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Abstract: Diabetes is a significant public health issue as it increases the risk for dementia and
Alzheimer’s disease (AD). In this study, we aim to investigate whether weighted-permutation entropy
(WPE) and permutation entropy (PE) of resting-state EEG (rsEEG) could be applied as potential
objective biomarkers to distinguish type 2 diabetes patients with amnestic mild cognitive impairment
(aMCI) from those with normal cognitive function. rsEEG series were acquired from 28 patients
with type 2 diabetes (16 aMCI patients and 12 controls), and neuropsychological assessments
were performed. The rsEEG signals were analysed using WPE and PE methods. The correlations
between the PE or WPE of the rsEEG and the neuropsychological assessments were analysed as
well. The WPE in the right temporal (RT) region of the aMCI diabetics was lower than the controls,
and the WPE was significantly positively correlated to the scores of the Auditory Verbal Learning Test
(AVLT) (AVLT-Immediate recall, AVLT-Delayed recall, AVLT-Delayed recognition) and the Wechsler
Adult Intelligence Scale Digit Span Test (WAIS-DST). These findings were not obtained with PE.
We concluded that the WPE of rsEEG recordings could distinguish aMCI diabetics from normal
cognitive function diabetic controls among the current sample of diabetic patients. Thus, the WPE
could be a potential index for assisting diagnosis of aMCI in type 2 diabetes.

Keywords: weighted-permutation entropy; resting-state EEG; neuropsychological tests; amnestic
mild cognitive impairment; diabetes

1. Introduction

The incidence of diabetes is increasing worldwide, especially type 2 diabetes, which has been
reported to result in impairment of cognitive function [1,2]. The impairment of brain function in
diabetes patients has the same pathogenesis as Alzheimer’s disease (AD) [3–5]. Mild cognitive
impairment (MCI) lies in between or overlaps with normal health and AD, with cognitive function
(such as learning and memory [6]) impairment but normal performance of the activities of daily living.
MCI was reported to be a risk factor for AD [7], particularly amnestic MCI (aMCI). The conversion
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rate from aMCI to AD is 54% and the duration from initial diagnosis of aMCI to dementia is
28 ± 12 months [8]. Moreover, epidemiological data showed that the diabetic patients had 1.5 to
2.5 fold increased risk of dementia [9]. Therefore, diagnosis of aMCI among diabetic patients is very
important for performing intervention to slow down the pace of aMCI conversion to AD or dementia.

Previously, the criteria of diagnosis for MCI was based on clinical analysis [10].
Neuropsychological tests and patients’ histories were commonly used for diagnosing the earliest stage
of MCI and AD [11]; biomarkers obtained from cerebrospinal fluid (CSF), magnetic resonance imaging
(MRI), fluorodeoxyglucose positron emission tomography (FDG-PET), and ligand-based PET were all
reported to be useful for the diagnosis of prodromal stages of AD [12]. However, the sensitivity and
specificity of these biomarkers were different for different international databases [13,14]. Moreover,
their clinical application is limited by the invasiveness, the high cost or the need to expose patients to
radiation. Therefore, a non-invasive, easily repeatable, and cost-effective tool is needed. In comparison,
EEG can play a role. It was reported that analysis of rsEEG rhythms of MCI and AD patients may be
a promising approach to assess MCI [15], and scalp EEG has the potential to play a significant role as
one of the earliest biomarkers for MCI and early stage AD, before clinical diagnosis [16].

Entropy as a kind of method described the probability distributions of possible states of
a system [17] and revealed the complexity of the system. Different kinds of entropic algorithms
have been applied to the analysis of EEG signals [18], and showed that the complexity of EEG was
an important feature for distinguishing MCI or mild AD from age-matched controls [18]. PE is
one method based on permutation patterns calculated entropy, and has been suggested as a complexity
measure [19]. It can be used to analyse arbitrary real-world data, and suits to capture complex dynamics
and abundant temporal structure embedded in biological systems [20]. For its model-free and robust
to noise and artifacts, it can be applied to analyse biological data. And it has been successfully applied
to EEG analysis [17], and reported to be a good biomarker for discriminating among normal elderly,
MCI and AD [21].

However, a large amount of the amplitude information is included in EEG signals, and can be
contaminated by various noises. For this reason, PE may has its limitation. An extension of PE,
WPE assigns different weights to adjacent vectors that have the same permutation pattern but different
amplitude variations. It retains most of the properties of PE and overcomes its shortcomings. Moreover,
WPE not only captures amplitude information, but is also more robust to noise [22]. Therefore, it may
be useful for detecting multi-component signals with noise or mutation.

In the previous study [23], the role of relative power and coherence was investigated in
distinguishing aMCI and controls in diabetes, and the methods were linear. In this study, we try
to investigate whether PE or WPE can be a potential objective complexity index of EEG to distinguish
diabetics with aMCI from non-aMCI diabetic controls. There is no previous literature investigating the
usefulness of WPE in general MCI. We chose to study aMCI in diabetes because it has been reported
that type 2 diabetes may increase the risk of aMCI through AD related mechanisms and vascular
pathology [24] and because diabetes is associated with an increased risk of MCI in elderly persons.
Discovering and preventing aMCI in diabetics may reduce the risk of later AD onset. The effectiveness
of WPE in differentiating MCI will be investigated in future work.

2. Materials and Methods

2.1. Participants and Diagnostic Criteria

The study was performed with 28 right-handed type 2 diabetes patients. The control (6 males
and 6 females) and aMCI (5 males and 11 females) groups consisted of 12 patients and 16 patients,
respectively. Their ages (aMCI: 69.69 ± 2.11, control: 73.33 ± 1.32, p = 0.16), diabetes duration
(aMCI: 9.25 ± 1.47, control: 14.00 ± 2.79, p = 0.23), and educational levels (aMCI: 12.50 ± 0.90,
control: 13.00 ± 0.66, p = 0.96) were matched, but gender was not. They all satisfied the diagnosis
criteria for diabetes [25]. The patients participated voluntarily and provided written informed consent
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for participation in this study. The experiment was approved by the Beijing Normal University ethics
committee and conducted in accordance with the Declaration of Helsinki (1964) amended by the 64th
World Medical Association General Assembly [26].

The diabetic patients all underwent neuropsychological tests, including minimum mental state
examination (MMSE) [27], montreal cognitive assessment (MoCA), AVLT (AVLT-Immediate recall,
AVLT-Delayed recall, AVLT-Delayed recognition) [28], WAIS-DST [29], Boston Naming Test (BNT),
Trail Making Test [30], Verbal Fluency Test [31], and Daily Living Test [32]. Note that the MMSE was
only used to preliminarily rule out AD. According to Chinese government criteria, the cut-off score
for absence of dementia was 24 points for people with high-school education and above, 20 points
for people with primary school education, and 17 for the illiterate. The MoCA was a better screening
tool for MCI in the diabetic population, because it possesses higher sensitivity (67%) [33]. For MoCA,
the cut-off score for MCI was 26 points [34].

The participants had no histories of mental illness, systemic disease, and nervous system disease
which may result in cognitive impairment [23], and organic brain disease and depression were all
ruled out by using MRI and the DSM IV criteria for depression [35], as reported in [23].

The inclusion criteria of diabetic aMCI patients was the diagnosis of aMCI [10] by the following
symptoms: (1) subjective memory complaints reported by the patients or their family; (2) objective
memory impairment evidenced by the Auditory Verbal Learning Test [28], defined by performance
scores ≥ 1.5 standard deviations below the mean value of age- and education-matched controls;
(3) essentially preserved general cognitive function (assessed by MMSE and MoCA); (4) normal
activities of daily living evidenced by the Activities of Daily Living Scale [32]; (5) no dementia
(dementia was ruled out by DSM IV criteria for dementia [35]).

2.2. EEG Recording and Preprocessing

The participants were asked to close their eyes and sit relaxed in a comfortable armchair,
keeping awake for 5 min in the Department of Neurology, The General Hospital of the PLA
Rocket Force, Beijing, China. The room temperature was kept at 23 ± 2 ◦C and the environment
was quiet and dim. The EEG signals were recorded with a high-density 128-channel EGI system
equipped with Net Amps 300 amplifiers (Electrical Geodesics Inc., Eugene, OR, USA). The recording
was performed with 128-channel Geodesic Sensor Net (GSN) (Electrical Geodesics Inc., Eugene, OR,
USA) using the vertex sensor (Cz) as the reference electrode. The rsEEG signals were acquired with
direct current and sampled at 1000 Hz. All electrode impedances were kept below 50 kΩ according to
the recommendation of EGI guidelines.

The pre-processing of the rsEEG data was performed using NetStation 4.5 software
(Electrical Geodesics Inc., Eugene, OR, USA) off-line. The raw data were filtered by a 1–45 Hz
band-pass filter, re-referenced to the average of sensor channel 57 (left mastoid process) and 100 (right
mastoid process), and re-sampled to 500 Hz (srate = 500). Artifacts (such as ocular and muscular
noise) in all channels were eliminated by visual inspection of the raw EEG data, but there almost no
for the patients were closed eyes and relaxed, so the segment length of data was at least N = 4500
(500 Hz × 60 s × 1.5 min). In this study, 3-min of data from each channel were selected for further
analysis, and the electrodes and areas of interest (five regions: frontal (F), left temporal (LT), central (C),
right temporal (RT) and posterior (P)) were the same as described in [23].

2.3. Entropy Analysis of EEG Data

2.3.1. PE

The concept of PE was proposed by Bandt and Pompe in 2002 [19] to map a continuous time series
onto a symbolic sequence. PE used existing ideas based on information theory (Shannon entropy)
and could explore the local order structure of a dynamical time series as a quantitative complexity
measure [19,36]. It transforms a given time series into a series of ordinal patterns which describe the
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order relations between the present and a fixed number of equidistant past values at a given time [37].
PE has been successfully applied to estimating the complexity of time series [37,38], e.g., EEG signals.

We consider a scalar time series {x1, x2, ..., xM}, where M is the length of the data. First, the series
is embedded into m dimensional space: Xj =

{
xj, xj+τ , ..., xj+(m−1)τ

}
for j = 1, 2, ..., M− (m− 1)τ,

where m and τ denote the embedding dimension and time delay, respectively. Then the elements of Xj

are arranged in ascending order
{

xj+(i1−1)τ ≤ xj+(i2−1)τ ≤ · · · ≤ xj+(im−1)τ

}
. In the m dimensional

space, each vector Xj is mapped to a single motif out of m! possible order patterns πi. Take m = 3 for
example: 6 motifs are obtained (as seen in Figure 1a). For a permutation with number πi, let f (πi)

denote the frequency of the i-th permutation in the time series. Then the probability of each order
pattern can be defined as:

p(πi) =
f (πi)

∑m!
i=1 f (πi)

(1)

Based on the probabilities of all permutations, the PE is defined as follows:

H = −∑m!
i=1 p(πi)lnp(πi) (2)

In order to make the PE value fall between 0 and 1, we normalize H:

0 ≤ PE = H/ln(m!) ≤ 1 (3)

The maximum value of the PE is 1, which means that each ordinal pattern has the same probability;
the minimum value is 0, indicating that the time series is quite regular. In other words, the smaller the
value of PE is, the more regular the time series is.
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Figure 1. (a) Six permutations when m = 3 and (b) two examples of possible m-dimensional vectors
corresponding to the same motif (Motif #3 and Motif #4).

2.3.2. WPE

Although PE is considered a useful complexity measure of nonlinear time series, it cannot
distinguish the different modes of one symbol, and the sensitivity of distinguishing background noise
modes is poor.
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This is because PE only retains the order structure when extracting the ordinal patterns. This may
be inconvenient for the following reasons: (1) the information in the amplitude may be lost if only
the ordinal structure is extracted; (2) ordinal patterns cannot result in similar PE values when the
amplitude of the time series is greatly different; and (3) noise can contribute to fluctuations of ordinal
patterns in time series and the final PE value may not be weighted uniformly [39]. Figure 1b shows
how ordinal patterns can originate from different m-dimensional vectors.

To include important information when retrieving ordinal patterns of a time series, Fadlallah [22]
modified the acquisition process and put forward the WPE. The main motivation was to save useful
amplitude information carried by the signal. When calculating the relative frequencies for the i-th motif,
WPE weights differently neighbouring vectors with the same ordinal pattern but different amplitude
variations. Therefore, the frequency of the i-th permutation in the time series can be described as

fω(πi) =
S
∑

s=1
f (πi(s)) ·ωi(s), s = 1, 2, ..., S, S is the number of the possible patterns in the same motif,

and then the weighted probability for each motif is calculated as follows:

pω(πi) =
fω(πi)

∑m!
i=1 fω(πi)

(4)

WPE is computed as:
Hω = −∑m!

i=1 pω(πi)lnpω(πi) (5)

When ωi(s) = β ∀i ≤ M − (m − 1)τ and β > 0, WPE is equal to PE. The WPE extends the
concept of PE while keeping the same expression as Shannon’s entropy, hence weights are added
prior to calculating the p(πi). The choice of weight values ωi(j) is equivalent to selecting a specific
(or combination of) feature(s) from each vector Xj. Such a feature might be different according to
the context used, noting that the relation ∑i pω(πi) = 1 still holds. In this study, the weights were
computed using variance or the energy of each neighbour’s vector Xj. X j denotes the arithmetic mean
of Xj, i.e.,

X j =
1
m

m

∑
k=1

xj+(k+1)τ (6)

The weight values are obtained by:

ωi(s) =
1
m

m

∑
k=1

(x(j+(k−1)τ) − X j)
2 (7)

To make the WPE value fall between 0 and 1, we also normalize Hω:

0 ≤WPE = Hω/ln(m!) ≤ 1 (8)

According to the information theory [19], when the weighted probability for each motif of random
time series tends the same, the value of Hω was maximum tending to the logarithm of the weighted
motif number (ln(m!)); however, when the weighted probability for some motif is 0 in quite regular
time series, the value of Hω is taken to be 0. Therefore, the ln(m!) can be used to normalize the WPE,
which is between 0 and 1.

2.3.3. Parameters for PE and WPE

PE analyzes the local order structure of time series [19] and the WPE preserves useful amplitude
information carried by the signal as well as retrieving the ordinal patterns. The calculation of PE
and WPE depends on the selection of m. When m is too small (less than 3), the scheme will work for
EEG series with only very few distinct states; on the other hand, for large EEG series, a large m is



Entropy 2016, 18, 307 6 of 12

better. However, very large m can result in a large number of patterns (m!), which is memory intensive.
Bandt and Pompe [19] recommended m = 3, 4, . . . , 7.

The rsEEG data was recorded in the form of a multivariate time series (number of electrodes ×
time), and the total length of the selected data was 3-min (srate = 500), including 2 segments at most
(the segments length were N = 4500 at least). In order to track the dynamic changes of EEG smoothly,
each time series was divided into overlapping segments using 10s windows (the length of the window
was Nw = 500 Hz × 10 s) with 90% overlap (Noverlap = 500 Hz × 10 s × 90%). Here we chose m = 4 for
the calculation of the PE and WPE. This also satisfied the condition m! < Nw, where Nw is the window
length of data. We set the time delay τ = 1 empirically [40]. Outliers were rejected by means of
a generalized extreme studentized deviate (GESD) test [41] for all epochs in each channel. After outlier
rejection, the remaining epochs in each channel were averaged and normalized. For analysis on regions
of interest, the PE and WPE were obtained by averaging among channels in each region.

2.3.4. Statistical Analysis

In this study, the statistical analysis was conducted in GraphPad Prism5.01. The Wilcoxon rank
sum test was conducted at the 5% significance level for the WPE or PE values of each brain region
between the aMCI and controls.

In order to determine whether the complexity of rsEEG can be a biomarker for detecting aMCI in
diabetes, the correlations between neuropsychological test scores which significantly differ between
control and aMCI and WPE (or PE) values from brain regions which significantly differ between
control and aMCI were analysed. Pearson’s linear correlation was employed for this analysis.

Bonferroni correction was used among the five regions for the p-value.

3. Results

The results showed that the values of WPE for rsEEG were lower in the aMCI diabetes group than
those in the control group (see Figure 2).
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Figure 2. Normalized values of WPE in diabetics with controls (a) and aMCI (b) over the whole brain
from group averages.

Figure 3 shows the comparative results for WPE values for the two groups in each brain region.
The values of WPE in the RT region were significantly lower in the aMCI group than those in the
control group (aMCI: 0.61 ± 0.02, control: 0.66 ± 0.01, p = 0.024) before multiple testing among the
five regions. No significant difference was found for the values of PE in all regions and WPE in other
regions between the two groups whether they were corrected before or after.
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Figure 3. Comparison results for normalized WPE values for the two groups in each brain region.
The values of WPE in the RT region were significantly lower in the aMCI group than those in the
control group. (* p < 0.05).

In order to further support the utility of WPE in detecting aMCI in diabetes, the correlations
between the WPE values and neuropsychological assessment scores were analysed. The scores of
MoCA, AVLT-Immediate recall, AVLT-Delayed recall, AVLT-Delayed recognition, BNT, and WAIS-DST
were significantly different between the two groups, which was reported in [23]. The correlations
between the normalized values of WPE in RT with these neuropsychological test scores are shown
in Figure 4. The normalized values of the WPE in RT were positively correlated to the scores
of AVLT-Immediate recall (r = 0.573, p = 0.003), AVLT-Delayed recall (r = 0.569, p = 0.004),
AVLT-Delayed recognition (r = 0.532, p = 0.007), and WAIS-DST (r = 0.554, p = 0.006). The p-value
still smaller than 0.05, thus the correlations were really significant.
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AVLT-Immediate recall, AVLT-Delayed recall, AVLT-Delayed recognition, and WAIS-DST. They were
all positively correlated.

4. Discussion

Since insulin-related effects may affect cognitive function [42], diabetes may accelerate the onset
of MCI [24]. Other factors are impaired central glucose homeostasis and neurodegeneration due to
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the dysregulation of brain insulin signalling. Cerebrovascular damage (CVD) of the brain caused by
diabetes [43] may result in increased risk of aMCI [44,45]. And type 2 diabetes may increase the risk of
aMCI to AD. Therefore, discovering and preventing aMCI in diabetics may reduce the risk of later
AD onset.

In this study, we analysed the rsEEG of diabetics with aMCI and diabetic controls and
compared signals from five brain regions by means of PE and WPE, which assess signal complexity.
Several reports have demonstrated that biomarkers derived from EEG rhythms such as power spectral
density, entropic complexity (especially PE and WPE), and other EEG features, were different among
MCI, AD, and controls [21,38,46], at least at the group level. Fernandez et al. showed that the
Lempel–Ziv complexity of EEG signals is significantly reduced in MCI patients [47]. The features
of regional complexity of EEG signals calculated using a support vector machine model could be
non-invasive biomarkers to distinguish MCI and early AD [16]. Studies have shown that the entropy
values of EEG were lower in MCI patients [48]. It has been demonstrated that the approximate entropy
(ApEn) and sample entropy (SampEn) of EEG reduced significantly in MCI patients [49–53]; the value
of multiscale entropy (MSE) decreased at short time scales and increased at long time scales in the
frontal, temporal, and parieto-occipital regions [49,54]. It has been found that the PE values of rsEEG
from MCI patients were significantly lower than those of controls in frontal, temporal, and anterior
parietal regions [55]. However, PE does not take the effect of noise into account. WPE incorporates
amplitude information and solves this problem [22]. WPE has been successfully used in distinguishing
AD patients from normal healthy elders [38]. Their results showed that the WPE values of the AD
group were lower than that of the control group at frontal and occipital regions in the delta band,
for most regions in the theta band, and at frontal and central regions in the beta band. However,
there has been no published work studying the usefulness of WPE in the MCI population.

This study explored the use of PE and WPE in detecting amnestic mild cognitive impairment in
diabetes patients. We show that the values of WPE in the RT region are significantly lower in the aMCI
group before Bonferoni correction, but there was no significant difference when using PE even before
the correction. WPE has been demonstrated to be better than PE when measuring the complexity
of signals in AD and the advantage of WPE over PE for investigating complexity abnormality in
AD is proven [38]. WPE is an improvement of PE that incorporates the amplitude information of
signals, which may be the reason for the different results between PE and WPE. Since there has been
no previous studies using WPE on “general” MCI, our result regarding diabetic MCI can be considered
a preliminary result, though the results are a little weak after Bonferroni correction. Further work
will need to be performed to investigate the effectiveness of WPE on “general” MCI. The differences,
in terms of brain regions, of our results from previous work may be due to the fact that patients were
all diabetics (with or without aMCI), not healthy elders and AD patients without diabetes. With the
richest connections to the hippocampus and a complex structure [56,57], signals collected from the
temporal region are more sensitive to cognitive function, especially memory function, than other
regions. Moreover, diabetes patients are commonly affected by CVD. These factors may have caused
the differences in region-related results compared to previous studies.

Correlation analysis showed that WPE values in the RT region were positively and significantly
correlated to the AVLT (immediate recall, delayed recall, delayed recognition) and the WAIS-DST.
Since the sample was small, Figure 4 only shows the trends of the correlations of these patients,
though most aMCI patients had the same or even higher WPE values than the control group. A larger
sample is needed to confirm this result. Other significantly different neuropsychological assessment
items were not correlated to the PE or WPE. Figure 4 suggests that the AVLT-delayed recall score seems
to be extremely effective in separating the two groups, but for follow-up studies objective biomarkers
are necessary. These correlations are just to confirm the feasibility and value of WPE as an rsEEG index
for identifying aMCI among diabetics. The significant correlations of the AVLT and WAIS-DST with
the WPE of rsEEG signals indicates that the WPE can distinguish aMCI from normal cognitive function
in diabetics, at least at the group level. These results suggest that the rsEEG WPE in the RT region has
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clinical value in the early diagnosis and follow-up study of cognitive function impairment in diabetics,
though it is only an EEG index, not a biomarker at present.

Using rsEEG WPE, early measures could be taken to mitigate the conversion process from aMCI
to AD. Although this method cannot yet be used as a diagnostic tool in a clinical setting, the results at
least show that this approach could detect aMCI effectively in the current sample of diabetic patients.
The primary limitation of this study is the small sample size, so larger studies are needed to validate
this method and support the conclusion.
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Abbreviations

The following abbreviations are used in this manuscript:

EEG Electroencephalo-graph
EGI Electrical Geodesics Inc.
rsEEG resting-state EEG
MMSE minimum mental state examination
MoCA montreal cognitive assessment
BNT Boston Naming Test
AVLT Auditory Verbal Learning Test
WAIS-DST Wechsler Adult Intelligence Scale Digit Span Test
AD Alzheimer’s disease
MCI mild cognitive impairment
aMCI amnestic mild cognitive impairment
WPE Weighted-permutation entropy
PE Permutation entropy
ApEn approximate entropy
SampEn sample entropy
MSE multiscale entropy
GESD generalized extreme studentized deviate
CSF cerebrospinal fluid
FDG-PET fluorodeoxyglucose positron emission tomography
CVD cerebrovascular damage
F frontal
C central
P posterior
RT right temporal
LT left temporal

References

1. Miles, W.R.; Root, H.F. Psychologic tests applied to diabetic patients. Arch. Intern. Med. 1922, 30, 767–777.
[CrossRef]

2. Sejling, A.S.; Kjaer, T.W.; Pedersen-Bjergaard, U.; Diemar, S.S.; Frandsen, C.S.; Hilsted, L.; Faber, J.; Holst, J.J.;
Tarnow, L.; Nielsen, M.N.; et al. Hypoglycemia-associated changes in the electroencephalogram in patients
with type 1 diabetes and normal hypoglycemia awareness or unawareness. Diabetes 2015, 64, 1760–1769.
[CrossRef] [PubMed]

3. Wang, R.; Wang, J.; Li, S.; Yu, H.; Deng, B.; Wei, X. Multiple feature extraction and classification of
electroencephalograph signal for Alzheimers’ with spectrum and bispectrum. Chaos 2015, 25, 013110.
[CrossRef] [PubMed]

http://dx.doi.org/10.1001/archinte.1922.00110120086003
http://dx.doi.org/10.2337/db14-1359
http://www.ncbi.nlm.nih.gov/pubmed/25488900
http://dx.doi.org/10.1063/1.4906038
http://www.ncbi.nlm.nih.gov/pubmed/25637921


Entropy 2016, 18, 307 10 of 12

4. Escudero, J.; Abasolo, D.; Hornero, R.; Espino, P.; Lopez, M. Analysis of electroencephalograms in
Alzheimer’s disease patients with multiscale entropy. Physiol. Meas. 2006, 27, 1091–1106. [CrossRef]
[PubMed]

5. Gispen, W.H.; Biessels, G.J. Cognition and synaptic plasticity in diabetes mellitus. Trends Neurosci. 2000, 23,
542–549. [CrossRef]

6. Peila, R.; Rodriguez, B.L.; Launer, L.J. Type 2 diabetes, APOE gene, and the risk for dementia and related
pathologies: The Honolulu-Asia aging study. Diabetes 2002, 51, 1256–1262. [CrossRef]

7. Morris, J.C. Mild Cognitive Impairment and Preclinical Alzheimer’s Disease. Available online:
http://www.ncbi.nlm.nih.gov/pubmed/16025770 (accessed on 10 August 2016).

8. Seo, S.W.; Lee, J.H.; Jang, S.M.; Kim, S.T.; Chin, J.; Kim, G.H.; Kim, J.H.; Roh, J.H.; Kim, M.J.; Kim, S.H.; et al.
Neurochemical alterations of the entorhinal cortex in amnestic mild cognitive impairment (aMCI):
A three-year follow-up study. Arch. Gerontol. Geriatr. 2012, 54, 192–196. [CrossRef] [PubMed]

9. Strachan, M.W.; Reynolds, R.M.; Marioni, R.E.; Price, J.F. Cognitive function, dementia and type 2 diabetes
mellitus in the elderly. Nat. Rev. Endocrinol. 2011, 7, 108–114. [CrossRef] [PubMed]

10. Petersen, R.C. Mild cognitive impairment as a diagnostic entity. J. Intern. Med. 2004, 256, 183–194. [CrossRef]
[PubMed]

11. Schmitt, F.A.; Nelson, P.T.; Abner, E.; Scheff, S.; Jicha, G.A.; Smith, C.; Cooper, G.; Mendiondo, M.;
Danner, D.D.; van Eldik, L.J.; et al. University of Kentucky Sanders–Brown healthy brain aging volunteers:
Donor characteristics, procedures and neuropathology. Curr. Alzheimer Res. 2012, 9, 724–733. [CrossRef]
[PubMed]

12. Albert, M.S.; DeKosky, S.T.; Dickson, D.; Dubois, B.; Feldman, H.H.; Fox, N.C.; Gamst, A.; Holtzman, D.M.;
Jagust, W.J.; Petersen, R.C.; et al. The diagnosis of mild cognitive impairment due to Alzheimer’s disease:
Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic
guidelines for Alzheimer’s disease. Alzheimer’s Dement. 2011, 7, 270–279. [CrossRef] [PubMed]

13. Takahashi, R.; Ishii, K.; Senda, M.; Ito, K.; Ishii, K.; Kato, T.; Makishi, Y.; Nishio, T.; Ikari, Y.; Iwatsubo, T.
Equal sensitivity of early and late scans after injection of FDG for the detection of Alzheimer pattern:
An analysis of 3D PET data from J-ADNI, a multi-center study. Ann. Nucl. Med. 2013, 27, 452–459. [CrossRef]
[PubMed]

14. Toussaint, P.J.; Perlbarg, V.; Bellec, P.; Desarnaud, S.; Lacomblez, L.; Doyon, J.; Habert, M.O.; Benali, H.
Resting state FDG-PET functional connectivity as an early biomarker of Alzheimer’s disease using conjoint
univariate and independent component analyses. NeuroImage 2012, 63, 936–946. [CrossRef] [PubMed]

15. Babiloni, C.; del Percio, C.; Lizio, R.; Marzano, N.; Infarinato, F.; Soricelli, A.; Salvatore, E.; Ferri, R.;
Bonforte, C.; Tedeschi, G.; et al. Cortical sources of resting state electroencephalographic alpha rhythms
deteriorate across time in subjects with amnesic mild cognitive impairment. Neurobiol. Aging 2014, 35,
130–142. [CrossRef] [PubMed]

16. McBride, J.C.; Zhao, X.; Munro, N.B.; Smith, C.D.; Jicha, G.A.; Hively, L.; Broster, L.S.; Schmitt, F.A.;
Kryscio, R.J.; Jiang, Y. Spectral and complexity analysis of scalp EEG characteristics for mild cognitive
impairment and early Alzheimer’s disease. Comput. Methods Progr. Biomed. 2014, 114, 153–163. [CrossRef]
[PubMed]

17. Cao, Y.; Tung, W.W.; Gao, J.B.; Protopopescu, V.A.; Hively, L.M. Detecting dynamical changes in time series
using the permutation entropy. Phys. Rev. E 2004, 70, 046217. [CrossRef] [PubMed]

18. Dauwels, J.; Srinivasan, K.; Ramasubba Reddy, M.; Musha, T.; Vialatte, F.B.; Latchoumane, C.; Jeong, J.;
Cichocki, A. Slowing and Loss of Complexity in Alzheimer’s EEG: Two Sides of the Same Coin? Int. J.
Alzheimer’s Dis. 2011, 2011, 539621. [CrossRef] [PubMed]

19. Bandt, C.; Pompe, B. Permutation entropy: A natural complexity measure for time series. Phys. Rev. Lett.
2002, 88, 174102. [CrossRef] [PubMed]

20. Marsaglia, G.; Tsang, W.W.; Wang, J. Evaluating Kolmogorov’s distribution. J. Stat. Softw. 2003, 8. [CrossRef]
21. Morabito, F.C.; Campolo, M.; Labate, D.; Morabito, G.; Bonanno, L.; Bramanti, A.; de Salvo, S.; Marra, A.;

Bramanti, P. A longitudinal EEG study of Alzheimer’s disease progression based on a complex network
approach. Int. J. Neural Syst. 2015, 25, 1550005. [CrossRef] [PubMed]

22. Fadlallah, B.; Chen, B.; Keil, A.; Principe, J. Weighted-permutation entropy: A complexity measure for time
series incorporating amplitude information. Phys. Rev. E 2013, 87, 022911. [CrossRef] [PubMed]

http://dx.doi.org/10.1088/0967-3334/27/11/004
http://www.ncbi.nlm.nih.gov/pubmed/17028404
http://dx.doi.org/10.1016/S0166-2236(00)01656-8
http://dx.doi.org/10.2337/diabetes.51.4.1256
http://www.ncbi.nlm.nih.gov/pubmed/16025770
http://dx.doi.org/10.1016/j.archger.2011.04.002
http://www.ncbi.nlm.nih.gov/pubmed/21592598
http://dx.doi.org/10.1038/nrendo.2010.228
http://www.ncbi.nlm.nih.gov/pubmed/21263438
http://dx.doi.org/10.1111/j.1365-2796.2004.01388.x
http://www.ncbi.nlm.nih.gov/pubmed/15324362
http://dx.doi.org/10.2174/156720512801322591
http://www.ncbi.nlm.nih.gov/pubmed/22471862
http://dx.doi.org/10.1016/j.jalz.2011.03.008
http://www.ncbi.nlm.nih.gov/pubmed/21514249
http://dx.doi.org/10.1007/s12149-013-0704-x
http://www.ncbi.nlm.nih.gov/pubmed/23483370
http://dx.doi.org/10.1016/j.neuroimage.2012.03.091
http://www.ncbi.nlm.nih.gov/pubmed/22510256
http://dx.doi.org/10.1016/j.neurobiolaging.2013.06.019
http://www.ncbi.nlm.nih.gov/pubmed/23906617
http://dx.doi.org/10.1016/j.cmpb.2014.01.019
http://www.ncbi.nlm.nih.gov/pubmed/24598317
http://dx.doi.org/10.1103/PhysRevE.70.046217
http://www.ncbi.nlm.nih.gov/pubmed/15600505
http://dx.doi.org/10.4061/2011/539621
http://www.ncbi.nlm.nih.gov/pubmed/21584257
http://dx.doi.org/10.1103/PhysRevLett.88.174102
http://www.ncbi.nlm.nih.gov/pubmed/12005759
http://dx.doi.org/10.18637/jss.v008.i18
http://dx.doi.org/10.1142/S0129065715500057
http://www.ncbi.nlm.nih.gov/pubmed/25655033
http://dx.doi.org/10.1103/PhysRevE.87.022911
http://www.ncbi.nlm.nih.gov/pubmed/23496595


Entropy 2016, 18, 307 11 of 12

23. Bian, Z.; Li, Q.; Wang, L.; Lu, C.; Yin, S.; Li, X. Relative power and coherence of EEG series are related to
amnestic mild cognitive impairment in diabetes. Front. Aging Neurosci. 2014, 6. [CrossRef] [PubMed]

24. Roberts, R.O.; Knopman, D.S.; Geda, Y.E.; Cha, R.H.; Pankratz, V.S.; Baertlein, L.; Boeve, B.F.; Tangalos, E.G.;
Ivnik, R.J.; Mielke, M.M.; et al. Association of diabetes with amnestic and nonamnestic mild cognitive
impairment. Alzheimer’s Dement. 2014, 10, 18–26. [CrossRef] [PubMed]

25. American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care 2012, 35,
S64–S71.

26. World Medical Association. World medical association declaration of helsinki: Ethical principles for medical
research involving human subjects. JAMA 2013, 310, 2191–2194.

27. Folstein, M.F.; Folstein, S.E.; McHugh, P.R. “Mini-mental state”: A practical method for grading the cognitive
state of patients for the clinician. J. Psychiatr. Res. 1975, 12, 189–198. [CrossRef]

28. Carlesimo, G.A.; Caltagirone, C.; Gainotti, G. The Mental Deterioration Battery: Normative data, diagnostic
reliability and qualitative analyses of cognitive impairment. Eur. Neurol. 1996, 36, 378–384. [CrossRef]
[PubMed]

29. Orsini, A.; Grossi, D.; Capitani, E.; Laiacona, M.; Papagno, C.; Vallar, G. Verbal and spatial immediate
memory span: Normative data from 1355 adults and 1112 children. Ital. J. Neurol. Sci. 1987, 8, 537–548.
[CrossRef]

30. Reitan, R.M. The Validity of the Trail Making Test as an indicator of organic brain damage.
Percept. Motor Skills 1958, 8, 271–276. [CrossRef]

31. Novelli, G.; Papagno, C.; Capitani, E.; Laiacona, M.; Vallar, G.; Cappa, S.F. Three clinical tests for the
assessment of lexical retrieval and production norms from 320 normal subjects. Arch. Psicol. Neurol. Psichiatr.
1986, 47, 477–506.

32. Lawton, M.P.; Brody, E.M. Assessment of older people: Self-maintaining and instrumental activities of daily
living. Gerontologist 1969, 9, 179–186. [CrossRef] [PubMed]

33. Alagiakrishnan, K.; Zhao, N.; Mereu, L.; Senior, P.; Senthilselvan, A. Montreal Cognitive Assessment
is superior to Standardized Mini-Mental Status Exam in detecting mild cognitive impairment in the
middle-aged and elderly patients with type 2 diabetes mellitus. BioMed Res. Int. 2013, 2013, 186106.
[CrossRef] [PubMed]

34. Nasreddine, Z.S.; Phillips, N.A.; Bedirian, V.; Charbonneau, S.; Whitehead, V.; Collin, I.; Cummings, J.L.;
Chertkow, H. The Montreal Cognitive Assessment, MoCA: A brief screening tool for mild cognitive
impairment. J. Am. Geriatr. Soc. 2005, 53, 695–699. [CrossRef] [PubMed]

35. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders (DSM);
American Psychiatric Association: Washington, DC, USA, 1994.

36. Bandt, C. Ordinal time series analysis. Ecol. Model. 2005, 182, 229–238. [CrossRef]
37. Li, D.; Liang, Z.; Wang, Y.; Hagihira, S.; Sleigh, J.W.; Li, X. Parameter selection in permutation entropy for

an electroencephalographic measure of isoflurane anesthetic drug effect. J. Clin. Monit. Comput. 2013, 27,
113–123. [CrossRef] [PubMed]

38. Deng, B.; Liang, L.; Li, S.; Wang, R.; Yu, H.; Wang, J.; Wei, X. Complexity extraction of electroencephalograms
in Alzheimer’s disease with weighted-permutation entropy. Chaos 2015, 25, 043105. [CrossRef] [PubMed]

39. Zhang, K.M.; Zhao, Z.Q. Selective Blockage by Yohimbine of Locus Coeruleus-Induced Inhibition of
Nociceptive Reflex but Not That of C-Responses of Spinal Dorsal Horn Neurons in Rats. Acta Pharm. Sin.
1994, 15, 491–494.

40. Li, X.; Ouyang, G.; Richards, D.A. Predictability analysis of absence seizures with permutation entropy.
Epilepsy Res. 2007, 77, 70–74. [CrossRef] [PubMed]

41. Seem, J.E. Using intelligent data analysis to detect abnormal energy consumption in buildings. Energy Build.
2007, 39, 52–58. [CrossRef]

42. Craft, S. Insulin resistance and Alzheimer’s disease pathogenesis: Potential mechanisms and implications
for treatment. Curr. Alzheimer Res. 2007, 4, 147–152. [CrossRef] [PubMed]

43. Debette, S.; Seshadri, S.; Beiser, A.; Au, R.; Himali, J.J.; Palumbo, C.; Wolf, P.A.; DeCarli, C. Midlife vascular
risk factor exposure accelerates structural brain aging and cognitive decline. Neurology 2011, 77, 461–468.
[CrossRef] [PubMed]

44. Knopman, D.S.; Roberts, R. Vascular risk factors: Imaging and neuropathologic correlates. J. Alzheimer’s Dis.
2010, 20, 699–709.

http://dx.doi.org/10.3389/fnagi.2014.00011
http://www.ncbi.nlm.nih.gov/pubmed/24550827
http://dx.doi.org/10.1016/j.jalz.2013.01.001
http://www.ncbi.nlm.nih.gov/pubmed/23562428
http://dx.doi.org/10.1016/0022-3956(75)90026-6
http://dx.doi.org/10.1159/000117297
http://www.ncbi.nlm.nih.gov/pubmed/8954307
http://dx.doi.org/10.1007/BF02333660
http://dx.doi.org/10.2466/pms.1958.8.3.271
http://dx.doi.org/10.1093/geront/9.3_Part_1.179
http://www.ncbi.nlm.nih.gov/pubmed/5349366
http://dx.doi.org/10.1155/2013/186106
http://www.ncbi.nlm.nih.gov/pubmed/23936778
http://dx.doi.org/10.1111/j.1532-5415.2005.53221.x
http://www.ncbi.nlm.nih.gov/pubmed/15817019
http://dx.doi.org/10.1016/j.ecolmodel.2004.04.003
http://dx.doi.org/10.1007/s10877-012-9419-0
http://www.ncbi.nlm.nih.gov/pubmed/23264067
http://dx.doi.org/10.1063/1.4917013
http://www.ncbi.nlm.nih.gov/pubmed/25933653
http://dx.doi.org/10.1016/j.eplepsyres.2007.08.002
http://www.ncbi.nlm.nih.gov/pubmed/17870413
http://dx.doi.org/10.1016/j.enbuild.2006.03.033
http://dx.doi.org/10.2174/156720507780362137
http://www.ncbi.nlm.nih.gov/pubmed/17430239
http://dx.doi.org/10.1212/WNL.0b013e318227b227
http://www.ncbi.nlm.nih.gov/pubmed/21810696


Entropy 2016, 18, 307 12 of 12

45. Roberts, R.O.; Kantarci, K.; Geda, Y.E.; Knopman, D.S.; Przybelski, S.A.; Weigand, S.D.; Petersen, R.C.;
Jack, C.R., Jr. Untreated type 2 diabetes and its complications are associated with subcortical infarctions.
Diabetes Care 2011, 34, 184–186. [CrossRef] [PubMed]

46. Sankari, Z.; Adeli, H.; Adeli, A. Wavelet Coherence Model for Diagnosis of Alzheimer Disease.
Clin. EEG Neurosci. 2012, 43, 268–278. [CrossRef] [PubMed]

47. Fernandez, A.; Hornero, R.; Gomez, C.; Turrero, A.; Gil-Gregorio, P.; Matias-Santos, J.; Ortiz, T.
Complexity analysis of spontaneous brain activity in Alzheimer disease and mild cognitive impairment:
An MEG study. Alzheimer Dis. Assoc. Disord. 2010, 24, 182–189. [CrossRef] [PubMed]

48. Yang, A.C.; Wang, S.J.; Lai, K.L.; Tsai, C.F.; Yang, C.H.; Hwang, J.P.; Lo, M.T.; Huang, N.E.; Peng, C.K.;
Fuh, J.L. Cognitive and neuropsychiatric correlates of EEG dynamic complexity in patients with Alzheimer’s
disease. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2013, 47, 52–61. [CrossRef] [PubMed]

49. Hornero, R.; Abasolo, D.; Escudero, J.; Gomez, C. Nonlinear analysis of electroencephalogram and
magnetoencephalogram recordings in patients with Alzheimer’s disease. Philos. Trans. R. Soc. Lond. A 2009,
367, 317–336. [CrossRef] [PubMed]

50. Abásolo, D.; Escudero, J.; Hornero, R.; Gómez, C.; Espino, P. Approximate entropy and auto mutual
information analysis of the electroencephalogram in Alzheimer’s disease patients. Med. Biol. Eng. Comput.
2008, 46, 1019–1028. [CrossRef] [PubMed]

51. Abasolo, D.; Hornero, R.; Espino, P.; Alvarez, D.; Poza, J. Entropy analysis of the EEG background activity in
Alzheimer’s disease patients. Physiol. Meas. 2006, 27, 241–253. [CrossRef] [PubMed]

52. Abasolo, D.; Hornero, R.; Espino, P.; Poza, J.; Sanchez, C.I.; de la Rosa, R. Analysis of regularity in the EEG
background activity of Alzheimer’s disease patients with Approximate Entropy. Clin. Neurophysiol. 2005,
116, 1826–1834. [CrossRef] [PubMed]

53. Woon, W.L.; Cichocki, A.; Vialatte, F.; Musha, T. Techniques for early detection of Alzheimer’s disease using
spontaneous EEG recordings. Physiol. Meas. 2007, 28, 335–347. [CrossRef] [PubMed]

54. Kim, K.; Kim, C.-H.; Cichocki, A.; Kim, S.; Park, J.-H. Multiscale Entropy Analysis of Eeg from Patients
under Different Pathological Conditions. Fractals 2007, 15, 399–404.

55. Timothy, L.T.; Krishna, B.M.; Menon, M.K.; Nair, U. Fractals, Wavelet, and Their Applications; Bandt, C.,
Barnsley, M., Devaney, R., Falconer, K.J., Kannan, V., Vinod Kumar, P.B., Eds.; Springer: Berlin/Heidelberg,
Germany, 2014; pp. 395–406.

56. Johnson, J.D. The conversational brain: Fronto-hippocampal interaction and disconnection. Med. Hypotheses
2006, 67, 759–764. [CrossRef] [PubMed]

57. Moretti, D.V.; Miniussi, C.; Frisoni, G.B.; Geroldi, C.; Zanetti, O.; Binetti, G.; Rossini, P.M.
Hippocampal atrophy and EEG markers in subjects with mild cognitive impairment. Clin. Neurophysiol.
2007, 118, 2716–2729. [CrossRef] [PubMed]

© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.2337/dc10-0602
http://www.ncbi.nlm.nih.gov/pubmed/20980413
http://dx.doi.org/10.1177/1550059412444970
http://www.ncbi.nlm.nih.gov/pubmed/22715491
http://dx.doi.org/10.1097/WAD.0b013e3181c727f7
http://www.ncbi.nlm.nih.gov/pubmed/20505435
http://dx.doi.org/10.1016/j.pnpbp.2013.07.022
http://www.ncbi.nlm.nih.gov/pubmed/23954738
http://dx.doi.org/10.1098/rsta.2008.0197
http://www.ncbi.nlm.nih.gov/pubmed/18940776
http://dx.doi.org/10.1007/s11517-008-0392-1
http://www.ncbi.nlm.nih.gov/pubmed/18784948
http://dx.doi.org/10.1088/0967-3334/27/3/003
http://www.ncbi.nlm.nih.gov/pubmed/16462011
http://dx.doi.org/10.1016/j.clinph.2005.04.001
http://www.ncbi.nlm.nih.gov/pubmed/15979403
http://dx.doi.org/10.1088/0967-3334/28/4/001
http://www.ncbi.nlm.nih.gov/pubmed/17395990
http://dx.doi.org/10.1016/j.mehy.2006.04.031
http://www.ncbi.nlm.nih.gov/pubmed/16824701
http://dx.doi.org/10.1016/j.clinph.2007.09.059
http://www.ncbi.nlm.nih.gov/pubmed/17977786
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Participants and Diagnostic Criteria 
	EEG Recording and Preprocessing 
	Entropy Analysis of EEG Data 
	PE 
	WPE 
	Parameters for PE and WPE 
	Statistical Analysis 


	Results 
	Discussion 

