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Abstract: We report experimental observations on the evolution of acoustic entropy in the course of
cyclic loading as degradation occurs due to fatigue. The measured entropy is a result of the materials’
microstructural changes that occur as degradation due to cyclic mechanical loading. Experimental
results demonstrate that maximum acoustic entropy emanating from materials during the course of
degradation remains similar. Experiments are shown for two different types of materials: Aluminum
6061 (a metallic alloy) and glass/epoxy (a composite laminate). The evolution of the acoustic entropy
demonstrates a persistent trend over the course of degradation.
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1. Introduction

Materials subjected to cyclic loading undergo gradual degradation that ages the component and
results in fatigue damage and eventual failure. Much progress has been made on the development of
methodologies for predicting the number of cycles to failure [1,2] as well as the theoretical modeling
of damage in materials [3]. Yet, to date, a reliable procedure for assessment of the degradation and
cumulative damage remains elusive. To assess the material’s structural integrity, a crucial step is to
first identify features in the system’s response that can properly measure the level of degradation.
This aim cannot be accomplished successfully without an appropriate identification of the damage
mechanisms involved. One measure of damage is disorder in the material’s microstructure. In metallic
alloys, disorder is in the form of dislocation movements, slip formation, void nucleation, and growth
as well as their combination. Of course, it can also be any other material’s defect induced during
the manufacturing process. Non-conservative frictional sources also contribute to degradation of
the material as a physical system. In the case of composite materials, the involved mechanisms are,
interlayer friction between the components of the laminate, matrix cracking, debonding, delamination,
and fiber breakage. Such damage mechanisms interact and coexist in the course of the loading cycles.

The initiation, formation and the propagation of damage contribute to the dissipation of the
energy [4] and change in the entropy [5–7]. Energy is dissipated in the forms of hysteresis energy [8–13],
thermal energy [14–20], and acoustic emissions (AE) [4,21–25]. In the case of dissipated thermal energy,
infrared technology enables one to monitor the temperature evolution over the life of the components.
Particularly in, low- to moderate-cycle fatigue where the heat liberated due to plastic deformation can
be easily measured.

Entropy has been studied in several studies related to material science and degradation. Of the
early studies related to entropy, production in the course of deformation of solids is due to the work the
Nobel laureate Percy Bridgman [26] in which he examined the thermodynamics of plastic deformation.
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Related to fatigue and fracture, Whaley et al. [27,28] reported a hypothesis that the total accumulated
entropy is a constant value at the time of the failure. In the context of damage mechanics, Basaran and
Yan [29] interpreted the entropy as disorder and employed Boltzmann entropy to quantify the disorder
in the material. The extension of their approach to electrical and chemical properties is also published
in [30–32]. Naderi et al. [33] also reported experimental results on the existence of a entropic limit at
the time of the fatigue failure.

Acoustic emissions are strain waves generated due to such microstructural changes and can be
measured using piezoelectric acoustic sensors. Such waves, as direct reflections of the microstructural
changes, contain information on degradation. Therefore, by extracting features from the measured
signals (waveforms), it is possible to monitor the cumulative trend of degradation. Such an approach
has been employed for qualitative damage assessment of a wide range of materials [22,24,25,34].

The acoustic emissions features depend on many factors such as the boundary conditions of
experiment, specimens’ geometry as well as the heat treatment and microstructure of sample materials.
In addition, location of the sensors and the proximity to source locations can also affect the values of
the features of the acoustic emissions.

The induced microstructural-level disorder in materials can be traced in the variations of generated
acoustic emissions [35]. Such variations affect the probability distribution of waveforms and their
extracted features and can be quantified by information entropy.

After the seminal paper of Claude Shannon [36], information entropy has found numerous
applications in a variety of disciplines such as image and signal processing by Coifman [37],
Kapur et al. [38], and Sabuncu [39], vibration signal processing by Elforjani [40], flow-controlled
systems by Niven [41], and protein sequences by Strait [42]. Relative entropy has been also employed
by Guan [43] for crack prognostics.

Information entropy is often used for determining the order (as opposed to scatteredness) of the
time-series (time-series is defined as a time-oriented sequence of data-points of a random variable
being studied) [44] associated with physical measurements—a signal or an image—to quantify their
information content. Information entropy [45,46] can also be interpreted as an uncertainty in a random
variable, as a measure of gaining information about a random variable or as a measure of dispersion in
a probability distribution of a random variable [39,45,46].

The premise of this research is that fatigue degradation and damage is a form of disorder that
manifests itself in the deteriorations in the features of the acoustic emission signals, and can be
quantified by employing the information entropy. Accordingly, we employ the information entropy
as a distributional feature that depends on the probability distribution of the measurements, rather
than each specific value. The acoustic entropy is a fraction of the total entropy generated due to the
dissipative mechanisms involved in degradation.

The outline of this paper is as follows. The description of entropy estimation from acoustic
response of the tested materials is discussed in Section 2. Section 3 presents the experimental results
on estimation of entropy followed by conclusions in Section 4.

2. Information Entropy Estimation of Acoustic Emissions

2.1. Acoustic Emission Sources in Metals and Composites

A material subjected to cyclic deformation generates strain wave that can be detected via an
acoustic emission (AE) sensor. In metals, AE originates from sources within a broad range of resolution,
e.g., dislocation dynamics and their formed patterns (o

`

10´8–10´7˘q, crystal plasticity at grains
(o
`

10´3˘) and continuum plasticity at macro-scale (o
`

10´3–10´2˘). Therefore, acoustic emission exists
across several length scales.

Figure 1 depicts the sources of acoustic emission for a typical metallic material. The lower left side
of the Figure 1 depicts the material at specimen size that can be considered as macroscale or continuum
level. Elastic and plastic deformation, crack initiation, and propagation at this scale are the sources
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of acoustic emissions. An ensemble of acoustic emission waveforms propagated along the specimen
can be captured employing sensors. Figure 1 also shows possible AE sources at mesoscale, such as
crystal plasticity, micro-voids, micro-crack nucleation and propagation, failure of the inclusions and
precipitations at boundaries, as well as phase change. At a smaller scale such as dislocation scale,
sources of acoustic emissions are due to material’s defect and bond fracture. Such waveforms are
emitted as the unit cell of the material undergoes any arbitrary deformations. For composite materials,
the sources of emissions emerge from matrix cracking, fiber breakage, and delamination as depicted in
Figure 1b.
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Figure 2 shows a typical acoustic emission signal. Various features must be calculated from
the measured signals. The trend of evolution of features of the signals reveals the initiation and
development of the microstructural changes and damage mechanisms involved in the degradation of
the material during the course of fatigue. One of the acoustic emission features is “counts” defined as
the number of times that a signal exceeds a preset threshold during a fatigue test. Thus, the AE counts
can be considered as a measure of intensity of the emission source.
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2.2. Entropy of the Acoustic Response

The main step in estimation of the information entropy is to define the probability distribution
of the random variable. We define our random variable as acoustic emission counts, ni, at each time
instant where i represents the time instant that the signal is received. Assume a physical system,
a specimen made of a specific material, is composed of a set of finite states φ1, φ2, . . . , φi with the
probability of each state designated as pi. We define integrity (degradation level) of the specimen as a
macro-state directly dependent on the microstructural changes (microstates) of our physical system.
At each instant of deformation/loading or any particular instant in the course of applying the input
work procedure on the material, these micro- and macro-states change as our physical system—the
specimen—occupies a new configuration. Let P ppiq represent the probability distribution of the system.
The information entropy, S—often referred to as Shannon’s entropy in recognition of Claude Shannon’s
classical work published in 1948—of such a distribution is defined in Equation (1) [36].

SE “

n
ÿ

i“1

pilog2

ˆ

1
pi

˙

“ ´

n
ÿ

i“1

pilog2 ppiq (1)

We define the set of the probabilities, tpiu, at each instant of deformation cycle as following.
At each time instant as we proceed during an experiment, we define our set of data as all of the
measured counts of the acoustic emissions, ci, from the initial moment of the test, t “ 0, until the
current time instant, ti. Therefore, for each instant within the interval of r0, tis a probability is estimated,
and as the experiment continues we update this probability once new counts are received. The absolute
values of the variable ci are designated by ni, where i is the time instant at which a signal is received.
The probability pi is defined as the counts measured from the beginning of the test, ci “ tn0, n1, . . . , niu,
divided by the total number of counts received until the current time, ctotal

i “
ři

0 ci “ n0` n1` . . .` ni.
The definition of the set of tpiu at each instant of the experiment is shown below:

ti “ t0, ci “ tn0u , pi “

"

n0

n0

*

“ 1
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ti “ t1, ci “ tn0, n1u , pi “

"

n0

n0 ` n1
,

n1

n0 ` n1

*

and
1
ÿ

i“0

pi “ 1

ti “ t f , ci “

!

n0, n1, . . . , n f

)

, pi “

!

n0
n0`n1`...`n f

, n1
n0`n1`...`n f

, . . . , n f
n0`n1`...`n f

)

and
ř f

i“0 pi “ 1

The above definition of the tpiu at each instant of the experiment satisfies the condition of
ři

0 pi “ 1 throughout the observations from an experiment. The probabilities are updated as a new
signal is received by the sensor over the course of the degradation. Once the probability distribution is
obtained, information entropy is estimated using Equation (1) at each time-instant corresponding to a
different configuration of the cyclically deformed material. It should be noted that the above definition
of probability is a type of “experimental probability”. The definition of probability used in describing
the acoustic event occurrence can be explained by a simple example of rolling a fair, six-sided dice.
Once the dice is rolled the probabilities of di “ t1, 2, 3, 4, 5, 6u are all equal to pi “

!

1
6 , 1

6 , 1
6 , 1

6 , 1
6 , 1

6

)

.
However, if the observer does not know the true probability of the outcomes—e.g., if the dice is not fair
or the center of mass and the center of gravity of the dice is not the same—then, according to his/her
state of knowledge, the experimenter sees the problem as a “black box” problem. Thus, the only way
of determining the probabilities is to repeat the rolling of the dice, observe the outcomes and calculate
the probabilities based on the observed outcomes. In this way, at each rolling time, the probabilities
can be updated. While the former assumes the probability of getting each side is a priori known, the
latter uses an experimental approach to determine the probability of each side. Our approach is of
experimental nature wherein we update the probability at each instant of the time the sensor receives
a new acoustic event.

We report the experimental observations of the estimated information entropy from AE signals
for two different materials in the course of the cyclic fatigue loading. The tested materials are
glass/epoxy—an unbalanced woven composite—and Aluminum 6061, a metallic alloy. The fatigue
experiments are fully reversed in bending mode and during experiments, the acoustic emissions are
measured from samples. Additional details are available in Appendix A regarding the material and
specimen specifications, the test rig, the details of the acoustic emission measurement apparatus, as
well as the measurement procedure.

3. Information Entropy Results

Figure 3 shows the information entropy associated with acoustic emissions counts measured
during eight fully-reversed bending fatigue experiments with Aluminum 6061 specimens. Experiments
were performed at a series of displacement amplitudes, each resulting in a different number of cycles
to failure. Since the operational variables of the experiments—i.e., the displacement amplitude and the
number of cycles to failure for all of the tests—are different, the information entropy of all of the tests
cannot be demonstrated in a single graph. Therefore, to proceed, we choose the standardized form of
the data where the mean value is removed from and the resultant is divided by the standard deviation
of each set of data for each experiments. This representation of a data set is also known as standard
score or Z-score scale. In a standardized plot, the negative values indicate that the data are smaller
than the mean of the data and the positive values represent data that are larger than the mean of the
data. The data in Figure 3a is then normalized with respect to the largest standardized value attained
in each experiment to vary in the interval of [0, 1]. As the displacement amplitude in the fatigue test
is decreased, the number of cycles to failure increases due to the decrease in plastic deformation in
material. In general, tests with a longer duration (high number of cycles to fatigue) have a higher
level of information entropy. However, according to the results of Figure 3a,c, a very important
observation is that the trend of evolution of entropy over the course of fatigue degradation remains
similar regardless of operating conditions. This behavior is easily detectable from the evolution trend
of entropy in both standardized and normalized forms.
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Figure 3. (a) The standardized information entropy of the acoustic emission signals vs. standardized
time related to the eight experiments performed on aluminum samples. The standardized time and
standardized information entropy is negative for data points smaller than the mean of the data.
The standardized entropy and time is obtained according to the relation z “

x´µ
σ where x is the

variable to be standardized, µ is the mean of the data, and σ is the standard deviation of the data;
(b) The variation in the standardized acoustic emission entropy in the boxplot form; (c) The normalized
acoustic emission entropy with respect to the normalized time. The standardized acoustic emissions
entropy is normalized with respect to the largest value obtained in the experiment.

Similar results are obtained by repeating the experiments with a different material such as
glass/epoxy composite. Twenty three fully-reversed bending fatigue experiments are performed on
glass/epoxy samples with various displacement amplitudes in the range of 35.56 mm to 44.45 mm at
a frequency of 10 Hz. Some of the tests are randomly repeated to observe the typical scatteredness
(fluctuations) in the fatigue life of the similar samples with a similar experimental variable and
labeled as T1, T2, etc. representing the Test number 1, 2 and so on. During an experimental study,
the investigator must ascertain that operating and environmental conditions as well as boundary
conditions remain similar for each set of tests. Also, specimens must be manufactured using the same
manufacturing process and samples should be made from the same batch of material. Nevertheless,
specimens’ microstructures are not necessarily identical and, as a result, the evolution of fatigue
and degradation for each sample is different. Therefore, a scatter in the number of cycles to failure
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and associated entropy is an inherent feature of fatigue experiments. Repeatable evolution trend of
entropy over the course of fatigue degradation is also observed over the degradation of the composite
specimens. The entropy evolution is demonstrated in standardized form in Figure 4a. Similar trend
of evolution is observed in Figure 4a but due to inhomogeneity in the degradation evolution in
composites and its multi-step trend, variations are observed in the entropy trend. Degradation in
composites is a multistep procedure [21] and involves several damage mechanisms. However, the
persistent trend of evolution of acoustic entropy manifests itself in the normalized depiction of the data
as seen in Figure 4c. The trend of the data is similar to those obtained for Aluminum 6061 (Figure 3c).Entropy 2016, 18, 280 7 of 13 
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Figure 4. (a) The standardized information entropy of the acoustic emission signals vs.
standardized time related to the twenty-three experiments performed on the glass/epoxy laminates.
The standardized time and standardized information entropy is negative for data points smaller than
the mean of the data. The standardized entropy and time is obtained according to the relation z “
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σ

where x is the variable to be standardized, µ is the mean of the data, and σ is the standard deviation
of the data; (b) The variation in the standardized acoustic emission entropy in the boxplot form;
(c) The normalized acoustic emission entropy with respect to the normalized time. The standardized
acoustic emissions entropy is normalized with respect to the largest value obtained in the experiment.
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Figures 5 and 6 depict the maximum information entropy obtained in the course of cyclic bending
fatigue degradation for aluminum and glass/epoxy samples, respectively. The data points in these
two graphs are the maximum values observed in the Figures 3b and 4b, respectively. The examination
of the results reveals that under the conditions tested the maximum measured entropy lies within a
narrow band (for the range of the band refer to the box and whisker plot of the Figures 5b and 6b).
In Figures 5b and 6b, non-parametric probability density function (PDF) of the maximum information
entropy as well as box-whisker plot of the variation of the entropy are presented. This is performed to
obtain a statistical inference on the distribution of the maximum information entropy. The PDF of a
random variable represents the relative likelihood of data to assume a given range. The non-parametric
PDFs of the maximum information entropy are obtained without assuming any prior distributions in
the dataset. The central red marks represent median, and margins of the box show the 25th and 75th
percentiles. Each side of the whiskers corresponds to the largest data points that are not evaluated as
outliers. The median of maximum information entropy of the acoustic emissions attains a value of
13.1 bits for the experiments performed on the aluminum samples and 12.45 bits for that of performed
on glass/epoxy specimens. This hints of a possible existence of an information entropic limit to the
acoustic entropy generated in the course of the fatigue failure of the materials. Previously, research by
Naderi et al. [33] showed that there exists a critical limit in the cumulative thermodynamic entropy
generation (known as fatigue fracture entropy) beyond which fracture occurs. The evolutionary trend
of the acoustic entropy, under various operating conditions tested in this study, also reveals a persistent
trend over the course of the fatigue degradation.
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Figure 6. (a) Maximum information entropy for 23 experiments performed on the glass/epoxy
laminates in the fully reversed bending mode. The maximum information entropy in the course
of the fatigue degradation obtains a median value of approximately 12.45; (b) The figure shows
the non-parametric probability distribution of the maximum information entropy values as well as
a box-whisker plot representing the variation in the values of the maximum information entropy.
The central red marks represent median, the margins of the box show the 25th and 75th percentiles.
Each side of the whiskers corresponds to the largest data points that are not evaluated as outliers.

4. Discussion and Concluding Remarks

During a cyclic fatigue test, the material tends to degrade and the formation of the damage
modes is reflected in its mechanical parameters. These deteriorations in the material properties
are all consequences of the same failure mechanisms—i.e., the formation and evolution of damage
modes—which will result in similar trends in various responses of the material to cyclic stress such as
thermal and acoustic response.

One of the materials’ responses that carry information of the microstructural changes in
the material is acoustic response. In this research, we examined how information entropy of
acoustic emissions can reveal pertinent information about material degradation during cyclic fatigue.
We showed that regardless of the type of the material (i.e., either a metallic alloy or a composite) and
displacement amplitude, the evolution of entropy of the acoustic emissions exhibits a persistent trend
of evolution in the course of the fatigue degradation. Such similarities of the trend of evolution are
observable in the standardized and normalized acoustic entropy.

Aside from the similarities observed in the evolution trend, it is observed that the maximum
accumulated entropy of the acoustic emissions attain similar values within an error band. Specifically,
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under the conditions tested, it is observed that Aluminum 6061, the median value of the measured
entropy is 13.1 bits and for the tests performed on glass/epoxy the median value of the measured
entropy is 12.45 bits. The entropy feature has the advantage that it is defined based on the distribution
of the AE feature and not solely based on the values of the measurements.

We close our discussion by emphasizing the significance of the feature selection algorithm for
damage detection methodologies. The crucial step is to extract information related to the damage from
the sensor outputs. Operational and environmental factors along with material properties and size
scales are all determining factors that affect the sensor outputs. The effect of such factors becomes more
pronounced once a more sensitive monitoring method, e.g., acoustic emission, is deployed. Features
that quantify the deteriorations in probability distribution of the measurements could provide valuable
information pertaining to the damage. Acoustic entropy is a fraction of the total entropy generated in
the course of the degradation of a cyclically loaded solid material. This fraction of the total entropy is
measureable from the material by means of AE sensors.
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Appendix. Materials, Experimental Apparatus, and Procedure

Fully reversed bending mode experiments are employed for calculation of the information entropy
of the acoustic emissions. Two different sample materials are tested in this mode are glass/epoxy and
Aluminum 6061. These different materials are selected to ascertain that the procedure is applicable
broad range of applications including mechanical component, structures, and aerospace structural
components. The material tested is manufactured according to the standard ASTM STP 566 [47] for
use in reverse-bending fatigue tests depicted in Figure A1. All of the dimensions are in millimeters.
The type of composites used in this work is glass/epoxy (G10/FR4)—an unbalanced woven fabric
with plain weave-and-aligned configuration stacked in 15 layers within the thickness of 3 mm. The
specimens are prepared with on-axis stacking sequences, and manufactured for use in reverse-bending
fatigue tests as shown in Figure A1. The laminates are clamped at one end and the other end is
oscillated with a specified amplitude and frequency. The schematic of the fatigue experimental
apparatus utilized in this research is demonstrated in Figure A1. The fatigue machine is made of
a bench-mounted unit containing a variable speed motor and a variable throw crank. The crank is
attached to the reciprocating platen with a failure cut-off circuit in a control box and a cycle counter.
The crank is adjusted from 0 to 50 mm to apply bending displacement.

A PCI-2 (Peripheral Component Interconnect)—a two-channel AE system which samples up to a
rate of 10 MHz—is utilized to measure the acoustic emissions from the specimen during the entire
test. A wide-band acoustic emission sensor measures the emitted waves and converts them to an
electrical signal. The AE sensor is 19.02 mm in diameter and has a frequency range of 100–900 kHz.
A gel-type ultrasonic couplant is used to acoustically couple the sensor to the specimen. The sensor
is firmly connected to the specimen during the fatigue tests. A preamplifier is connected to the
PCI-2 data acquisition system [48] using a BNC (Bayonet Neill–Concelman) cable. The preamplifier
provides a 20/40/60 dB gain options that operates with either a single-ended or differential sensor.
A pre-amplification of 40 dB is applied to the received signals and the plug-in filter is a band-pass
with the range of 20 to 1200 kHz. The Peak Definition Time (PDT), Hit Definition Time (HDT), and Hit
Lockout Time (HLT) are set to 50, 200, and 300, respectively for the fatigue experiments performed on
aluminum samples and set to 50, 200, and 300, respectively. The results of the experiments performed
on this test setup are shown in Figures 3–6.
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