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Abstract: Spatially coupled low-density parity-check (LDPC) codes have attracted considerable
attention due to their promising performance. Recursive encoding of the codes with low delay and
low complexity has been proposed in the literature but with constraints or restrictions. In this
manuscript we propose an efficient method to construct parity-check matrices for recursively
encoding spatially coupled LDPC codes with arbitrarily chosen node degrees. A general principle
is proposed, which provides feasible and practical guidance for the construction of parity-check
matrices. According to the specific structure of the matrix, each parity bit at a coupling position is
jointly determined by the information bits at the current position and the encoded bits at former
positions. Performance analysis in terms of design rate and density evolution has been presented.
It can be observed that, in addition to the feature of recursive encoding, selected code structures
constructed by the newly proposed method may lead to better belief-propagation thresholds than
the conventional structures. Finite-length simulation results are provided as well, which verify the
theoretical analysis.

Keywords: channel coding; spatially coupled LDPC codes; protograph codes; recursive encoding;
density evolution

1. Introduction

Low-density parity-check (LDPC) codes [1] were the most researched channel coding in the
last decade due to the good performance and the reasonable complexity. Their convolutional
counterparts, the LDPC convolutional codes, were invented in [2] and further developed in,
e.g., [3,4]. Different constructions and analytical results have been provided in [3–11]. For example,
Lentmaier et al. [3] proposed a realization of LDPC convolutional codes and conjectured the
capacity-achieving performance under belief-propagation (BP) decoding. The LDPC convolutional
codes were considered in a realm of spatially coupled codes [4], and the capacity-achieving property
of the code family has been proved theoretically [10–13]. The good features have triggered the
application of spatially coupling in many scenarios, such as compressed sensing [14], rate-compatible
coding [15,16], relay channels [17,18], wiretap channels [19], multiple access channels [20], multiuser
detection [21], source coding [22], etc.

To realize the promising performance in practice, the implementation of spatially coupled LDPC
codes is worth investigation. The best known implementation of spatially coupled LDPC codes is
the one introduced in [6]. Based on the particular structure of the parity-check matrix, a recursive
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encoder using a shift-register was proposed. The encoder requires only a small number of memory
units and the computational cost per bit is proportional to the check node degree. This is a clear
advantage compared with the encoding of LDPC block code regarding storage requirements and
computational costs. Combined with the pipeline decoding or the sliding-window decoding [6,23],
spatially coupled LDPC codes provide a low-delay and low-complexity realization of channel coding
with capacity-approaching performance.

The structure in [6] is suitable for recursive encoding; however, several constraints need to be
satisfied when constructing the parity-check matrix. Alternatively, Sridharan et al. [8] proposed
a simpler way to generate the parity-check matrix using randomly permuted identity matrices on
condition that the check node degree dc and the variable node degree dv are not relatively prime.
If we further require that the ratio of dc and dv is an integer, then the structure in [8] enables recursive
encoding. These constraints and requirements limit the practical application of the codes. To extend
the construction to the codes with arbitrary rates, we propose in this paper an efficient method to
construct the parity-check matrices with permuted identity matrices regardless of the choice of dc and
dv. By rearranging the edge connections, each parity bit at a coupling position is jointly determined by
the information bits at the current position and the encoded bits at former positions [24]. A generalized
principle is proposed, which provides feasible and practical guidance for constructing the recursive
structures. The requirement of memory units and the computational complexity retain similar to
the recursive encoder in [6]. Performance analysis in terms of design rate and density evolution is
provided. It can be observed that, with properly designed pattern, the modified code structure may
converge faster in the belief-propagation (BP) decoding than the existing structure [8]. Consequently,
the corresponding spatially coupled LDPC ensemble is able to provide better BP thresholds and smaller
gaps to the Shannon limits. Bit erasure rate (BER) performance with finite code lengths is provided as
well, which verifies the analysis of the BP thresholds.

In this manuscript we restrict ourselves only to the convolutional-like LDPC codes with nearly
regular structures. More advanced spatially coupled protograph codes [25] have been proposed with
better decoding thresholds, minimum distances and finite-length trade-offs [26], such as spatially
coupled repeat-accumulate (RA) codes [27], spatially coupled accumulate-jagged-accumulate (ARJA)
codes [28] and spatially coupled MacKay–Neal (MN) codes [29]. The easy encoding of these codes is
definitely worth investigations, and we will look into it in the future work.

The remainder of the paper is organized as follows. An overview of spatially coupled LDPC
codes and the recursive encoding proposed in [6,8] are given in Section 2. In Section 3, we propose
a principle on constructing the parity-check matrices of spatially coupled LDPC codes and illustrate
the recursive encoding using a shift-register. Performance analysis based on design rate and density
evolution is provided in Section 4. Section 5 presents the finite-length performance evaluation in the
binary erasure channel (BEC). Section 6 concludes the paper.

2. Overview of Spatially Coupled LDPC Codes

Spatially coupled LDPC codes are constructed by coupling together a series of disjoint LDPC
block codes into a single coupled chain. As shown in Figure 1, the left unit is the protograph of a LDPC
code, and the structure on the right represents the protograph of the corresponding spatially coupled
LDPC code. The spatially coupled LDPC ensemble is obtained by duplication and edge rearrangement
from the LDPC ensemble.

A (dv, dc) spatially coupled LDPC code with coupling chain L can also be defined using the
parity-check matrix HT

[0,L−1] as follows:

HT
[0,L−1] =

MT
0 (0) . . . MT

0 (ms)
. . . MT

l (l + m)
. . .

MT
L−1(L− 1) . . . MT

L−1(L + ms − 1)

 ,
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where each submatrix MT
l (l + m) is a c× (c− b) binary matrix. The parameter c corresponds to the

number of variable nodes at each position, and (c− b) is the corresponding number of check nodes.
In the notation, l, 0 ≤ l < L, denotes the position in the chain, and m, 0 ≤ m ≤ ms, indicates the
position of edge connections. The parameter ms is called the syndrome former memory, and (ms + 1)c
is regarded as the constraint length of the code.
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advantage compared with the encoding of LDPC block code regarding storage requirements and
computational costs. Combined with the pipeline decoding or the sliding-window decoding [6,23],
spatially coupled LDPC codes provide a low-delay and low-complexity realization of channel coding
with capacity-approaching performance.

The structure in [6] is suitable for recursive encoding, however, several constraints need to
be satisfied when constructing the parity-check matrix. Alternatively, [8] proposed a simpler way
to generate the parity-check matrix using randomly permuted identity matrices on condition that
the check node degree dc and the variable node degree dv are not relatively prime. If we further
require that the ratio of dc and dv is an integer, then the structure in [8] enables recursive encoding.
These constraints and requirements limit the practical application of the codes. To extend the
construction to the codes with arbitrary rates, we propose in this paper an efficient method to construct
the parity-check matrices with permuted identity matrices regardless of the choice of dc and dv.
By rearranging the edge connections, each parity bit at a coupling position is jointly determined by the
information bits at the current position and the encoded bits at former positions [24]. A generalized
principle is proposed, which provides feasible and practical guidance for constructing the recursive
structures. The requirement of memory units and the computational complexity retain similar to
the recursive encoder in [6]. Performance analysis in terms of design rate and density evolution is
provided. It can be observed that, with properly designed pattern, the modified code structure may
converge faster in the belief-propagation (BP) decoding than the existing structure [8]. Consequently,
the corresponding spatially coupled LDPC ensemble is able to provide better BP thresholds and smaller
gaps to the Shannon limits. Bit erasure rate (BER) performance with finite code lengths is provided as
well, which verifies the analysis of the BP thresholds.

In this manuscript we restrict ourselves only to the convolutional-like LDPC codes with nearly
regular structures. More advanced spatially coupled protograph codes [25] have been proposed with
better decoding thresholds, minimum distances and finite-length trade-offs [26], such as spatially
coupled repeat-accumulate (RA) codes [27], spatially coupled accumulate-jagged-accumulate (ARJA)
codes [28] and spatially coupled MacKay-Neal (MN) codes [29]. The easy encoding of these codes is
definitely worth investigations, and we will look into it in the future work.

The remainder of the paper is organized as follows. An overview of spatially coupled LDPC
codes and the recursive encoding proposed in [6,8] are given in Section 2. In Section 3, we propose
a principle on constructing the parity-check matrices of spatially coupled LDPC codes and illustrate
the recursive encoding using a shift-register. Performance analysis based on design rate and density
evolution is provided in Section 4. Section 5 presents the finite-length performance evaluation in the
binary erasure channel (BEC). Section 6 concludes the paper.

2. Overview of Spatially Coupled LDPC Codes

Spatially coupled LDPC codes are constructed by coupling together a series of disjoint LDPC
block codes into a single coupled chain. As shown in Figure 1, the left unit is the protograph of a LDPC
code, and the structure on the right represents the protograph of the corresponding spatially coupled
LDPC code. The spatially coupled LDPC ensemble is obtained by duplication and edge rearrangement
from the LDPC ensemble.
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...

... ...

...

Figure 1. Protograph of a (3, 6, L) spatially coupled LDPC ensemble. The rectangles represent check
nodes while the circles denote variable nodes. The gray circles correspond to information bits while
the white circles associate with parity bits.

Figure 1. Protograph of a (3, 6, L) spatially coupled low-density parity-check (LDPC) ensemble. The
rectangles represent check nodes while the circles denote variable nodes. The gray circles correspond
to information bits while the white circles associate with parity bits.

Once the node degrees (dv, dc) have been given, the parity-check matrix HT
[0,L−1] needs to satisfy

the following constraints:

1. The number of ones in each row is dv.
2. The number of ones in each column is dc, except the beginning and the terminating ends of

the chain.
3. MT

l (l + m) = 0, for m < 0 and m > ms,∀l.
4. There exists l such that MT

l (l + ms) 6= 0.
5. MT

l (l) 6= 0 has full rank ∀l .

To implement the systematic and recursive encoding according to [6], MT
l (l + m) must

additionally satisfy:

6. The last c− b rows of MT
l (l) is a (c− b)× (c− b) identity matrix.

Note that, in this paper we assume that the encoder is systematic, i.e., the information bits is
part of the codeword. We define the recursive encoding as that each parity bit to be encoded can be
obtained through the module-2 addition of the known information bits and parity bits. Once a parity
bit is determined, it will be utilized in the forthcoming calculation of other unknown parity bits.

It usually takes some efforts to simultaneously satisfy all the above constraints. Instead, if using the
structure illustrated in [8], a syndrome matrix meeting all the requirements can be constructed simply.

We now describe the structure proposed in [8]. According to [8], the submatrix MT
l (l + m) is

constructed as

MT
l (l + m) =


P0,0 (l + m) · · · P0,d′v−1 (l + m)

... Pi,j (l + m)
...

Pd′c−1,0 (l + m) · · · Pd′c−1,d′v−1 (l + m)

 ,

where Pi,j (l + m) is an M ×M random permutation matrix in the i-th row and the j-th column of
MT

l (l + m). Let mb = gcd(dv, dc) denote the greatest common divisor of dv and dc, then there exist
positive integers d′v = dv/mb, d′c = dc/mb, and gcd(d′v, d′c) = 1. In this case, we have c = d′c M,
b = (d′c − d′v)M, and the syndrome former memory ms = mb − 1. The satisfaction of constraints 1–5 is
obvious. When dc/dv is an integer, MT

l (l + m) turns out to be a d′c × 1 matrix. The constraint 6 is easy
to access by setting Pd′c−1,0(l + m) as an identity matrix.

The recursive encoding of spatially coupled LDPC code for the case that dc/dv is an integer is
discussed in the following. The protograph of the (3, 6, L) spatially coupled LDPC ensemble has
been provided in Figure 1, where the gray circles correspond to information bits and the white circles
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associate with parity bits. As shown in the protograph, the parity bits vl,1 in each position l are
determined according to the information bits vl,0 and the related bits vl′ ,0, vl′ ,1, 0 ≤ l′ < l, from the
previous positions. In this way, a recursive encoder is implemented.

However, it is disappointing that for the case dc/dv is not an integer, we cannot perform recursive
encoding as above. Let us consider the case dv = 4 and dc = 6. The protograph of the LDPC block
code, which acts as the smallest coupling unit, is given on the left of Figure 2. The protograph of
a (dv, dc, L) = (4, 6, L) spatially coupled LDPC ensemble constructed according to [8] is provided
in Figure 2a. The notations are the same as in Figure 1. The protograph consists of d′c = 3 variable
nodes and d′v = 2 check nodes at each position. The variable node degree equals dv, and the check
node degree is dc. At each position l in Figure 2a, vl,0 denotes the information bits while vl,1 and vl,2
represent the parity bits, for 0 ≤ l < L. It can be seen that the parity bits vl,1 (and vl,2) can not be
calculated only depending on vl,0 and the encoded bits at former positions, as the two variable nodes
associated with vl,1 and vl,2 connect to the same check node. Therefore, recursive encoding cannot be
applied for this case.

0 1 2 3 4 5

(a)

(b)

0 1 2 3 4 5

V0,0 V0,1 V0,2 V1,0 V1,1 V1,2 V2,0 V2,1 V2,2 V3,0 V3,1 V3,2 V4,0 V4,1 V4,2

V0,0 V0,1 V0,2 V1,0 V1,1 V1,2 V2,0 V2,1 V2,2 V3,0 V3,1 V3,2 V4,0 V4,1 V4,2

V5,0 V5,1 V5,2

V5,0 V5,1 V5,2

... ...

... ...

... ...

... ...

Figure 2. Protograph of a (4, 6, L) spatially coupled LDPC ensemble with (a) the structure in [8]; (b) a
modified structure.

Fortunately, the problem may have a solution using a modified protograph structure as illustrated
in Figure 2b. Similarly, vl,0 represents the information bits, and vl,1, vl,2 are the parity bits, at each
position l. The edge connection on the variable node associated with vl,2 is rearranged. It avoids
connecting to both the check nodes at the current position but connects to a check node one position
away. By doing this, each check node connects with only one unknown variable nodes and dc − 1
known variable nodes. The parity bit vl,1 can be calculated depending on vl,0 and the encoded bits at
former positions. Afterwards, vl,2 can be obtained in turn through vl,0, vl,1 and the encoded bits at
former positions. After the modification, all the parity bits at the current position can be calculated
depending on the information bits and the previously encoded parity bits. The recursive encoding is
realized through a structure modification.

The recursive encoding significantly reduces the delay and the complexity compared to the
encoding of LDPC block codes, and it promotes the application of spatially coupled LDPC codes
in practice. Therefore, it is important to find an efficient and effective method to implement the
recursive encoding for arbitrarily chosen node degrees. In the next section, we propose a simple but
generalized principle for constructing the parity-check matrix and implement the recursive encoding
for the proposed structures.
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3. Recursive Encoding of Spatially Coupled LDPC Codes with Arbitrary Node Degrees

In the following we first propose a general method which guides the construction of the
parity-check matrix for recursive encoding. Afterwards, the details of the encoding procedure
is provided.

3.1. General Principle on Constructing Parity-Check Matrices

Instead of using the d′c × d′v structure as the smallest coupling unit, we redefine a structure
consisting of dc × dv permuted identity matrices as:

BT
l =


P(0)

0,0 (l) · · · P(dv−1)
0,dv−1 (l)

... P(n)
i,j (l)

...

P(0)
dc−1,0 (l) · · · P(dv−1)

dc−1,dv−1 (l)

 , (1)

where P(n)
i,j (l) is an M × M random permutation matrix in the i-th row and the j-th column of BT

l ,

and n (0 ≤ n < dv) represents that P(n)
i,j (l) is the n-th non-zero permutation matrix in the i-th row. By

varying the offsets between adjacent rows, different types of coupling units are obtained. We define
a pattern a = (a0, a1, · · · , ai, · · · , adc−1), where ai ∈ {0, 1} for i = {0, 1, · · · , dc − 1}, to represent the
coupling unit H̃T

l after row offsetting as:

H̃T
l =





a0 = 1 P(0)
0,0 (l) P(1)

0,1 (l) · · · P(j+1)
0,j+1 (l) · · · P(dv−1)

0,dv−1 (l)
...

. . . . . . . . . . . .

ai−1 P(0)
i−1,j(l) P(1)

i−1,j+1(l) · · · · · · P(dv−1)
i−1,j+dv−1(l)

ai = 1 P(0)
i,j+1(l) P(1)

i,j+2(l) · · · P(dv−2)
i,j+dv−1(l) P(dv−1)

i,j+dv
(l)

...
. . . . . . . . .

adc−1 P(0)
dc−1,dv−1(l) P(1)

dc−1,dv
(l) · · · P(dv−1)

dc−1,2dv−2(l)

(2)

The element ai = 1 means that the beginning of the non-zero matrices in the i-th row shifts by
one column compared to that in the (i− 1)-th row, while ai = 0 indicates that the non-zero matrices
in the i-th row are aligned with those in the (i− 1)-th row, for 0 < l < dc. Note that a0 = 1 means
that the beginning of the first row in H̃T

l shifts by one column compared to the last row of H̃T
l−1.

Figure 3 illustrates how to obtain H̃T
l from BT

l according to pattern a, and then how to assemble
HT

[0,L−1] accordingly.
In the following we propose a theorem which selects all the parity-check matrix structures suitable

for recursive encoding.

Theorem 1. For a coupling unit represented by a = (a0, a1, · · · , ai, · · · , adc−1), if the pattern a satisfies
dc−1
∑

i=0
ai = dv

a0 = 1
, (3)

the spatially coupled LDPC ensemble {dv, dc, L} constructed by coupling the unit of pattern a allows
recursive encoding.
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Figure 3. The construction of the parity-check matrix for the (4, 6, L) spatially coupled LDPC ensemble.

Proof of Theorem 1. We first prove that any matrix HT
[0,L−1] coupling from a structure H̃T

l satisfying

condition (3) is the parity-check matrix of a spatially coupled LDPC ensemble. Each P(n)
i,j (l) is

a permutation matrix, which implies that each column or each row of P(n)
i,j (l) only contains single one.

Considering
dc−1
∑

i=0
ai = dv and a0 = 1, the structure H̃T

l must have a form as in (2).

It is obvious that H̃T
l is a dc × (2dv − 1) matrix, and each P(n)

i,j (l) is an element of it. Apparently

each row in H̃T
l contains dv non-zero columns, and so does HT

[0,L−1]. Then, as Figure 3 shows, the last

dv − 1 columns of H̃T
l−1 is aligned with the first dv − 1 columns of H̃T

l if a0 = 1. Assuming that ai∗

represents the second 1 (a0 must be 1) in a, all columns in row i′, i′ ≥ i∗, has been shifted to the right
by at least one column. Thus the first column in H̃T

l−1 contains only i∗ rows and the dv-th column
contains dc − i∗ rows. Note that the dv-th column of H̃T

l−1 corresponds to the first column of H̃T
l .

After assembling H̃T
l−1 and H̃T

l , the corresponding column in HT
[0,L−1] contains dc rows. The same

analysis can be applied to other columns except the beginning and terminating ends of HT
[0,L−1].

Therefore the matrix HT
[0,L−1] is the parity-check matrix of a spatially coupled LDPC ensemble with

node degrees dv and dc.
We then prove why recursive encoding can be applied with this structure. We have assumed that

the coupling unit has dc variable nodes and dv check nodes. We use C(l, k) to denote the k-th check
node in the l-th coupling unit in the chain, 0 ≤ k < dv. In each coupling unit, the number of variable
nodes associated with the parity bits equals dv, and the number of variable nodes corresponding to
information bits is dc − dv. For convenience, we name the variable nodes associated with the parity
bits as parity nodes, and we denote the k-th parity node in the l-th coupling unit as P(l, k). The nodes
related to the information bits are denoted as I(l, j), 0 ≤ j < dc − dv.

To guarantee recursive encoding, we set the following conditions on the edge connections from
the check node C(l, k): (i) there is one and only one edge connecting the check node C(l, k) and the
parity node P(l, k); (ii) the remaining (dc − 1) edges are only allowed to connect with the nodes in the
set {P(l′, k′) : dvl′ + k′ < dvl + k} ∪ {I(l′, j) : l′ ≤ l, 0 ≤ j < dc − dv}. A protograph which illustrates
the above connections for dv = 4 and dc = 6 is given in Figure 4. Without the loss of generality,
we assume the information bits are associated with the first two variable nodes in each coupling unit.
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...

C(l,0) C(l,1) C(l,2) C(l,3)

I(l,0) I(l,1) P(l,0) P(l,1) P(l,2) P(l,3)

...

Figure 4. The connections for (4, 6) spatially coupled LDPC codes assuming the information bits are
associated with the first two variable nodes.

In the following we describe the above conditions in form of parity-check matrix. Each coupling
unit is described by a dc × dv structure of permutation matrices. Without disarranging the edge
connections, we change the order of rows so that the first dv rows relate to parity nodes P(l, k),
0 ≤ k < dv. The indexes of the columns represent the check nodes C(l, k). According to the condition (i),
the permutation matrix at the k-th row and the k-th column for 0 ≤ k < dv is non-zero. Meanwhile,
based on the condition (ii), the permutation matrix at the k-th row and the k′-th column, k > k′,
0 ≤ k, k′ < dv, must be a zero-matrix. We have defined that the element ai = 1 means that the
beginning of the non-zero permutation matrices in the i-th row shifts by one column compared to
that in the (i − 1)-th row. According to the conditions, there is obviously a number of dv 1s in the
pattern a.

As a0 = 1, the above theorem selects a number of (dc−1
dv−1) structures which allow recursive

encoding. However, some different structures may actually lead to the same edge connections in the
chain. In order to screen out the structures which have truly different edge connections, we take into
account the following restriction. The submatrices indexed by aa and ab are considered to result in
different edge connections in the coupling chain only if they satisfy:

(aa)N 6= ab (4)

where (aa)N indicates a sequence obtained by circular shifting the elements in aa for N times,
N ∈ {0, 1, · · · dc − 1}.

Once the pattern a is obtained, the positions for the information bits are determined. If ai = 0,
0 < i < dv, the (i− 1)-th variable node is designated for one information bit. The structures selected
by (3) and (4) for recursive encoding spatially coupled LDPC ensembles with dv = 4 and dc = 6
are aa = (1, 0, 0, 1, 1, 1), ab = (1, 0, 0, 1, 1, 1), and ac = (1, 0, 1, 1, 1, 0). The corresponding matrix
structures are illustrated in Figure 5. The various structures lead to different performance which will
be discussed later.

1

0

0

1

1

1

1

0

1

1

0

1

1

0

1

1

1

0

(a) (b) (c)

Figure 5. The coupling unit of (4, 6, L) spatially coupled LDPC ensembles with (a) aa = (1, 0, 1, 1, 0, 1);
(b) ab = (1, 0, 0, 1, 1, 1) and (c) ac = (1, 0, 1, 1, 1, 0).

The spatially coupled LDPC codes need to be initialized and terminated properly for finite L.
In order to ensure that the spatially coupled LDPC codes with the modified structures exhibit good
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performance, we try to maintain the degree of variable nodes for all the positions on the coupling
chain but reduce the degree of check nodes at the boundary positions.

Take Figure 2b as an example. If we keep all the variable node degree to be dv, there appears an
additional check node at the end of the chain compared to Figure 2a. This check node will slightly
reduce the design rate of the ensemble. On the other hand, if we remove this check node, the design
rate will be the same as that of Figure 2a. For this case, the last variable node has a reduced degree
dv − 1. In this manuscript, we always choose to keep the variable node degree dv on all the positions.

The same as in [6], the state of the register is non-zero after encoding. A solution to this problem
has been proposed in [6], but it has to solve a system of linear equation which is complex. To solve the
problem more efficiently, we adopt the efficient termination proposed in [9].

3.2. Implementation of Recursive Encoding

In this section, we introduce the implementation of recursive encoding based on the modified
structure of spatially coupled LDPC codes as above.

To illustrate the recursive encoding, we first define the following notations. The subsequence of
information bits at position l is defined as ul = [ul,0, ul,1, · · · , ul,dc−dv−1] for 0 ≤ l < L. The encoded
subsequence at position l is denoted as vl = [vl,0, vl,1, · · · , vl,dc−1], and cl = [cl,0, cl,1, · · · , cl,dv−1] is
the parity-bit vector for 0 ≤ l < L. We have the entire code sequence as v[0,L−1] = [v0, v1, · · · , vL−1],
and it satisfies the equation

v[0,L−1]H̃
T
[0,L−1] = 0. (5)

We divide (5) into several sub-equations, and the l-th sub-equation is written as vlH̃T
l = pl =

[sl , ql ], 0 ≤ l < L. The vector pl = [sl , ql ] is the partial syndrome from the l-th sub-equation,
where sl = [s(0)l , s(1)l , · · · , s(dv−1)

l ] and ql = [q(0)
l , q(1)

l , · · · , q(dv−2)
l ].

From the structure of H̃T
l , for 1 ≤ l < L, we have

pl−1 = vl−1H̃T
l−1,

s(k)l =

{
q(k)

l−1 = p(k+dv)
l−1 , 0 ≤ k < dv − 1

0, k = dv − 1
.

If P(0)
i,j (l) for ai+1 6= 0 (0 ≤ i < dc, adc = a0 = 1) is an identity matrix, then the parity bits can

be calculated simply with the encoded bits obtained earlier. For 0 ≤ l < L, the i-th (0 ≤ i < dc)

encoded bit vl,i is determined depending on the information bits, the encoded parity bits and the
partial syndrome as

vl,i =


ul,g, ai+1 = 0

cl,k = s(k)l +
i−1
∑

i′=0
vl,i′P

(·)
i′ ,j (l), ai+1 = 1

, (6)

where ul,g and cl,k correspond to the coming information bits and the parity bits to be encoded,
respectively. The indexes g, k and j are determined by the realization of H̃T

l .
For l = 0, s0 = 0, the encoder is initialized by

p0 = [0, q0] = v0H̃T
0 ,

and the encoded bits are

v0,i =


u0,g, ai+1 = 0

c0,k =
i−1
∑

i′=0
v0,i′P

(·)
i′ ,j [0], ai+1 = 1

(7)
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According to (6) and (7), we can implement the recursive encoder of spatially coupled LDPC
codes using shift-registers as in [6]. The encoder needs a number of (dv − 1)M storage units, and the
encoding complexity per bit is proportional to dc.

4. Theoretical Analysis

In this section, the design rate of the terminated spatially coupled LDPC ensemble with the
modified structure is calculated. In addition, analysis based on density evolution is provided. For a fair
comparison with [8], in the following we assume an idealized termination where the state of the
shift-register comes back to zero. For the ease of presentation, we refer to the structure in [8] as the
original structure in the rest of the paper.

4.1. Design Rate

To get the design rate of a (dv, dc, L) spatially coupled LDPC ensemble, we calculate the
total number of information bits and parity bits separately. Since there are M nodes for each
position, the total number of variable nodes equals dcLM, and the total number of check nodes
is (dvL + dv − 1)M. Hence, the design rate of the spatially coupled LDPC code is

R = 1− dvL + dv − 1
dcL

= 1− dv

dc
×

L + dv−1
dv

L
.

As we pointed out earlier, this rate is slightly lower than that of the original ensemble when
gcd(dv, dc) < dv. When gcd(dv, dc) = dv, the modified ensemble is equivalent to the original structure,
and the design rate is the same for both. For a large L, the rate reduction is negligible. When L tends to
infinity, the design rate converges to 1− dv/dc.

4.2. Density Evolution

In the following we derive the density evolution of the proposed code structures. For comparison,
we plot the remaining erasure probabilities after iterations for both the original spatially coupled
structure and the newly proposed structures.

There are dc variable nodes and dv check nodes at each position. Due to the variety of edge
connections, we track the message passing on each individual node instead of each position. We use
T (k, n) to denote the set of indices ( f , g) of the check nodes connected with variable node (k, n) and
J ( f , g) to represent the set of indices (k, n) of the variable nodes related to check node ( f , g). The check
node ( f , g) is the g-th check node at position f , and variable node (k, n) is the n-th variable node at
position k.

In the t-th iteration of the decoding, we use xn,g
k, f (t) to denote the probability that the message from

variable node (k, n) to check node ( f , g) is an erasure, while the probability that the message from
check node ( f , g) to variable node (k, n) corresponds to an erasure is represented by yg,n

f ,k (t). As the

variable node (k, n) connects with the check nodes indexed by T (k, n), xn,g
k, f (t) can be updated as

xn,g
k, f (t) = ε ∏

( f ′ ,g′)∈T (k,n)
s.t.( f ′ ,g′) 6=( f ,g)

yg′ ,n
f ′ ,k (t− 1).

Similarly, for check node ( f , g), we get

yg,n
f ,k (t) = 1− ∏

(k′ ,n′)∈J ( f ,g)
s.t.(k′ ,n′) 6=(k,n)

[1− xn′ ,g
k′ , f (t)].
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In Figure 6, the density evolution for (dv, dc, L) = (4, 6, 50) spatially coupled LDPC ensemble
with iteration numbers n = {1, 101, 201, 301, ..., 901} is given for the binary erasure channel with
erasure probability ε = 0.646. Figure 6a refers to the original spatially coupled LDPC ensemble
in [8], while Figure 6b–d correspond to the spatially coupled LDPC ensembles modified for recursive
encoding. The horizontal axis is the index of the variable nodes in the protograph, where every
adjacent dc variable nodes belong to the same position. The vertical axis presents the remaining
erasure probability.
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Figure 6. Density evolution for (4, 6, 50) spatially coupled LDPC ensembles with structure (a) in [8];
(b) aj = (1, 0, 1, 1, 0, 1); (c) aj = (1, 0, 0, 1, 1, 1) and (d) aj = (1, 0, 1, 1, 1, 0).

The curves of density evolution reflect the irregularity of check node degree at the boundary
positions. In the initialization, the degree of the left four check nodes is respectively {3, 3, 6, 6},
{2, 3, 5, 6}, {3, 4, 5, 6}, and {2, 3, 4, 6} for (a) to (d). In general, lower check node degree leads to better
decoding performance, which is verified in Figure 6. We can see that (b) and (d) show an advantage
over (a) and (c) on the left boundary of the protograph. Similar superiority is observed for (b) and (c)
on the right boundary due to their smaller check node degree.

For the original spatially coupled LDPC ensemble, all the variable nodes at the same position
has the same coupling behavior. Therefore, (a) exhibits a stair for every dc variable nodes. In the
protograph of the modified structures, even for the same position, the edge connection may be different
from one variable node to another. Consequently, the curves of remaining erasure probability in (b),
(c), and (d) are smoother than that in (a). Meanwhile, the manner of edge connection clearly affects the
convergence behavior in iterative decoding. For the erasure probability we chose, the codes are in the
water-fall region. We can see from the distance between neighboring curves, (b) converges the fastest
among all the ensembles, and (c) performs the worst.

The BP decoding performance of spatially coupled LDPC ensembles is jointly determined by the
boundary effect and the manner of edge connections. Combining the above observations, we expect
that the ensemble associated with Figure 6b outperforms the others regarding the decoding threshold.
The BP thresholds will be given in the next section.
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On top of BP threshold, the performance of a spatially coupled LDPC code can be analyzed
through the distance property of the ensemble. For example, the minimum distance growth rate of
a spatially coupled LDPC ensemble can be studied via ensemble weight enumerator [30], and the
smallest stopping/trapping set size growth can be studied via stopping/trapping set enumerator [31].
This manuscript mainly discuss the implementation aspects of the recursive encoding after modifying
the structure, and a comprehensive performance analysis based on the distance property will be
addressed in the future work.

5. Simulation Results and Discussions

In this section, we evaluate the performance of the proposed structures in the binary erasure
channel numerically. We compare the BP thresholds of the spatially coupled LDPC codes after the
modifications with the BP thresholds of the corresponding original structures in [8]. In addition, the bit
erasure rates for different structures are provided.

We first provide the comparison of BP thresholds among different realizations of the modification.
We choose the parameters dv = 4, dc = 6 and L = 50 and carry out the density evolution for all the
structures shown in Figure 5. The BP thresholds of the modified spatially coupled LDPC ensembles
and the original implementation in [8] over the BEC are shown in Table 1, which are represented
by εBP. Besides, εSh denotes the Shannon limit corresponding to different design rate. As predicted
in Section 4.2, the ensemble with the pattern (101101) performs the best among all the structures.
The gap between the Shannon limit and the BP threshold is smaller than that of the original structure.
The structure modification does not necessarily result in better BP threshold. However, a properly
designed pattern can enable both easy encoding and better threshold.

Table 1. BP thresholds of (4, 6, 50) spatially coupled LDPC ensembles with different structures.

Pattern a Design Rate εSh εBP Gap

Original 0.3200 0.6800 0.6567 0.0233
(101101) 0.3133 0.6867 0.6646 0.0221
(100111) 0.3133 0.6867 0.6364 0.0503
(101110) 0.3133 0.6867 0.6479 0.0388

Based on the observations in Table 1, we realize the modifications with properly selected patterns
for different dv and dc and provide the BP thresholds in Table 2. The selected patterns are listed in
the table, and the coupling length is L = 50. The gaps between the BP thresholds and the Shannon
limits for the modified spatially coupled LDPC ensembles and for the original ensembles in [8] are
represented by Gap and G̃ap, respectively. Comparing Gap with G̃ap, we can find that all the gaps
are narrowed after proper modifications. For the modified structures, all the gaps are very small and
can be further narrowed if we increase the parameters. Properly modified spatially coupled LDPC
ensembles are able to provide capacity-approaching performance over the BEC. A similar conclusion
can be extended to the general binary memoryless symmetric channel.

Table 2. BP thresholds of modified spatially coupled LDPC ensembles with different node degrees.

(dv, dc) Pattern a Design Rate εSh εBP Gap G̃ap

(4, 6) (101101) 0.3133 0.6867 0.6646 0.0221 0.0233
(6, 9) (101101101) 0.3007 0.6993 0.6653 0.0340 0.0361

(8, 12) (101101101101) 0.2885 0.7115 0.6653 0.0462 0.0484
(6, 10) (1001110011) 0.3800 0.6200 0.5925 0.0275 0.0830
(9, 15) (100111001110011) 0.3686 0.6314 0.5925 0.0389 0.0945
(12, 20) (10011100111001110011) 0.3577 0.6423 0.5925 0.0498 0.1055



Entropy 2016, 18, 305 12 of 14

Bit erasure rates for the modified spatially coupled LDPC codes and the original code over BECs
are provided in Figure 7. Here, we set M = 500 and L = 50, and we use the selected patterns as in
Table 2. We also include the corresponding BP thresholds as the dashed lines and the Shannon limits
as the dotted lines. Comparing the BER curves, we can find that the spatially coupled LDPC codes
with properly modified structures clearly outperforms the original spatially coupled LDPC code in [8].
Note that, in addition to the good decoding performance, the proposed structure allows recursive
encoding which facilitates the application of spatially coupled LDPC codes in practice.
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BP threshold

Figure 7. Bit erasure rates of spatially coupled LDPC codes over binary erasure channels. In the legend,
“MSCLDPC” represents the modified code while “SCLDPC” stands for the original code.

6. Conclusions

In this manuscript, structure modification for the spatially coupled LDPC code has been proposed,
which enables the recursive encoding using a shift-register for arbitrary node degrees. The proposed
principle provides feasible and practical guidance for the code construction and significantly reduces
the computational complexity and memory requirement for the encoding. Performance analysis
in terms of design rate and density evolution has been provided. The belief-prorogation decoding
threshold is improved if proper edge rearrangement is applied in the modified spatially coupled LDPC
ensemble. Finite-length simulation results are provided, which verify the theoretical analysis.
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