with their corresponding microcanonical partition functions. We also discuss the
relative merits of these definitions. In Section 4.2, we prove that the system has a critical temperature if
and only if the Gibbs’ entropy of the system is asymptotic to the energy. In Section 4.3, we discuss
several example distributions in order to emphasize some subtleties in the choice of distribution and to
illustrate the connection between this theory and equilibrium statistical mechanics. Finally, in Section 5,
the ideas from previous sections are related to some recent results on biological systems.
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2. A Novel Law of Force: Potential of Entropic Force

In Boltzmann’s statistical mechanics, phenomenological thermodynamics is given a Newtonian
mechanical basis. Based on the already well developed concepts of mechanical energy and
its conservation, Boltzmann [23] derived the relation

peq(x) ∝ e−U(x)/kBT , (1)

where U(x) is the mechanical energy of a microstate x and peq(x) is the probability of state x when
the system is in thermal equilibrium—a concept which had also already been well established in
thermodynamics via the notion of quasi-stationary processes. (It is important to distinguish between
a mechanical microstate and a thermodynamic state. A thermodynamic state is a state of recurrent
motion, defined by an entire level set A = {x |U(x) = E}. Thus, Boltzmann [23] also introduced
his celebrated entropy SB(E) = kB ln Ω(E), where SB is the entropy and Ω(E) is the number of
microstates consistent with a given energy E. That is, Ω(E) is the cardinality of A. In terms
of E, then peq(E) ∝ Ω(E)e−E/kBT = e−[E−TS(E)]/kBT .) In a thermodynamic equilibrium, there is
no net transport of any kind. (In the thermodynamics before Gibbs, macroscopic transport processes
were driven by either a temperature or a pressure gradient in the three-dimensional physical space.
In Gibbs’ macroscopic chemical thermodynamics, a chemical equilibrium has no net flux in the abstract
stoichiometric network. In the current mesoscopic, stochastic thermodynamics, an equilibrium has no
net probability transport in an appropriate state space. The notion of detailed balance independently
arose in physics [24,25], chemistry [26,27] and in probability theory [28].)

It is also worth noting that Boltzmann’s mathematical derivation matched the modern maximum
entropy principle with the constraint of given mean value for energy, which yields an exponential law
for the energy distribution. (The mathematical statements of energy conservation ∑N

k=1 Ek = C and
fixed mean energy 1

N ∑N
k=1 Ek = c are equivalent when N is given.)

Inspired by Boltzmann’s law (1), generalizations of the concept of equilibrium thermodynamic
potentials have been proposed in many studies. These generalizations go by a variety of names:
generalized thermodynamic potential, kinetic potential, nonequilibrium potential, pseudo-potential,
emergent landscape, etc. [15–19,29]. One of the common features of all these names is that the
“potential function” is defined by applying Equation (1) in reverse. One defines a potential

H(x) = − ln peq(x) (2)

based on the stationary probability, which can be obtained in many statistical models and whose
existence can be mathematically proven for a large class of systems. Most importantly, many systems
with stationary probability have non-zero transport flux(es).

In fact, this tradition of taking (2) as a legitimate potential function started in equilibrium statistical
chemical thermodynamics. Note that according to Equation (1), the term −kBT ln peq(x) is simply the
total mechanical energy of state x, which is known a priori. Therefore, there is no reason to define (2)
in studies of a pure mechanical system. However, in statistical chemical thermodynamics, one usually
does not have a full Hamiltonian function for a complex molecule at hand. It is at this juncture that the
notion of a potential of mean force [30] enters the theory.

2.1. Equilibrium Potential of Mean Force

Physical chemists deal with complex molecules and force fields. Even though in molecular
dynamics (MD) a molecule has a classical mechanical representation in terms of atoms as point masses,
the precise potential energy is not known. The force fields in MD have therefore been under
intense development over the past 50 years [31]. With such complexities, is it even possible to
do statistical mechanics?
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Let us first note a very important mathematical equality in connection to Equation (1). We consider
a function U(x) with x = (x1, x2) where x ∈ S = S1 ⊕S2, x1 ∈ S1 and x2 ∈ S2. Then,

Z(T) =
∫
S e−U(x)/kBTdx

=
∫
S1

∫
S2

e−U(x1,x2)/kBTdx1dx2

=
∫
S1

e−ϕ(x1)/kBTdx1,
(3)

ϕ(x1) = −kBT ln
∫
S2

e−U(x1,x2)/kBTdx2. (4)

Notice that if we consider ϕ(x1) as a “potential function” for the system in (coarse-grained)
state x1, then we can obtain the same Z(T) using Equation (3), which is in the exact same form as in (1).
More importantly, we see that ϕ(x1) is the free energy with fluctuating x2 and fixed x1.

After reading the calculations above, one is naturally led to the question, “what does this potential
energy function ϕ(x1) defined in (4) represent?” J. G. Kirkwood answered this question in a very
satisfying manner [30]: it is the potential function of a “mean force”, in equilibrium, acting on the
system which is fixed at x1:

−dϕ(x1)
dx1

= −

∫
S2

(
∂U(x1, x2)

∂x1

)
x2

e−U(x1,x2)/kBTdx2∫
S2

e−U(x1,x2)/kBTdx2

= −
∫
S2

(
∂U(x1,x2)

∂x1

)
x2

peq(x2
∣∣x1
)
dx2,

(5)

in which peq(x2|x1) is the conditional equilibrium probability distribution for x2 given x1, and the
partial derivative −(∂U(x1, x2)/∂x1)x2 is precisely the mechanical force in the x1 direction, with the
given x2. Averaging over the fluctuating x2 with distribution peq(x2|x1), Equation (5) is the mean force
on x1.

In other words, Equation (4) states that the negative logarithm of the marginal probability
distribution for x1 is simply the potential of mean force if one chooses the free energy of the
entire system, F(T) = −kBT ln Z(T), as the zero energy reference point.

− kBT ln
∫
S2

peq(x1, x2)dx2 = ϕ(x1)− F(T). (6)

One of the most important facts, as is clear from (4), is that the potential of mean force ϕ(x1)

is itself a function of temperature. In physical chemistry, one usually builds a statistical mechanical
model using such a potential of mean force rather than using a mechanical energy function. That is,
one uses a free energy function with certain degrees of freedom fixed and averaged over all the others.

Since ϕ(x1) is temperature dependent, it has its own energy part and entropy part:

ϕ(x1; T) =
∂(ϕ/T)
∂(1/T)︸ ︷︷ ︸

energy

−T
(
− ∂ϕ

∂T

)
︸ ︷︷ ︸

entropy

. (7)

A potential of mean force can be purely entropic. One of the best known examples is
rubber elasticity, which arises from a Gaussian polymer chain [32]. If the temperature is suddenly
dropped to zero, the force (and its associated energy) disappears instantly.

Observing this significant conceptual distance between chemical thermodynamics and its
mechanical origin, and the essential statistical nature of Gibbs’ energy based on minus-log probability
in all modeling practices, it is not surprising that some researchers who mainly work with biochemical
thermodynamics strongly feel that one could reformulate statistical thermodynamics (at least in
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connection to energy) in terms of a “measure of information” and abandon the very term “entropy”,
along with its root in mechanics [33].

2.2. Nonequilibrium Steady State Potential

For stochastic models of equilibrium systems, therefore, (2) yields a meaningful free energy
function in kBT units. It embodies an exact coarse-graining procedure. For stochastic models
of nonequilibrium steady state with non-zero transport flux, we now have sufficient evidence to
suggest that

H(x) = − ln pss(x), (8)

where pss is a stationary distribution, but may or may not be an equilibrium distribution, is also a
meaningful energy function. We start with some conceptual discussions.

First, outside classical mechanics, the question “what is a force and how do we quantify it” is
highly non-trival and vague. Onsager, however, introduced the notion of a thermodynamic force in
his theory of irreversible processes [34]. Intuitively, a force is the cause of an action. In Newtonian
mechanics, a force is the cause of a change in the vector d

dt~x. However, in an “overdamped world”,
which emcompasses most of chemistry, biology, and society, a force is actually needed to cause a
meaningful movement (i.e., a transport).

In terms of the mathematical theory of stochastic dynamics, there is a universal conception for
movement or “dynamics”: Given the option to move to one of many states, a system is most likely to move to
the state with the highest stationary probability. One should immediately note that this statement is highly
problematic from a rigrous mathematical standpoint. Nevertheless, at least in one class of systems,
the above notion is attainable: the class of systems whose dynamics have an invariant measure that
is ergodic.

When discussing statistical mechanics, Montroll and Green have stated that [35] “The aim of
statistical mechanics is to develop a formalism from which one can deduce the macroscopic behavior
of physical systems composed of a large number of molecules from a specification of the component
molecular species, the laws of force which govern intermolecular interactions, and the nature of
their surroundings”. With the rise of equilibrium chemical thermodynamics, it is clear that the
“laws of force” themselves can be discovered from the equilibrium distribution. In fact, most such laws
of force in biophysical modeling are statistical in nature and can be seen as entropic forces.

Indeed, “[t]o date no one has succeeded in deriving the laws of nonequilibrium phenomena
from the [Newtonian] equations of motion merely by allowing the number of particles involved
to become infinite. However, considerable success has been achieved by introducing various
statistical hypotheses” [35]. Recent studies have shown that if one identifies H(x) as a “generalized
Helmhotz or Gibbs energy function”, a complete and consistent mesoscopic thermodynamics can be
formulated that includes nonequilibrium steady states [3,20]. Furthermore, if one passes the system
from mesoscopic to macroscopic by allowing the number of particles involved and the system’s volume
to become infinite, two macroscopic thermodynamic laws can be derived [21]. If the mesoscopic system
is a general chemical reaction network with detailed balance, the macroscopic emergent potential was
shown mathematically to be Gibbs’ function G(x), where xi are the concentrations of chemical species
and ∂G/∂xi are the chemical potentials for the i-th species. The same theory also proves the existence
of, and provides an equation for computing, a generalized Gibbs function for an open chemical reaction
network under a chemostat, which approaches a nonequilibrium steady state.

2.3. Stationary Distribution and Entropy Inequalities of Markov Processes

Unless stated otherwise, we will exclusively deal with a denumerable state space S (either finite
or infinite) for the remainder of the paper.
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A stronger monotonicity result. The strongest version of a monotoic entropy result that we are aware
of is [36,37]

d
dt

D
[
{px(t)}‖{qx(t)}

]
≡ d

dt ∑
x∈S

px(t) ln
(

px(t)
qx(t)

)
≤ 0, (9)

in which px(t) and qx(t) are two solutions to the Kolmogorov forward equation with different initial
distributions. Equation (9) immediately yields a variety of related inequalities:

(i) When qx(t) ≡ πx ∀t, where {πx} is a stationary distribution of the Markov process, then (9) is the
widely known “free energy theorem” [38,39].

(ii) When qx(t) ≡ πx ∀t, and pi(0) = δi`, one has

d
dt ∑

j∈S

p`j(t) ln

(
p`j(t)

πj

)
≤ 0 ∀`; (10a)

therefore,
d
dt

I
[
xt
∥∥x0
]
=

d
dt ∑

`,j∈S

π`p`j(t) ln

(
p`j(t)
π`πj

)
≤ 0, (10b)

where I[xt
∥∥x0] is the mutual information between x0 and xt of a stationary Markov

process. Similarly,

d
dt

− ∑
`,j∈S

π`p`j(t) ln p`j(t)

 ≥ 0. (10c)

This result was in [40]. The term inside (· · · ) is the conditional Shannon entropy H[xt|x0] for the
stationary xt. It is also the Kolmogorov–Sinai (KS) entropy of every t steps of the stationary xt:

lim
n→∞

1
n

H
[
x0, xt, x2t, · · · xnt

]
.

The result is more easily understood when interpreted this way: KS entropy quantifies the
randomness in a “map”. The randomness does not decrease with map composition.

(iii) When px(t) ≡ πx (and when we then rename qx(t) as px(t)), we have

d
dt ∑

x∈S

πx ln
πx

px(t)
≤ 0. (11)

To explain this result more intuitively, we note that the sum in (11) can be interpreted as the
information lost when predicting πx from px(t). Roughly speaking, if t1 < t2, then it takes more
information to predict the distant future (πx) from time t1 than it does from time t2 because the
prediction from px(t1) has to account for the random events that can happen within the time
interval [t1, t2].

Filtration and entropy monotonicity. Even though the original Shannon entropy used an
implicit uniform prior, the necessity for an explicit prior has been widely discussed in information
theory [41,42]. (The entropy with respect to an explicit prior is more accurately called the relative
entropy or cross-entropy, and its expression is analagous to the free energy in statistical mechanics.)
More importantly, for a continuous random variable, the logarithm of a probability density is simply
ill-defined mathematically. All the various monotoic “entropy” results in the previous section provide
the legitimacy of using {πx} as the reference measure for a Markov process. We would like to argue
that this is, in fact, necessary.

We consider a Markov process in a more general setting in this section. Let the triple (S ,F , P)
be a probability space; let (I ,≤) be a totally ordered index set; and let (S, Σ) be a measurable space.
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If X : I ×S → S is a stochastic process, then its natural filtration of F with respect to X is a sequence{
F (X)

i | i ∈ I
}

such that

F (X)
i = σ

{
X−1

j (A)
∣∣∣ j ∈ I , j ≤ i, A ∈ Σ

}
. (12)

That is, F (X)
i is the smallest σ-algebra on S that contains all pre-images of Σ-measurable subsets

of S for times j up to i. The definition given in (12) yields a monotonic relation

F (X)
j ⊆ F (X)

i if i, j ∈ I , j ≤ i. (13)

Such a property is called non-anticipating; in other words, “when including the future,
the dynamics are at least as random as up to now”.

The monotonicity in Equation (13) can be expressed in terms of Shannon’s information entropy as

H[X0, X1, · · · , Xi] ≤ H[X0, X1, · · · , Xi, Xi+1]. (14)

This inequality is true because H[X0, · · · , Xi+1] − H[X0, · · · , Xi] is the conditional Shannon
entropy H[Xi+1|X1, · · · , Xi], which is never negative.

Notice that Equations (13) and (14) are concerned with the sequences of
{

Xj | j ≤ i
}

, but the
“entropy monotonicity” results in statistical physics deal with individual Xi and Xi+1; and entropy has
deterministic values that are different for different times. The relationship among Xi, Xi+1, and the
filtration is shown as

(S ,F ) Xi−−−−→ (S, Σ)
X−1

i−−−−→
(
S , F(X)

i

)
∥∥∥ ∥∥∥ time stepping

y
(S ,F ) Xi+1−−−−→ (S, Σ)

X−1
i+1−−−−→

(
S , F(X)

i+1

). (15)

We now consider the information lost from Xi to Xi+1 when the event ω occurs, i.e.,
ln PXi+1(ω)− ln PXi (ω). Its expected value with respect to the stationary, invariant measure µπ(ω) is
given by

E
[
ln PXi+1 − ln PXi

]
=
∫

Ω ln
(

dPXi+1
dPXi

(ω)

)
dµπ(ω)

=
∫

Ω ln
(

dPXi+1
dµπ

(ω)

)
dµπ(ω)−

∫
Ω ln

(dPXi
dµπ

(ω)
)

dµπ(ω).
(16)

If both Xi and Xi+1 are real valued (i.e., S = R) with density functions fXi (x) and fXi+1(x)
respectively, then (16) becomes

E
[
ln PXi+1 − ln PXi

]
=
∫
R

ln
( fXi+1(x)

π(x)

)
π(x)dx−

∫
R

ln
(

fXi (x)
π(x)

)
π(x)dx, (17)

where π(x) = dµπ/dx is the density of the stationary measure. We know that Equation (17) is
never negative; therefore, the mean information lost

∫
Ω

ln
(

dPXi+1

dPXi

(ω)

)
dµπ(ω) ≥ 0, (18)

or equivalently,

H
[
Xss‖Xi

]
≥ H

[
Xss‖Xi+1

]
≥ 0, (19)

where Xss : S → S is a random variable distributed according to the stationary distribution π. This is
essentially equivalent to the result in Equation (11).
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Equation (18) states that information lost from Xi to Xi+1, averaged with respect to the
invariant density, is always greater than zero, while Equation (19) suggests that “the infinitely distant
future has more information to gain from Xi than from Xi+1”. There is a subtle difference between
these statements and the following: “when including the future, the world is at least as random
as up to now”. The reason for this, we suggest, is that (18) and (19) require the existence of the
stationary measure. Knowing the existence of a stationary behavior, “the future is at least as random
as now”.

3. Deterministic Correspondence and Infinite β

Any representation of reality requires elements of both chance and determinism. These correspond
to the stochastic and deterministic components of complex dynamics. As repeatedly pointed out
in [43–45], it is the interaction between these two that yields self-orgranization and complex behavior.
Therefore, the ability to “envision” a corresponding deterministic dynamics to some given
stochastic dynamics, even when there is no obvious “system size parameter”, provides a deeper
understanding of complex dynamics. The natural parameter for a stochastic differential equation
(SDE) dx(t) = b(x)dt + adB(t) is the noise strength a; the natural parameter in classical statistical
mechanics is the system’s size (or one could use the temperature); and the natural parameter in a
Delbrück–Gillespie process is the system’s volume.

How can one envision such a deterministic correspondence when no obvious natural
parameters exist? It is becoming increasingly common to use the modal value of a distribution as a
“deterministic” counter part to the stochastic system. According to this view, a bimodal distribution
corresponds to a bistable system. Note it is a widely held misconception that the mean dynamics
〈x(t)〉 are the deterministic counterpart of a stochastic x(t). For an SDE, 〈dx(t)〉 6= b(〈x〉) in general.
More importantly, while 〈x(t)〉 is a non-random function of t, it is not a trajectory of any meaningful,
self-contained dynamical system. This point is best illustrated by the fact that the differential equation
describing 〈x(t)〉 usually depends on higher moments like 〈x2(t)〉. Moreover, for a discrete system,
even if the mean is defined, it does not usually lie in the same space as x(t).

We propose the following “deterministic” counterpart for a random variable x with probability
mass function pss

x , and we will show that it is intimately related to the energy defined in (8). We will
define the “deterministic” variable x∞ as

x∞ = lim
β→∞

xβ, (20)

where

pss
xβ
(x) =

pss
x (x)β

Z(β)
, (21)

with normalization constant

Z(β) = ∑
x

pss
x (x)β.

The random variable x∞ will be concentrated on a finite number of states (the most probable
ones of px(x)) with a probability of 1. In particular, if pss

x (x) is unimodal, then x∞ really will
be a deterministic system. On the other hand, if pss

x (x) is multimodal, then there is no unique
deterministic counterpart. Applying this idea to a discrete-state Markov process, the corresponding
dynamics become a deterministic transformation as discussed in [46].

It is worth noting that similar definitions are often introduced formally as analogues to
inverse-temperature without any discussion of deterministic correspondence, e.g., [12,13]. We spend
so much time on the concept in order to emphasize that it arises naturally in a study of stochastic
systems without any reference to thermodynamic concepts. The scaling factor β should not just be
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thought of as a formal method for introducing temperature to a system, but as a natural feature of any
probabilistic system.

With this definition in hand, the obvious question becomes “how fast does the limit
in (20) converge?” In the next section, we will try to make this question more rigorous. In the
process, we will provide more evidence that H(x) is an important quantity.

Large Deviation Principle for Infinite β

We will now investigate the rate of convergence of the limit in (20). This is a question well suited
to the methods of large deviation theory. However, before we can use such methods, we need to
frame the question somewhat more rigorously. Strictly speaking, we should be dealing with limits of
measures rather than limits of random variables.

Let (S ,F , P) be a discrete probability space with probability mass function pss and define the
family of measures Pβ on (S ,F ) whose probability mass functions are given by

p(x, β) = pss(x)β

Z(β)
, where

Z(β) = ∑x∈S pss(x)β.
(22)

As we will show later, this is always possible for β ≥ 1. In addition, let (S, Σ) be a measurable
space and choose a function σ : S → S. This defines a family of S-valued random variables Oβ where

Pr
{
Oβ = z

}
= Pβ ({x ∈ S | σ(x) = z}) , (23)

where σ : S → S is a measurable map. In particular, if σ is one-to-one, then Pr
{
Oβ = z

}
=

p(σ−1(z), β). The random variables Oβ are observables on the measurable space (S ,F ). In some
cases, the distinction between such measurable processes and the underlying measure space becomes
vitally important [3]. As we will see here, though, the rate of convergence of these measures is the
same whether we phrase the question in terms of observables or the original measure space.

For unimodal distributions, we know that, as β goes to infinity, the distribution of Oβ becomes
concentrated on a single value z∗ ∈ S. However, it is not clear a priori how the rate of this convergence
depends on our choice of O. It is conceivable that different observables could lead to different
convergence rates. Moreover, we could eschew observables altogether and work solely with the
measures Pβ. In this section, we will show that the rate of convergence is identical for a wide range of
observables and that it is intimately related to H(x).

Case (i): Let S = R. We will not restrict σ to be one-to-one, but we will assume that if σ(x1) = σ(x2)

for some x1, x2 ∈ S , then pss(x1) = pss(x2). We will let N(x) denote the (necessarily finite) number
of elements y ∈ S such σ(y) = σ(x). Finally, let x∗ ∈ S be a state with maximal probability. We
know that

lim
β→∞

Pr
{∣∣Oβ − σ(x∗)

∣∣ ≥ η
}
= 0 (24)

for any η ∈ R+. In fact, Pr
{∣∣Oβ − σ(x∗)

∣∣ ≥ η
}

is a non-increasing step function of η. Under reasonable
conditions, we can write

Pr
{∣∣Oβ − σ(x∗)

∣∣ ≥ η
}
= e−βI1(η)+o(β), (25)

where
I1(η) = − lim

β→∞
ln Pr

{∣∣Oβ − σ(x∗)
∣∣} . (26)
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If we define x̂η = argmaxx∈S {|σ(x)− σ(x∗)|}, then we have

I1(η) = − lim
β→∞

1
β

ln

 1
Z(β) ∑

x:|σ(x)−σ(x∗)|≥η

pss(x)β


= − lim

β→∞

1
β

ln
(

N(x̂η)p(x̂η , β)

N(x∗)p(x∗, β)

)
= − ln

(
p(x̂η , 1)
p(x∗, 1)

)
= H(x̂η)− H(x∗).

Case (ii): Instead of creating a somewhat arbitrary family of observables Oβ, we can also work
solely with the measures Pβ. To make this more convenient, we will introduce some additional notation.

Let Y = H(S ) ⊂ R and let y∗ be the minimum value in Y . For any h > y∗, let
Sh = {x ∈ S | H(x) < h} and Yh = {y ∈ Y | y < h}. Let bhc denote the minimum value of Y \Yh.
Finally, define

Zh(β) = ∑
x∈Sh

pss(x)β. (27)

We know that Pβ (S \Sh) approaches zero as β goes to infinity. Much like the previous case,
we would like to know how quickly this quantity decays. We have

Pβ (S \Sh) = e−βI2(h)+o(β), (28)

where

I2(h) = − lim
β→∞

1
β

ln Pβ (S \Sh)

= − lim
β→∞

1
β

ln
(

1− Zh(β)

Z(β)

)
= − lim

β→∞

1
β

ln

(
∑x:− ln pss(x)=bhc pss(x)β

∑x:− ln pss(x)=y∗ pss(x)β

)
= bhc − y∗.

In fact, this is in some sense just a special case of case (i). If we choose σ = H and let h = η + y∗,
then I1 and I2 are identical.

Case (iii): One of the key insights from the theory of large deviations is that in the limit as β→ ∞
the probability Pr

{
xβ /∈ Sh

}
is determined by one particular x∗ /∈ Sh – the one with p(x∗, 1) ≥ p(x, 1)

for all x /∈ Sh. Therefore, one has limβ→∞ p(x, β) ≈ e−βI3(x) for any z ∈ S . This is essentially the
same as the WKB (Wentzel–Kramers–Brillouin) ansatz. We then have

I3(x) = − lim
β→∞

1
β

ln p(x, β)

= − ln p(x, 1) + lim
β→∞

1
β

ln ∑
x∈S

pβ(x, 1)

= − ln
(

p(x, 1)
p(x∗, 1)

)
+ lim

β→∞

1
β

ln

[
1 + ∑

x∈S ,x 6=x∗

(
p(x, 1)
p(x∗, 1)

)β
]

= − ln
(

p(x, 1)
p(x∗, 1)

)
= H(x)− H(x∗).
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Whether we work with observables on top of (S ,F ) or if we work with the underlying measure
space itself or even if we make substantial approximations as with the WKB ansatz, we always obtain
essentially the same rate of convergence. The energy given in (8) describes the rate of convergence of
pss to its corresponding deterministic system.

4. Entropy, Energy and Criticality in Systems with Generalized Potential

The results of the previous section suggest that H(x) = − ln pss(x) is a mathematically relevant
quantity and that it can reasonably be interpreted as an energy. We will now investigate some of
the consequences of this definition in more detail. In particular, we will shed some light on the
distinction between Gibbs and Boltzmann entropies and derive a necessary and sufficient condition
for the existence of a critical temperature in stationary stochastic systems.

Let us again suppose that our system takes on possible states from a discrete (finite or
countably infinite) set S , and let pss : S → [0, 1] be the probability mass function describing
the chance that event x ∈ S ocurrs. As above, we will define the energy of a state x ∈ S as

H(x) = − ln pss(x). (29)

In addition, we will avoid substantial difficulties later if we endow H with units of energy. If we
do so, then we can no longer simply write pss(x) = e−H(x). Instead, we need to introduce another
parameter β with units of inverse energy. This gives us

pss(x; β) =
1

Z(β)
e−βH(x), (30)

where the partition function Z(β) is defined as

Z(β) = ∑
x∈S

e−βH(x). (31)

Note that the partition function is necessarily a dimensionless quantity, as discussed in [47–49].
These distributions are precisely the probability mass functions of the measures Pβ defined in Section 3.

With this definition, there is a serious concern that the sum in (31) might not converge. Since pss

is a probability distribution, however, we do know that the sum converges for β = 1 (in fact, we know
that Z(1) = 1.) We will spend much of the following sections discussing the cases where the sum
in (31) diverges, but for the moment we will simply assume that Z(β) is well-defined on some subset
of R containing [1, ∞).

In classical statistical mechanics, one typically has the mechanical energy function in hand before
pss and then shows that the system at finite “temperature” β−1 has an equilibrium distribution
among the states described by (30). Note that when β→ ∞, the distribution pss(x; β) converges to a
uniform probability distribution on the set of states with minimal H. For certain non-convex H(x),
the phenomenon of phase transition occurs [50]. This limit gives precisely the deterministic
correspondence described in Section 3.

In a classical statistical mechanical problem, S is a continuous space describing the positions
and momenta of all particles in the system, H is a Hamiltonian for this system and β = (kBT)−1 is the
inverse temperature. One would then be interested in level sets with constant energy h. In particular,
Gibbs’ and Boltzmann’s entropies are concerned with the phase volume and phase surface area of
such level sets.

Unlike in a classical problem, though, our state space S is arbitrary, and, in general, may not be
useful as a phase space. In particular, S often does not come equipped with a metric or even any sort
of order. To remedy this, we will define the rank of a state x as

R(x) = #
∣∣{y ∈ S | H(x) ≥ H(y)

}∣∣, (32)



Entropy 2016, 18, 309 12 of 20

where # |·| denotes cardinality. That is, the rank of x is the number of states which have lower
energy than x (or are at least as probable as x). Since R depends on x only through pss(x), we can
unambiguously define the rank in terms of energy as V : [0, ∞)→ Z+ as

V(h) = #
∣∣{x ∈ S | H(x) ≤ h

}∣∣, (33)

so that R(x) = V(H(x)) for every x ∈ S .
Notice that V , as opposed to R, is no longer defined on a discrete space – it is a function of the

continuous variable h. However, because S is discrete, V can be written as a non-decreasing piecewise
constant function.

It is also worth noting that our assumption of a countable state space cannot be easily relaxed
in this approach. If S were uncountable, then one could not hope to order the states by their rank.
Indeed, R and V would generally be infinite for almost all input. Such issues arise because pss is,
by assumption, a probability density with respect to the counting measure. We could have instead
assumed that pss was a density with respect to some other measure (e.g., the Lebesgue measure on
S = R), but this would introduce many other subtleties later on.

4.1. Microcanonical Partition Functions and Entropy

If we take the liberty of treating the derivative of a Heaviside function as a Dirac−δ function,
then we can write V as

V(h) =
∫ h

0
dV(y) =

∫ h

0

∂V
∂y

dy. (34)

It is very important to note that ∂V(h)/∂h has units of inverse energy. It is tempting (and often
quite useful) to define

Ω(h) = #
∣∣{x ∈ S | H(x) = h

}∣∣, (35)

and then write

V(h) =
∞

∑
n=0

Ω(hn), (36)

where the sum is taken over the values hn ≤ h such that Ω(hn) > 0. (For any finite h, note that
V(h) ≤ eh because the distribution pss sums to 1. The number of distinct values hn ≤ h is no
greater than V(h), so it too is finite.) However, one should keep in mind that dV/ dh 6= Ω(h).
That is, dV/ dh is not really just a number of states; it is a density. (This is a common point of
confusion in probability theory as well. The probability of an event A should always be written as∫

A dF =
∫

A(dF/dx)dx =
∫

A f (x)dx, where F is the cumulative probability measure and
f = dF/dx is a density with respect to some other measure. When the other measure is a counting
measure, however, it is commonplace to replace the integral with a sum and use the probability mass
p(x) = (dF/dx)dx instead. This is numerically correct but often leads to confusion over units.)

One of the main reasons we have introduced this notation with V is that it gives us a much
more convenient way to write Z(β). In particular, we can write Z without reference to the individual
states x:

Z(β) = ∑
x∈S

e−βH(x) =
∫ ∞

0
e−βh dV(h). (37)

This is exactly the Laplace–Stieltjes transform of V .
It is tempting to rewrite Z as

Z(β) =
∫ ∞

0
e−βh

(
∂V
∂h

)
dh =

∫ ∞

0
e−β(h−(kB β)−1kB ln Ω(h)) dh, (38)

and to then identify ∂V/∂h as the microcanonical partition function and kB ln Ω(h) as the entropy.
Unfortunately, this is entirely wrong. Equation (38) relies on the identification of ∂V

∂h with Ω(h), which
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is invalid. This method can be salvaged by introducing a factor ∆h with units of energy so that
the (38) becomes

Z(β) =
∫ ∞

0

1
∆h

e−βh
(

∆h
∂V
∂h

)
dh, (39)

and the entropy becomes

SB = kB ln
(

∆h
∂V
∂h

)
. (40)

In fact, if we choose ∆h as a constant, then this is exactly the Boltzmann entropy. Such a solution
is somewhat unsatisfying; the introduction of arbitrary constants to correct units generally suggests a
deeper misunderstanding. Worse yet, there is no real reason for ∆h to be constant so long as it has the
correct units.

A much more satisfying interpretation of Z arises if we integrate by parts, obtaining

Z(β) = β
∫ ∞

0
e−βhV(h)dh = β

∫ ∞

0
e−β(h−(kB β)−1kB lnV(h)) dh. (41)

Here, we can interpret V(h) as the microcanonical partition function and

SG = kB lnV(h) (42)

as the entropy. We have chosen the subscripts G and B to emphasize that SB corresponds to Boltzmann
entropy while SG corresponds to Gibbs entropy.

There has been much debate over the relative merit of these definitions of entropy in
statistical mechanics, e.g., [51–54]. While we do not claim to have resolved this question, Equations (38)
and (41) suggest that Gibbs entropy is the more natural choice. Furthermore, as we will see in the
next section, Gibbs entropy plays a central role in the notion of criticality.

It is worth noting that the terminology surrounding Boltzmann and Gibbs entropy is not
entirely consistent. Most notably, some authors, e.g., [55,56], use the phrase “Boltzmann entropy” to
refer to the logarithm of the volume of any phase space region corresponding to a suitable macrostate
and use “Gibbs entropy” to refer to the quantity

∫
p ln p dx, where p is some probability density.

Using this terminology, Equations (40) and (42) would both be Boltzmann entropies but would use
different macrostates.

Instead, we follow the convention used in, e.g., [51–54] and use “Boltzmann entropy” to indicate
the logarithm of the volume of a thin shell in phase space and “Gibbs entropy” to indicate the logarithm
of the volume of the interior of such a shell. If the quantity

∫
p ln p dx is needed, we will refer to it as

Shannon entropy.

4.2. Analyticity of Z as a Function of β

The analyticity of Z(β), which is analogous to the partition function in statistical mechanics,
is intimately related to phase transitions and critical phenomena [57–60]. Our system has a critical
temperature (in the statistical mechanical sense of the term) if and only if the partition function is
non-analytic for some β ∈ (0, ∞). Since Z(β) is a Laplace transform, we have access to some useful
theorems from classical analysis (all of which can be found in [61]).

First, there is some value βc ∈ [−∞, ∞] such that Z(β) converges for all β ∈ C with real part
greater than βc and diverges for all β ∈ C with real part less than βc. The value βc is called the abscissa
of convergence.

Second, if the state space S is finite then Z is a sum of finitely many terms and therefore
converges for any β (i.e., βc = −∞). However, if S is infinite, then the partition function will not be
analytic for all real β. In particular, it cannot converge when β = 0 because Z(0) = # |S |. However,
by definition, we know that Z(β) converges when β = 1 since Z(1) is the normalization constant of
pss. For infinite systems, the abscissa of convergence must therefore lie somewhere in [0, 1].
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Since the abscissa of convergence is non-negative, we have

βc = lim sup
h→∞

lnV(h)
h

, (43)

or

kBβc = lim sup
h→∞

SG(h)
h

. (44)

We now know that the partition function is analytic for all complex β with real part greater
than βc, where βc is found as in (44). However, we have not yet shown that Z(β) cannot be extended
analytically beyond β = βc. For a general Laplace–Stieltjes transform, this might be possible (in the
worst case, a Laplace transform may have a finite abscissa of convergence but still have an analytic
continuation to the entire complex plane). Fortunately, since V is monotonic, Z(β) has a singularity
at βc (this also means that βc 6= 1).

This means that the partition function Z(β) has a singularity at some positive βc if and only if SG
is asymptotic to h in the sense of (44). That is, if the Gibbs entropy of the system grows sufficiently
fast as a function of energy, it can become dominant in the computation of Z (and therefore pss) at a
finite temperature.

4.3. Examples

So far, we have let our system be very general. The arguments above apply equally well to a wide
range of systems—from the single electron of a hydrogen atom (where S is the set of possible orbits)
to the configuration of amino acids in a strand of DNA. It is not immediately clear how (44) might be
influenced by the structures of S and pss. To illustrate the consequences of our result, we will look at
a few examples.

First, we will investigate two so-called “non-degenerate” cases where each state has a distinct
probability (i.e., Ω ≡ 1). Since we only care about the rank of states, we will suffer no loss of generality
by assuming that S = Z+ and that the states are ordered so that pss(x) > pss(y) whenever x < y.
As an example, consider the distribution:

pss(x) = 2−x. (45)

We have
H(x) = x ln 2,
SG(h) = kB ln h− kB ln ln 2, and
βc = 0.

(46)

This distribution, therefore, does not have a nonzero critical temperature (which should not
be surprising, since it is exponential).

Alternatively, consider a power law distribution.

pss(x) =
x−α

ζ(α)
, (47)

where α > 1 and ζ is the Riemann zeta function. This gives us

H(x) = α ln x + ln ζ(α),
SG(h) =

kB
α (h− ln ζ(α)) and

βc = 1
α .

(48)

This means that power law distributions do indeed have a finite critical temperature. This result
was already demonstrated in [12] but arises as a special case of our work.
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These examples highlight the main feature of criticality: a system will be critical if and only if the
probability of a state decays too slowly as a function of rank. That is, critical distributions are fat-tailed
in “phase space”.

We observe a similar result when Ω is not identically 1 (“degenerate” distributions). For example,
consider a distribution where, for each n ∈ Z+, there are 2n states with stationary probability 2−2n.
That is, for each hn = 2n ln 2, we have Ω(hn) = 2n. In this case,

V(h) = 2 (2n − 1) for hn ≤ h < hn+1, (49)

and we find that βc = 1/2. In light of our previous examples, this should not be surprising:
when written as a function of rank, pss decays like x−2 so this βc is exactly what we expect. However,
it also illustrates the importance of how we label our state space.

Suppose that we observed the system given above but that we could not identify each
individual state. If instead of observing 2n distinct states, each with probability 2−2n, we only
measured 1 state with probability 2−n, we would then calculate the probability distribution
pss(x) = 2−x, for which βc = 0. Depending on how states are counted, the distribution could
either have a finite critical temperature or not! This distinction is exactly why the partition functions in
classical and quantum statistical mechanics differ by a factor of N!. The classical version overcounts
the number of possible microstates because it assumes particles are distinguishable. Without the
correction term, this would often lead to substantially different predictions between the two theories.
Fortunately, we know that quantum mechanics is the correct theory and so we are able to choose the
correct definition of a microstate.

In many applications, however, we do not know what a true microstate looks like. For example,
imagine a particle undergoing a random walk on a lattice X and suppose that we can measure only the
distance r between a particle and the origin. It would be natural to define a microstate of this system
by the distance between the particle and the origin. If X = Z+, then this is exactly correct. However, if
X = Z, then there are really two microstates for each r. Worse yet, if the lattice is two-dimensional
(i.e., X = Z×Z), then each r corresponds to a different number of microstates and this number grows
without bound. As discussed in Section 2.1, we can still find a reasonable interpretation for the energy
of such a system. If we treat each r as a microstate, then H(r) is the potential of mean force in the
radial direction. However, our notions of entropy and criticality may change drastically depending on
how we define our state space.

For a slightly more involved example, consider the so-called “zipper model” (described in,
e.g., [62–64]). This is a highly simplified model of, among other things, the conformation of a
double-stranded DNA molecule. Suppose there are N base pairs along the DNA molecule (where N
can be a positive integer or ∞; if N = ∞ then think of the molecule as having a fixed left end but
extending infinitely to the right), each of which can either be linked or broken. We will assume that
there is only one possible linked configuration for each base pair but that there are G possible broken
configurations for each pair, where G is a positive integer. Furthermore, we will suppose that bonds
are only broken from left to right. That is, it is possible for a base pair to be in one of the G broken
configurations if and only if every base pair to the left is also broken. (This assumption is not entirely
necessary, but makes the analysis simpler. Allowing the bonds to break from both ends does not
qualitatively alter the behavior of the system, but makes the formulas that follow somewhat more
complicated. On the other hand, allowing arbitrary bonds to be broken will make the state space
of our system uncountable when the chain becomes infinite. As we will discuss in the next section,
this has important consequences.) Suppose that the energy of a linked base pair is 0 and that the
energy of any of the G broken configurations for a single base pair is E > 0 if all base pairs to the
left are broken and infinite otherwise. When N = ∞ and G > 1, this system has a phase transition at
βc = ln G/E. Otherwise, it has no critical temperature [63]. We will show that this critical behaivor is
reproduced using (44).
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The state space S of this system is the collection of all possible allowed configurations of linked
and broken base pairs. Each configuration consists of m broken base pairs followed by N −m linked
base pairs, and there are Gm distinct states for each m. Notice that S is finite whenever N is and
countably infinite when N = ∞. The probability of each of these configurations is given by

pss(x; N) =
1

QN
e−mE, (50)

where m is the number of broken base pairs in x and QN is a constant that depends on N (but not x).
Note that it is not immediately obvious from the previous assumptions that pss(x; N) is well-defined,
but one can show that Q∞ is non-zero and finite for sufficiently large E (in fact, we can solve for
Q∞ exactly, but for our purposes, it is enough to know that it is finite).

Since S is finite whenever N is, we know that there is no critical temperature for pss(·; N) when
N < ∞, so consider the case where N = ∞. The possible energy values are hm = mE− ln Q∞ for any
m ∈ Z+. The Gibbs entropy is therefore

SG(hm) = kB ln

(
m

∑
k=0

Gk

)
= kB ln

(
Gm+1 − 1

G− 1

)
, (51)

if G > 1 and SG(hm) = kB ln (m + 1) if G = 1.
Applying (44), we therefore have

βc = lim sup
m→∞

ln
(
Gm+1 − 1

)
− ln (G− 1)

mE− ln Q∞
= lim

m→∞

(m + 1) ln G
mE

=
ln G

E
, (52)

when G > 1. If G = 1, we have

βc = lim sup
m→∞

ln (m + 1)
mE− ln Q∞

= 0. (53)

These critical temperatures exactly match the known values and the mechanism for this behavior
is easy to see. When G = 1, the phase-volume V(h) grows linearly with h, but when G > 1 the
phase-volume grows exponentially. This allows the entropy SG to keep pace with the energy as
h grows, leading to a criticality.

The preceding calculations are quite similar to those used in the equilibrium statistical mechanical
approach of Kittel [63], but the procedure is very different in spirit. In Kittel’s approach, one finds QN
for arbitrary N, then uses QN to calculate a statistic such as the expected number of broken base pairs.
Finally, one takes the limit as N → ∞ and demonstrates that this statistic becomes non-analytic at
some finite temperature. In particular, Kittel [63] warns that “it is dangerous to write ... the partition
function for N = ∞; the correct procedure is to evaluate the thermodynamic quantities for finite N
and then to examine the limit”. In our approach, we start by finding pss(x; ∞) (up to a constant). Once
we have obtained this distribution, we can calculate SG(h) for the infinite system and directly obtain
βc. The danger that Kittel describes is still present: our method will fail if pss(x; ∞) is not well-defined.

This example illustrates a general principle. If an equilibrium statistical mechanical problem has a
well-defined equilibrium distribution over a countable state space, then both approaches will identify
the same critical temperature.

5. Discussion

It is worth taking a moment to discuss not only what we have shown in the previous sections,
but also what we have not shown. We have demonstrated that a stationary distribution over a discrete
state space has a finite critical temperature if and only if the Gibbs entropy of the distribution (42)
satisfies the relation (44). At such a critical temperature, entropic considerations dominate the dynamics
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of the stationary process (as opposed to a deterministic system where energetic considerations
are dominant). The terminology used here is deliberately suggestive, but one should not take it
too far. The novelty of this description of criticality is not as an alternative to (or even as a complete
characterization of) the existing statistical mechanics literature on criticality and phase transitions.
Instead, we have attempted to generalize some of the notions from statistical mechanics to the broader
context of stationary stochastic processes where the notion of criticality does not exist at present.

In particular, notice that there are phase transitions in equilibrium statistical mechanics that do
not seem to fit the description given in Section 4. The Lee–Yang theorem, for instance, describes cases
where the partition function becomes zero rather than infinite, and two-dimensional Ising models can
exhibit various types of phase transitions.

The key point is that we have assumed, from the outset, the existence of a well-defined stationary
probability distribution on a countable state space. Such a distribution has a critical temperature βc if
Z(β) approaches either zero or infinity as β→ βc. Because pss(x; β = 1) is a probability mass function,
Z(β) cannot become zero for any finite β. That is, a Lee–Yang type criticalities can only occur if
the stationary distribution pss is not well-defined for any temperature. Ising models, on the other
hand, may have well-defined equilibrium distributions even in the thermodynamic limit. However,
these models typically have an uncountable state space when N → ∞. For such a distribution,
the proofs of Section 4 do not hold as written and other types of criticalities may be present.

Our theory does agree with existing statistical mechanics in the following sense: if one can find a
well-defined equilibrium distribution over a countable state space (either for given parameter values
such as N and V or in the thermodynamic limit), then (44) will identify the same critical temperature
as standard methods. That is, this theory will not produce any new criticalities in a classical problem.

Mora and Bialek have also discussed this approach in regards to Ising models [12]. In particular,
they showed that systems where pss(x; N) ∝ R(x)−α follows a power law have a critical temperature
given by βc = 1/α when N goes to infinity. Their result utilized the identification of SG with SB,
which becomes precise in the thermodynamic limit. In the present paper, we have shown that
such an identification is unnecessary and that the critical temperature conditions are still exact
in “smaller” systems. Moreover, we have found a broader condition for the existence of a critical
temperature, of which the power law relationship is a special case.

After Mora and Bialek’s paper, there has been much discussion about the idea that biological
systems are poised at a critical point. This idea arose because researchers obtained estimates of pss

for a wide range of biological systems and all appeared to follow some sort of power law. Such a
distribution would indicate a non-zero abscissa βc. The result from Section 4.2 does seem like it should
indicate a criticality in such cases, but there are some important caveats worth considering.

First, it is notoriously difficult to calculate tail properties (such as βc) from an estimated
distribution. Estimates of pss are necessarily based on a finite number of samples and therefore cannot
give reliable information about arbitrarilly low probability events, which is required to calculate (44).

Second, and much more insidious, many biological processes are not in a true steady state.
The formal analogies we have made with statistical mechanics only make sense in the context
of stationary systems. If pss actually varies slowly with respect to some other variable
(most importantly time), then our notion of criticality does not necessarily correspond to any interesting
feature of the system. For instance, Schwab, Nemenman and Mehta [65] have shown that slowly
varying latent variables can give rise to apparent power law distributions, which necessarily have a
non-zero βc, even in conditionally independent systems.
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