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Abstract: In this paper, we develop three different methods for computing the expected logarithm
of central quadratic forms: a series method, an integral method and a fast (but inexact) set of
methods. The approach used for deriving the integral method is novel and can be used for
computing the expected logarithm of other random variables. Furthermore, we derive expressions
for the Kullback–Leibler (KL) divergence of elliptical gamma distributions and angular central
Gaussian distributions, which turn out to be functions dependent on the expected logarithm of
a central quadratic form. Through several experimental studies, we compare the performance of
these methods.
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1. Introduction

Expected logarithm of random variables usually appears in the expressions of important
quantities like entropy and Kullback–Leibler (KL) divergence [1–3]. The second kind moment is an
important statistics method used in estimation problems [4,5]. It also appears in an important class
of inference algorithms called the variational Bayesian inference [6,7]. Furthermore, the geometric
mean of a random variable which has been used in economics [8,9] is equal to the exponential of the
expected logarithm of that random variable.

Central quadratic forms (CQFs) have many applications, and most of them stem from the fact that
they are asymptotically equivalent to many statistics for testing null hypotheses. They are used for
finding the number of components in mixtures of Gaussians [10], to test goodness-of-fit for some
distributions [11] and as test statistics for dimensionality reduction in inverse regression [12].

In this paper, we develop three algorithms for computing the expected logarithm of CQFs.
There is a need to develop special algorithms for it because CQFs do not have a closed-form
probability density function, which makes the computation of their expected logarithms difficult.
Although there is a vast literature on many different ways for calculating probability distributions
of CQFs (see [13–16]), we have not found any work on calculating their expected logarithms. It is
worth noting that one of our three algorithms is based upon works for computing the probability
density function of CQFs using a series of gamma random variables [13,14]. We also derive
expressions for the KL-divergence of two distributions that are subclasses of generalized elliptical
distributions. These are zero-mean elliptical gamma (ZEG) distribution and angular central Gaussian
(ACG) distribution. The only term in their KL-divergences that can not be computed in terms of
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elementary functions is an expected logarithm of a CQF, which can be computed by one of our
developed algorithms.

The KL-divergence or the relative entropy was first introduced in [17] as a generalization of
Shannon’s definition of information [18]. This divergence has been used extensively by statisticians
and engineers. Many popular divergence classes like f-divergence and alpha-divergence have
been introduced as generalizations to this divergence [19]. This divergence has several invariance
properties like scale invariance that makes it an interesting dissimilarity measure in statistical
inference problems [20]. KL-divergence is also used as a criterion for model selection [21], hypothesis
testing [22], and merging in mixture models [23,24]. Additionally, it can be used as a measure of
dissimilarity in classification problems, for example, text classification [25], speech recognition [26],
and texture classification [27,28].

The wide applicability of KL-divergence as a useful dissimilarity measure persuade us to
derive the KL-divergence for two important distributions. One of them is ZEG [29] that has
a rich modeling power and allows heavy and light tail and different peak behaviors [30,31].
The other is ACG [32] which is a distribution on the unit sphere that has been used in many
applications [33–36]. This distribution has many nice features; for example, its maximum likelihood
estimator is asymptotically the most robust estimator of the scatter matrix of an elliptical distribution
in the sense of minimizing the maximum asymptotic variance [37].

1.1. Contributions

To summarize, the key contributions of our paper are the following:

- Introducing three methods for computing the expected logarithm of a CQF.
- Proposing a procedure for computing the expected logarithm of an arbitrary positive

random variable.
- Deriving expressions for the entropy and the KL-divergence of ZEG and ACG distributions (the

form of KL-divergence between ZEG distributions appeared in [38] but without its derivations).

The methods for computing the expected logarithm of a CQF differ in running-time and
accuracy. Two of these, namely integral and series methods, are exact. The third method is a fast
but inexact set of methods. The integral method is a direct application of our proposed procedure
for computing the expected logarithm of positive random variables. We propose two fast methods
that are based on approximating the CQF with a gamma random variable. We show that these fast
methods give upper and lower bounds to the true expected logarithm. This leads us to develop
another fast method based on a convex combination of the other two fast methods. Whenever the
weights of the CQF are eigenvalues of a matrix as in the case of KL-divergences, the fast methods can
be very efficient because they do not need eigenvalue computation.

1.2. Outline

The remainder of this paper is organized as follows. Section 2 proposes three different methods
for computing the expected logarithm of a CQF. Furthermore, a theorem is stated at the beginning
of this section that has a pivotal role in the first two methods. Then, we derive expressions for the
KL-divergence and entropy of ZEG and ACG distributions in Section 3. Afterwards, in Section 4,
multiple experiments are conducted to examine the performance of three methods for computing the
aforementioned expected logarithm in terms of accuracy and computational time. Finally, Section 5
presents our conclusions. To improve the readability of the manuscript, the proofs of some theorems
are presented in appendices.
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2. Calculating the Expected Logarithm of a Central Quadratic Form

Suppose Ni is the i-th random variable in the series of d independent standard normal random
variables, i.e., normal random variables with zero-means and unit variances. Then the central
(Gaussian) quadratic form is the following random variable:

U =
d

∑
i=1

λi N2
i , (1)

where λis are non-negative real numbers. Note that N2
i s are chi-square random variables with degree

of freedoms equal to one; therefore, this random variable is also called the weighted sum of chi-square
random variables. To the best of our knowledge, the expected logarithm of the random variable U
does not have a closed-form expression using elementary mathematical functions. For its calculation,
we propose three different approaches, namely an integral method, a series method and a set of fast
methods. Each of them has its specific properties and does well in certain situations.

In the following theorem, a relation between the expected logarithm of two positive random
variables distributed according to arbitrary densities and the Laplace transform of these two densities
is given. This theorem is used in the integral method and the fast method. Note that the assumptions
of the following theorem are unrestrictive. Therefore, it can also be used for computing the expected
logarithm of other positive random variables.

Theorem 1. Let X and Y be two positive random variables, F and G be their cumulative distribution functions,
and f and g be their probability density functions. Furthermore, suppose thatF and G are the Laplace transform
of f and g, respectively. If limx→∞ log(x)(G(x)− F(x)) = 0, limx→0+ log(x)(G(x)− F(x)) = 0 and∫ ∞

0
G(σ)−F (σ)

σ dσ exists, then

E[log X]−E[log Y] =
∫ ∞

0

G(σ)−F (σ)
σ

dσ. (2)

Proof. Using the definition of Laplace transform, we have

G(s)−F (s) =
∫ ∞

0
(g(x)− f (x)) exp(−sx) dx. (3)

Using the integration property of Laplace transform, we have

G(s)−F (s)
s

=
∫ ∞

0

[∫ x

0
(g(τ)− f (τ)) dτ

]
exp(−sx) dx.

Using the frequency integration property of Laplace transform, and the formulas
F(x) =

∫ x
0 f (τ)dτ, and G(x) =

∫ x
0 g(τ)dτ we further obtain

∫ ∞

s

G(σ)−F (σ)
σ

dσ =
∫ ∞

0

1
x
(G(x)− F(x)) exp(−sx) dx.

Letting s in the above equation go to zero and since
∫ ∞

0
G(σ)−F (σ)

σ dσ exists, we further obtain

∫ ∞

0

G(σ)−F (σ)
σ

dσ =
∫ ∞

0

1
x
(G(x)− F(x)) dx.

Using the integration by parts formula having log(x) and G(x)− F(x) as its parts, we have

∫ ∞

0

G(σ)−F (σ)
σ

dσ =

[
log(x)(G(x)− F(x))

]∞

0
−
∫ ∞

0
log(x)(g(x)− f (x)) dx. (4)
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Since limx→∞ log(x)(G(x)− F(x)) = 0, and limx→0+ log(x)(G(x)− F(x)) = 0, we obtain[
log(x)(G(x)− F(x))

]∞

0
= 0. (5)

Hence by using (5) in (4), we have

∫ ∞

0
log(x) f (x) dx−

∫ ∞

0
log(x)g(x) dx =

∫ ∞

0

G(σ)−F (σ)
σ

dσ. (6)

From the definition of expectation, relation (2) is obtained.

2.1. Integral Method

In this part, we will use Theorem 1 for computing the expected logarithm of a CQF. To this end,
we choose a random variable Y that has a closed-form formula for its expected logarithm and Laplace
transform of its density. A possible candidate is the gamma random variable. The density of gamma
random variable has the following Laplace transform:

(1 + θs)−k, (7)

where k and θ are its shape and scale parameters, respectively. Also, the expected logarithm of this
random variable is Ψ(k) + log(θ), where Ψ(·) is digamma function.

Using the convolution property of Laplace transform, it is easy to see that the density function
of the CQF given in (1) has the following closed-form Laplace transform:

d

∏
i=1

(1 + 2λis)
− 1

2 . (8)

Lemmas 2 and 3 show that a CQF and a gamma random variable satisfy the conditions of
Theorem 1. For proving Lemma 2, we need Lemma 1. First of all, let us express the following
trivial proposition.

Proposition 1. Let X1, . . . , Xn be arbitrary real random variables. Suppose we have two many-to-one
transformations Y = h(X1, . . . , Xn) and Z = g(X1, . . . , Xn). If the following inequality holds for any xis
in the support of random variables Xis:

h(x1, . . . , xn) ≥ g(x1, . . . , xn), (9)

then we have the following inequality between the cumulative distribution functions of random variables Y
and Z:

FY(v) ≤ FZ(v), for all v ∈ R. (10)

Lemma 1. Let F be the cumulative distribution function of a CQF, that is ∑d
i=1 λi N2

i , where λis are positive
real numbers and Nis are independent standard normal random variables. Also, let G(x; k, θ) be the cumulative
distribution function of a gamma random variable with parameters k and θ, then the following inequalities hold:

G
(

x; d
2 , 2λmax

)
≤ F(x) ≤ G

(
x; d

2 , 2λmin
)
, for all x ∈ R+, (11)

where λmax = max{λi}d
i=1, and λmin = min{λi}d

i=1.
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Proof. This lemma is an immediate consequence of Proposition 1 and the following relation, knowing
that λ ∑d

i=1 N2
i is a gamma random variable with the shape parameter d/2 and the scale parameter 2λ:

λmin

d

∑
i=1

x2
i ≤

d

∑
i=1

λix2
i ≤ λmax

d

∑
i=1

x2
i , for all xi ∈ R. (12)

Lemma 2. Let G be the cumulative distribution function of an arbitrary gamma random variable and F
be the cumulative distribution function of random variable ∑d

i=1 λi N2
i , where λis are positive real numbers

and Nis are independent standard normal random variables, then limx→∞ log(x)(G(x)− F(x)) = 0, and
limx→0+ log(x)(G(x)− F(x)) = 0.

The proof of this lemma can be found in Appendix A.

Lemma 3. Let G be the Laplace transform of probability density function of an arbitrary gamma random
variable and F be the Laplace transform of probability density function of ∑d

i=1 λi N2
i , where λis are positive

real numbers and Nis are independent standard normal random variables, then
∫ ∞

0
G(σ)−F (σ)

σ dσ is convergent.

The proof of this lemma can be found in Appendix B.
According to Lemmas 2 and 3, the conditions of Theorem 1 hold by choosing X to be a CQF given

in (1), and Y to be an arbitrary gamma random variable. Therefore, we can use (2) for calculating the
expected logarithm of a CQF, and it is given by

E
[

log
( d

∑
i=1

λi N2
i

)]
= Ψ(k) + log(θ) +

∫ ∞

0

(1 + θσ)−k −∏d
i=1 (1 + 2λiσ)

− 1
2

σ
dσ. (13)

The above equation holds for any choice of positive scalars k and θ. To the best of our
knowledge, the above integral does not have a closed-form solution, so it must be computed
numerically. This integral can be computed numerically using the variety of techniques available
for one-dimensional integrals (see for example [39]).

2.2. Fast Methods

The integral method explained in the previous part can be computationally expensive for some
applications. To this end, we derive three approximations that can be calculated analytically and,
therefore, are much faster.

Using the first or higher order Taylor expansion around E[U] to approximate the expected
logarithm of U has been already proposed in the literature [6,40]. However, we observed that lower
order Taylor expansion does not give a very accurate approximation. Therefore, we use two different
approximations, for which we can show that they provide a lower and an upper bound for the true
expected logarithm. Finally, a convex combination of these two is used to get the final approximation.

Two different gamma distributions have been used in [15,41,42] to approximate a CQF. Since
the expected logarithm of a gamma random variable has a closed-form solution, we use the
expected logarithm of these gamma random variables to approximate the expected logarithm of
a CQF. A further justification for this idea can be given based on (13) by choosing the shape and
the scale parameters of gamma distribution such that the magnitude of the integral part in (13)
becomes smaller.

Since the weights of CQF in the KL-divergence formulas in Section 3 are eigenvalues of a positive
definite matrix Σ, we express the approximations based on this matrix. This way of expressing the
approximations also elucidates the fact that the eigenvalues do not need to be calculated, which shows
further computational benefits of these approximations. The shape and scale parameters of the first
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approximating gamma random variable are d/2 and 2tr(Σ)/d, respectively. Therefore, for the first
fast approximation we have

E
[

log
( d

∑
i=1

λi N2
i

)]
≈ Ψ

( d
2
)
+ log

(
2tr(Σ)

d

)
. (14)

The shape and scale parameters of the gamma random variable for the second approximation
are tr(Σ)2/2tr(Σ2) and 2tr(Σ2)/tr(Σ), respectively. Then, we obtain the following formula for the
second fast approximation:

E
[

log
( d

∑
i=1

λi N2
i

)]
≈ Ψ

(
tr(Σ)2

2tr(Σ2)

)
+ log

(
2tr(Σ2)

tr(Σ)

)
. (15)

The following theorem shows that these approximations are lower and upper bounds to the true
expected logarithm.

Theorem 2. If U = ∑d
i=1 λi N2

i , where λis are eigenvalues of positive definite matrix Σd×d and Nis are
independent standard normal random variables, then

Ψ
(

tr(Σ)2

2tr(Σ2)

)
+ log

(
2tr(Σ2)

tr(Σ)

)
≤ E[log(U)] ≤ Ψ

( d
2
)
+ log

(
2tr(Σ)

d

)
. (16)

The proof of this theorem can be found in Appendix C.
From this theorem, we can conclude that there exist some convex combinations of the

two previously mentioned approximations which perform equal or better than each of them, in
the sense that they are closer to the true expected logarithm. Therefore, we define the third fast
approximation to be

E
[

log
( d

∑
i=1

λi N2
i

)]
≈ (1− l)

[
Ψ
( d

2
)
+ log

(
2tr(Σ)

d

)]
+ l

[
Ψ
(

tr(Σ)2

2tr(Σ2)

)
+ log

(
2tr(Σ2)

tr(Σ)

)]
. (17)

To determine parameter l ∈ [0, 1] in the above equation, we used the least squares fitting on thousands
of positive definite matrices with different dimensions and unit trace sampled uniformly according
to an algorithm given in [43]. We observed that the fitted value is roughly equal to l = 0.7 and
dimensionality has a negligible effect on the best value of l. For the case of d = 20, the mean squared
error for various values of l can be seen in Figure 1.
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Figure 1. The mean squared error of the third fast method for approximating the expected logarithm
of a CQF as a function of parameter l.
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2.3. Series Method

One can represent the probability density function of a CQF given by (1) as an infinite weighted
sum of gamma densities [13,14],

fU(u) =
∞

∑
j=0

cjg
(
u; d

2 + j, 2β
)
, (18)

where g(u; d/2 + j, 2β) is the probability density function of a gamma random variable with
parameters d/2 + j and 2β, and

ck =
1
k

k−1

∑
r=0

vk−rcr, (19)

vk =
1
2

d

∑
j=1

(
1− βλ−1

j
)k, (20)

c0 =
d

∏
j=1

√
βλ−1

j . (21)

This result can be used for deriving a series formula for the expected logarithm of U. Thus,

E[log U] =
∞

∑
j=0

cj
(
Ψ( d

2 + j) + log(2β)
)
. (22)

Ruben [13] analyzed the effect of various βs on the behavior of the series expansion and proposed
the following β as an appropriate one:

β =
2λmaxλmin

λmax + λmin
. (23)

By using this β, ∑∞
j=0 cj = 1 holds [13] and also knowing that the following relation holds for the

digamma function:

Ψ(x + 1) =
1
x
+ Ψ(x),

then (22) can be simplified

E[log U] = log(2β) + c0Ψ( d
2 ) +

∞

∑
j=1

cj

(
Ψ( d

2 ) +
j−1

∑
l=0

1
d
2 + l

)
(24)

= log(2β) + Ψ( d
2 ) +

∞

∑
j=1

cj

j−1

∑
l=0

1
d
2 + l

= log(2β) + Ψ( d
2 ) +

∞

∑
i=0

(
1

d
2 + i

∞

∑
k=i+1

ck

)

= log(2β) + Ψ( d
2 ) +

∞

∑
i=0

(
1

d
2 + i

(
1−

i

∑
k=0

ck
))

.



Entropy 2016, 18, 278 8 of 25

To approximate this formula, we cut the series coefficients, which means we only use a finite
number of terms to evaluate the expectation:

Ê[log U] = log(2β) + Ψ( d
2 ) +

L−1

∑
i=0

(
1

d
2 + i

(
1−

i

∑
k=0

ck

))
. (25)

For this approximation, it is possible to compute an error bound which is expressed by the
following lemma.

Lemma 4. The bound for error of the approximation (25) for L > dε/(2− 2ε) is as follows:

E[log U]− Ê[log U] ≤ c0
εL+1(

1− d/2+L
L ε

)2
Γ( d

2 + L)

Γ( d
2 + 1)(L + 1)!

, (26)

where Γ(·) is gamma function, and ε = (λmax − λmin)/(λmax + λmin).

The proof of this lemma is in Appendix D.
By using this bound, it is possible to calculate the expected logarithm with a given accuracy by

selecting an appropriate L. Note that the upper bound given by (26) is growing with respect to ε, and ε

is also increasing with λmax/λmin. As we will see in the simulation studies, when the ratio λmax/λmin

as well as the dimensionality d are small, this method performs better than the integral method.

3. KL-Divergence of Two Generalized Elliptical Distributions

In this section, we derive expressions for the KL-divergence and the entropy of two subclasses
of generalized elliptical distributions, namely ZEG and ACG distributions [44]. We first start by
reviewing some related materials.

3.1. Some Background on the Elliptical Distributions

Suppose the d-dimensional random vector X is distributed according to a zero-mean elliptical
contoured (ZEC) distribution with a positive definite scatter matrix Σd×d, that is X ∼ ZEC(Σ, ϕ).
The probability density function of X is given by

fX(x; Σ, ϕ) = |Σ|−
1
2 ϕ
(
x>Σ−1x

)
, (27)

for some density generator functions ϕ : R+ → R. We know that we can decompose the vector X into
a uniform hyper-spherical component and a scaled-radial component so that, X = Σ1/2RU, where
U is uniformly distributed over the unit sphere Sd−1 and R is a univariate random variable given by
R = ‖Σ−1/2X‖2 [45]. Then, the random variable R has the density

fR(r) = 2π
d
2 ϕ(r2)rd−1/Γ( d

2 ). (28)

Therefore, square radial component Υ = R2 has the following density:

fΥ(υ) = π
d
2 ϕ(υ)υ

d
2−1/Γ( d

2 ). (29)

A ZEG is a ZEC whose square radial component is distributed according to a gamma distribution
Υ ∼ Gamma(a, b). A gamma-distributed random variable has the density

fΥ(υ) = Γ(a)−1b−aυa−1 exp (−υ/b) , (30)
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where a is a shape parameter and b is a scale parameter. So the probability density function of a
d-dimensional random variable X ∼ ZEG(Σ, a, b) is given by

fX(x; Σ, a, b) =
Γ( d

2 )

π
d
2 Γ(a)ba|Σ|

1
2

(
x>Σ−1x

)a− d
2 exp

(
−b−1x>Σ−1x

)
, (31)

where x ∈ Rd and Σ � 0 is its scatter matrix, also a, b > 0 are certain scale and shape parameters [31].
When ZEC random variable is projected onto a unit sphere, the resulting random variable is

called ACG and denoted by X ∼ ACG(Σ). This distribution unlike many other distributions on the
unit sphere has a nice closed-form density given by

fX(x; Σ) =
Γ( d

2 )

2π
d
2 |Σ|

1
2

(
x>Σ−1x

)− d
2 , (32)

where x ∈ Sd−1 and Σ � 0 is its scatter matrix.

3.2. KL-Divergence between ZEG Distributions

Suppose we have two probability distributions P and Q with probability density functions p and
q, KL-divergence between these two distributions is defined by

KL(P||Q) =
∫

log(p(x))p(x)dx−
∫

log(q(x))p(x)dx. (33)

The negative of the first part, H(X) = −
∫

log(p(x))p(x)dx, is the entropy and the second part,
E[− log(q(X))] = −

∫
log(q(x))p(x)dx, is the averaged log-loss term, where X is a random variable

distributed according to P.
Following lemma gives a general expression for the KL-divergence between two ZEC

distributions. It is then used for deriving the KL-divergence between two ZEG distributions.

Lemma 5. Suppose we have two probability distributions on random variable Y, PY = ZEC(Σ1, ϕ)

and QY = ZEC(Σ2, ϕ′), then the KL-divergence between these two distributions is given by the
following expression:

KL(P||Q) = − 1
2 log(|Σ|) +

∫ ∞

0
log
(
υ1− d

2 fΥ(υ)
)

fΥ(υ)dυ

−
∞∫∫
0

1
r fwd(

υ
r ) fΥ(r) log

(
υ1− d

2 fΥ′(υ)
)
dυdr,

(34)

where fΥ and fΥ′ are the square radial components of distributions P and Q, respectively. Also, fwd is the
density of ∑d

i=1 λi N2
i /∑d

i=1 N2
i , where Nis are independent standard normal random variables, and λ1, . . . , λd

are eigenvalues of matrix Σ = Σ−1/2
2 Σ1Σ−1/2

2 .

Proof. KL-divergence is known to be invariant against invertible transformations of random variable
Y [46]. To simplify the derivations, we apply a linear transformation X = Σ−1/2

2 Y that makes the
scatter matrix of the second distribution identity. By using this change of variable, the problem
becomes that of KL-divergence computation between PX = ZEC(Σ, ϕ) and QX = ZEC(I, ϕ′), where
Σ = Σ−1/2

2 Σ1Σ−1/2
2 .

As expressed in (33), the KL-divergence is the subtraction of the entropy from the averaged
log-loss. Firstly, let us derive the entropy of X having distribution PX, that is H(X) = −

∫
log(p(x))p(x)dx.
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Assume the change of integration variable y = Σ−1/2x and use (27), then we obtain the following
expression for H(X):

H(X) = 1
2 log(|Σ|)−

∫
log
(

ϕ(y>y)
)

ϕ(y>y)dy.

Let r = ‖y‖2 and recall that the area of a sphere in dimension d with radius r equals
2rd−1πd/2/Γ(d/2), thus

H(X) = 1
2 log(|Σ|)−

∫ ∞

0
log
(

ϕ(r2)
) 2π

d
2

Γ( d
2 )

rd−1 ϕ(r2)dr.

Using the change of variable υ = r2 and replacing ϕ by square radial density fΥ as expressed
in (29), we obtain

H(X) = 1
2 log(|Σ|)−

∫ ∞

0
log

(
Γ( d

2 )

π
d
2

υ1− d
2 fΥ(υ)

)
fΥ(υ)dυ. (35)

Now, we are deriving an expression for the averaged log-loss given by E[− log(q(X))] =

−E
[
log
(

ϕ′(X>X)
)]

. The argument of function ϕ′ is X>X; therefore, it is enough to compute the
expectation of the function over the new random variable Z = ‖X‖2

2:

E[− log(q(X))] = − EZ
[
log
(

ϕ′(Z)
)]

(36)

= −
∫ ∞

0
log
(

ϕ′(Z)
)

fZ(υ)dυ,

where fZ is the density of Z = ‖X‖2
2, wherein X ∼ ZEC(Σ, ϕ). It is easy to see that the random

variable Z can equally be written as Z = X̄>ΣX̄ where X̄ ∼ ZEC(I, ϕ). The density of Z with this
representation has already been reported in [47]:

fZ(z) =
∫ ∞

0

1
r

fwd(z/r) fΥ(r)dr, (37)

where fΥ is the square radial density of pY, and fwd is the density of a linear combination of Dirichlet
random variable components,

Λ =
s

∑
j=1

ljDj, (38)

where D = (D1, . . . , Ds)> is a Dirichlet random variable with parameters (r1/2, . . . , rs/2), and ljs are
s distinct eigenvalues of the positive definite matrix Σ with respective multiplicities rj, for j = 1, . . . , s.

It is known that if random variables C1, . . . , Cs are independent chi-square random variables
having r1, . . . , rs degrees of freedom, and C = ∑s

j=1 Cj, then (C1/C, . . . , Cs/C)> is a Dirichlet random
variable with the parameters (r1/2, . . . , rs/2) [48]. Hence, the random variable Λ in (38) can be
expressed as Λ = ∑s

i=1 ljCj/C. Equivalently, if N1, . . . , Nd are independent standard normal random
variables, then Λ can be written as

Λ =
∑d

i=1 λi N2
i

∑d
i=1 N2

i

. (39)

Using (37) in (36) and replacing ϕ′ by square radial density fΥ′ as expressed in (29), we obtain
the following expression for the averaged log-loss:

E[− log(q(X))] = −
∞∫∫
0

1
r

fwd(υ/r) fΥ(r) log

(
Γ( d

2 )

π
d
2

υ1− d
2 fΥ′(υ)

)
dυdr. (40)
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Subtracting (35) from (40), we obtain (34).

Until now, we derived an expression for the KL-divergence between two ZEC distributions.
We can further simplify the KL-divergence for the case of ZEG distributions to avoid computing
double-integration, and the following theorem proves it.

Theorem 3. Suppose we have two distributions PY = ZEG(Σ1, ap, bp), and QY = ZEG(Σ2, aq, bq), then the
entropy of random variable Y distributed according to PY and the KL-divergence between these two distributions
are given by the following expressions:

H(Y) = 1
2 log(|Σ1|)− log

 Γ( d
2 )

π
d
2 Γ(ap)b

ap
p

− (ap − d
2 )
(
Ψ(ap) + log(bp)

)
+ ap, (41)

KL(P||Q) =− 1
2 log(|Σ|) + log

(
Γ(aq)b

aq
q

Γ(ap)b
aq
p

)
+ (ap − aq)Ψ(ap)− ap

+
apbp

d bq
tr(Σ) + ( d

2 − aq)

(
E
[

log
( d

∑
i=1

λi N2
i

)]
−Ψ

( d
2
)
− log(2)

)
,

(42)

where Ψ(·) is digamma function, and tr(·) is the trace of a matrix. Also Nis are independent standard normal
random variables, and λ1, . . . , λd are eigenvalues of matrix Σ = Σ−1/2

2 Σ1Σ−1/2
2 .

Proof. Like the previous lemma, we apply the change of variable X = Σ−1/2
2 Y and compute the

KL-divergence between the transformed distributions. The expression for entropy (35) in the case of
ZEG distributions becomes

H(X) = 1
2 log(|Σ|)−

∫ ∞

0
log

 Γ( d
2 )

π
d
2 Γ(ap)b

ap
p

υap− d
2 exp

(
− υ

bp

) 1

Γ(ap)b
ap
p

υap−1 exp
(
− υ

bp

)
dυ. (43)

Next, recall the following gamma function identities [49]:

1
Γ(a + 1)ba+1

∫ ∞

0
ra exp

(
− r

b

)
dr = 1, (44)

1
Γ(a + 1)ba+1

∫ ∞

0
log(r)ra exp

(
− r

b

)
dr = Ψ(a + 1) + log(b). (45)

Using (44) and (45), we can simplify (43) to obtain

H(X) = 1
2 log(|Σ|)− log

 Γ( d
2 )

π
d
2 Γ(ap)b

ap
p

+ ( d
2 − ap)

(
Ψ(ap) + log(bp)

)
+ ap.

Since Y = Σ1/2
2 X, we can trivially derive the expression of H(Y) given in (41).

For deriving the averaged log-loss term, we obtain the following expression by putting the
gamma square radial component (30) into (40):

E[− log(q(X))] = −
∞∫∫
0

1
r

fwd(υ/r)
rap−1

Γ(ap)b
ap
p

exp
(
− r

bp

)
log

 Γ( d
2 )

π
d
2 Γ(aq)b

aq
q

υaq− d
2 exp

(
− υ

bq

) dυdr.
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We apply the change of variable µ = υ/r and express the integrals in terms of new variables µ

and r,

E[− log(q(X))] =− log(Γ( d
2 )) + log(π

d
2 Γ(aq)b

aq
q )

+
d
2 − aq

Γ(ap)b
ap
p

∫ ∞

0
fwd(µ) log(µ)dµ

∫ ∞

0
rap−1 exp

(
− r

bp

)
dr

+
d
2 − aq

Γ(ap)b
ap
p

∫ ∞

0
fwd(µ)dµ

∫ ∞

0
log(r)rap−1 exp

(
− r

bp

)
dr

+
1

bqΓ(ap)b
ap
p

∫ ∞

0
fwd(µ)µdµ

∫ ∞

0
rap exp

(
− r

bp

)
dr.

Using the equalities (44) and (45), we obtain

E[− log(q(X))] =− log(Γ( d
2 )) + log(π

d
2 Γ(aq)b

aq
q ) + ( d

2 − aq)
(
Ψ(ap) + log(bp)

)
+

apbp

d bq

∫ ∞

0
fwd(µ)µdµ + ( d

2 − aq)
∫ ∞

0
fwd(µ) log(µ)dµ,

where similar to the previous lemma, fwd is the density of the random variable Λ = ∑d
i=1 λi N2

i /∑d
i=1 N2

i ,
where Nis are independent standard normal random variables, and λ1, . . . , λd are the
eigenvalues of matrix Σ. Subtracting the entropy from the averaged log-loss and knowing that∫ ∞

0 fwd(µ)µdµ = E[Λ] and
∫ ∞

0 fwd(µ) log(µ)dµ = E[log(Λ)], we obtain

KL(P||Q) = − 1
2 log(|Σ|) + log

(
Γ(aq)b

aq
q

Γ(ap)b
aq
p

)
+ (ap − aq)Ψ(ap)− ap +

apbp
d bq

E[Λ] + ( d
2 − aq)E[log(Λ)]. (46)

The moments of Λ were computed in [47], but we are giving a simple derivation of the
first moment below. It is known that the random variable Vi = N2

i / ∑d
j=1 N2

j has the following
beta distribution:

Vi ∼ Beta
( 1

2 , d−1
2
)
. (47)

Since E[Vi] = 1/d, then

E[Λ] = E
[ d

∑
i=1

λiVi

]
=

tr(Σ)
d

. (48)

Expected logarithm of Λ can be expressed as a difference of two expectations:

E[log(Λ)] = E
[

log
( d

∑
i=1

λi N2
i

)]
−E
[

log
( d

∑
i=1

N2
i

)]
. (49)

Using the fact that the expected logarithm of a chi-square random variable with d degrees of
freedom is equal to Ψ(d/2) + log(2), E[log(Λ)] can be computed by the following equation:

E[log(Λ)] = E
[

log
( d

∑
i=1

λi N2
i

)]
−Ψ

( d
2
)
− log(2). (50)

With substitution (48) and (50) into (46), we get (42).
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3.3. KL-Divergence between ACG Distributions

The following theorem gives expressions for the KL-divergence between ACG distributions and
the entropy of a single ACG distribution.

Theorem 4. Suppose we have two probability distributions GY = ACG(Σ1) and JY = ACG(Σ2),
then the entropy of random variable Y distributed according to GY and the KL-divergence between these
two distributions are given by the following expressions:

H(Y) = log

2π
d
2 |Σ1|1/2

Γ( d
2 )

− d
2

(
E
[

log
( d

∑
i=1

σi N2
i

)]
−Ψ

( d
2
)
− log(2)

)
, (51)

KL(G||J) = − 1
2 log(|Σ|) + d

2

(
E
[

log
( d

∑
i=1

λi N2
i

)]
−Ψ

( d
2
)
− log(2)

)
, (52)

where Nis are independent standard normal random variables, λ1, . . . , λd are eigenvalues of matrix
Σ = Σ−1/2

2 Σ1Σ−1/2
2 , and σ1, . . . , σd are eigenvalues of matrix Σ1.

Proof. Due to the invariance property of KL-divergence under invertible change of variables, we use
the change of variable Ω = Σ−1/2

1 Y. It is easy to verify that Ω is distributed according to a zero-mean
generalized elliptical distribution with identity covariance [44]. From the definition of KL-divergence
given by (33), we have

KL(G||J) = E
[

log
(

Γ( d
2 )

2π
d
2

(
Ω>Ω

)− d
2

)]
−E

[
log
(

Γ( d
2 )

2π
d
2 |Σ̃|1/2

(
Ω>Σ̃−1Ω

)− d
2

)]
,

where Σ̃ = Σ−1/2
1 Σ2Σ−1/2

1 . By some simplifications, it is immediate that

KL(G||J) = 1
2 log(|Σ̃|) + d

2 E
[

log
(

Ω>Σ̃−1Ω

Ω>Ω

)]
. (53)

Since projecting any zero-mean generalized elliptical distribution (with identity covariance)
on the unit sphere gives an ACG random variable (with identity covariance) [50], we can
substitute E[log(Ω>Σ̃−1Ω/Ω>Ω)] with E[log(X>Σ̃−1X/X>X)], where the random vector X is
distributed according to a multivariate normal distribution with identity covariance and zero mean.
Because X>Σ̃−1X is a CQF and X>X is a chi-square random variable, we have

KL(G||J) = 1
2 log(|Σ̃|) + d

2

(
E
[

log
( d

∑
i=1

λ̃−1
i N2

i

)]
−Ψ

( d
2
)
− log(2)

)
, (54)

where λ̃is are the eigenvalues of Σ̃. Additionally, it is easy to verify that |Σ| = |Σ̃|−1 and λi = λ̃−1
i ,

therefore (52) holds.
Since one of the terms in the KL-divergence is equal to the minus entropy, we use our derived

expression for the KL-divergence between ACG distributions to find a formula for the entropy of an
ACG distribution. Define SY = ACG(I), then the KL-divergence between GY and SY can be easily
derived from the main definition (33):

KL(G||S) = −H(Y)− log
(

Γ( d
2 )

2π
d
2

)
, (55)
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where H(Y) is the entropy of the random variable Y. Now, we compute the above KL-divergence
using (52) which is

KL(G||S) = − 1
2 log(|Σ1|) + d

2

(
E
[

log
( d

∑
i=1

σi N2
i

)]
−Ψ

( d
2
)
− log(2)

)
. (56)

Equating the right-hand sides of (55) and (56) gives (51).

The following corollary shows a relation between the KL-divergence of ACG distributions and
the KL-divergence of ZEG distributions. It is an immediate consequence of Theorems 3 and 4.

Corollary 1. The KL-divergence between two ACG distributions ACG(Σ1) and ACG(Σ2) is equal to the
KL-divergence between two ZEG distributions ZEG(Σ1, a, b) and ZEG(Σ2, a, b), when a→ 0.

4. Simulation Study

In Section 2, we proposed three different methods for computing the expected logarithm of the
CQF given in (1). We assume the weights of CQFs that are used in the simulations are eigenvalues
of some random positive definite matrices. These random matrices are generated uniformly from the
space of positive definite matrices with unit trace according to the procedure proposed in [43]. In this
section, we numerically investigate the running time and accuracy of these approaches. All methods
were implemented in MATLAB (Version R2014a) (64-bit), and the simulations were run on a personal
laptop with an Intel Core i5 (2.5Ghz) processor under the OS X Yosemite 10.10.3 operating system.
Since the series method depends heavily on loops that are slow in MATLAB, we implemented this
method in a MATLAB MEX-file. For the integral method, the integral is numerically evaluated using
Gauss–Kronrod 7-15 rule [51,52]. The absolute error tolerance is given as an input parameter of the
numerical integration. In the integral method, the value can be computed with any given accuracy by
choosing the absolute error tolerance; therefore, we do not analyze the integral method in the sense
of the calculation error.

Figure 2 investigates the effects of dimensionality on the average running time of different
methods for computing the expected logarithm of the CQF explained in Section 2. For the
integral method (upper-left plot), two curves for two different absolute error tolerances are shown.
The integral formula (13) has the parameters k and θ that can be chosen freely, and we choose
those given in (14). Different curves for the series method (upper-right plot) correspond to different
values of L, which is the truncation length of the series. The curve of the fast method (lower plot)
corresponds to the computation time of the third fast method explained in Section 2. One reason of
lower computation time of the fast method is its lack of need for any eigenvalue computation. There is
a curve in upper-right plot showing the computational time of eigenvalue computation.

The approximation error of all three fast methods for different dimensions can be seen in
Figure 3. The plot on the right-hand side of this figure magnifies the curve for the mean error of
the third fast method (the blue curve with dots). As it can be observed in Figure 3, changing the
dimensionality has a negligible effect on the mean and the standard deviation (SD) of the absolute
approximation error for the fast methods. Small mean error and SD of the third method indicate the
distinct advantage of the third fast method over the other two methods. This method uses a convex
combination of the values of the other two approximations as explained in Section 2.

Approximating the expected logarithm of the CQF using the fast methods induces an error on
the KL-divergence between ACG distributions given by (52). Figure 4 shows the mean percentage of
relative error and its standard deviation as a function of dimensionality. It can be observed that the
relative error decreases as the dimensionality increases. The third fast method is clearly superior to
the other two fast methods. The reason for such a small percentage of relative error is the observation
that whenever the error is large, then the KL-divergence is large too. We are not showing the results
for the dimensions less than ten because the error percentage is quite large in that regime.
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Figure 2. The average running time (in milliseconds) of the integral method (a), the series method (b)
and the third fast method (c) in different dimensions for computing expected logarithm of the CQF.
The red curve in the upper-left plot shows the computational time for computing the eigenvalues
of random positive-definite matrices (using eig function in MATLAB) needed before applying
the integral method or series method. Different curves for the upper-left plot correspond to the
computational time of integral method for different absolute error tolerances including the time
needed for computing the eigenvalues. Different curves for the series method correspond to the
computational time for various values of truncation length of the series.
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Figure 3. The absolute error for the approximation of the expected logarithm of the CQF by the fast
methods explained in Section 2 for different dimensions. The third method uses a convex combination
of the first two methods. The plot on the right shows the zoomed version of the error mean of the
third method.
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Figure 4. The relative error of the KL-divergence between ACG distributions in different dimensions
when the fast methods are used for approximating the expected logarithm of the CQF.

The amount of error in the series method for a given truncation length L depends on the
parameters d and ε, as it can be observed in the upper bound error formula (26). In Figure 5, this
error together with its upper bound are shown for ε = 0.6, ε = 0.8 and ε = 0.95 with d = 2.
The curves are plotted for L > dε/(2 − 2ε), because the error upper bound is valid only for this
region. It can be observed that by increasing ε, the slopes of the error and the error upper bound
increase and the distance between these errors slightly increases too. This behavior indicates that the
series method is more suitable for smaller ε values. For the case of ε = 0.6, we can see that the real
error remains constant after about L = 60, whereas the error upper bound still increases. It happens
because the error is computed by the integral method, which has an error itself (in this case, the error
is about 10−15).
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Figure 5. The approximation error of the series method for computing the expected logarithm of the
CQF together with its upper bound. The result for three different values of ε is shown with different
colors. In this figure, the number of weights (d) is equal to two.
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Figure 6 shows how increasing dimension affects the performance of the series method.
The parameter ε is set to 0.9 by choosing maximum and minimum weights in the CQF to be 1 and
1/19, respectively. The other weights of CQF are sampled uniformly between the maximum and
minimum weights. It can be seen that the dimensionality has a negligible effect on the slope of the
curves. This can be predicted from the formula of upper bound in (26), because the exponential term
εL dominates other terms in the equation and the slopes of the curves are determined mainly by the
parameter ε. In this figure, the standard deviations are due to the different distribution of the weights
between the maximum and minimum weights. Figures 5 and 6 demonstrate that the error upper
bound is a relatively tight bound for the actual error.

In Figure 7, we investigate the effect of ε and d on the averaged L to achieve an acceptable upper
bound error (here 10−8). We can see that as the amount of ε increases, the slopes of the curves increase
and in the limit of ε → 1, it goes to infinity. This figure justifies our previous claim that when ε and
the dimensionality are small, the series method is very efficient due to relatively small L needed to
achieve an acceptable error.
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Figure 6. The relation between L and the error in the series method for ε = 0.9.
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Figure 7. The average needed L computed by the error upper bound formula given by (26) for
different values of d and ε.
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5. Conclusions

In this paper, we developed three methods for calculating the expected logarithm of a central
quadratic form. The integral method was a direct application of a more general result applicable for
positive random variables. We then introduced three fast methods for approximating the expected
logarithm. Finally, using an infinite series representation of central quadratic forms, we proposed
a series method for computing the expected logarithm. By proving a bound for the approximation
error, we investigated the performance of this method.

We also derived expressions for the entropy and the KL-divergence of zero-mean elliptical
gamma and angular central Gaussian distributions. The expected logarithm of the central
quadratic form appeared in the form of KL-divergences and entropy of the angular central
Gaussian distribution.

By conducting multiple experiments, we observed that the three methods for computing the
expected logarithm of a central quadratic form differ in running time and accuracy. The possible user
can choose the most appropriate method based on his/her requirements.

The methodologies developed in this paper can be used in many applications. For example,
one can use the result of Theorem 1 for computing the expected logarithm of other positive
random variables like a non-central quadratic form. Another line of research would be to use
the KL-divergence between angular central Gaussian distributions with the fast approximations in
learning problems that have a divergence measure in their cost functions.
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Appendix A. Proof of Lemma 2

From Lemma 1 and the form of gamma cumulative function, we have the following inequalities:

−γ
( d

2 , x
2λmin

)
Γ( d

2 )
≤ −F(x) ≤

−γ
( d

2 , x
2λmax

)
Γ( d

2 )
, (A1)

where λmax = max{λi}d
i=1, λmin = min{λi}d

i=1, and γ(·, ·) is the lower incomplete gamma function.
Adding G(x) to all sides of the above inequality, we get

γ
(
k, x

θ

)
Γ(k)

−
γ
( d

2 , x
2λmin

)
Γ( d

2 )
≤ G(x)− F(x) ≤

γ
(
k, x

θ

)
Γ(k)

−
γ
( d

2 , x
2λmax

)
Γ( d

2 )
. (A2)

Since log(x) is positive for x > 1, therefore by multiplying all sides of the above inequality by
log(x), we obtain

log(x)
(

γ
(
k, x

θ

)
Γ(k)

−
γ
( d

2 , x
2λmin

)
Γ( d

2 )

)
≤ log(x)(G(x)− F(x)) ≤ log(x)

(
γ
(
k, x

θ

)
Γ(k)

−
γ
( d

2 , x
2λmax

)
Γ( d

2 )

)
, (A3)

which holds for all x > 1. For proving the first part of this lemma, namely

lim
x→∞

log(x)(G(x)− F(x)) = 0, (A4)

it is enough to show that

lim
x→∞

log(x)
(

γ
(
k, x

θ

)
Γ(k)

−
γ
(
k̂, x

θ̂

)
Γ(k̂)

)
= 0 (A5)
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holds for any positive choices of k, k̂, θ, and θ̂ and then invoke squeeze theorem by taking the limits
of all sides of (A3). From the definition of lower incomplete gamma function, the left-hand side (A5)
can be rewritten as

lim
x→∞

1
Γ(k)

∫ x
θ

0 tk−1 exp(−t) dt− 1
Γ(k̂)

∫ x
θ̂

0 tk̂−1 exp(−t) dt

log(x)−1 .

Using L’Hôpital’s rule, it can be seen that the above limit is equivalent to

lim
x→∞

x log(x)2
(

1
θΓ(k)

(
x
θ

)k−1

exp
(
− x

θ

)
− 1

θ̂Γ(k̂)

(
x
θ̂

)k̂−1

exp
(
− x

θ̂

))
. (A6)

It is easy to see that (A6) is equal to zero and consequently (A5) and (A4) hold.
Now, we want to prove the second statement in the lemma, that is

lim
x→0+

log(x)(G(x)− F(x)) = 0. (A7)

If we multiply all sides of (A2) by log(x), then for 0 < x < 1 we have

log(x)
(

γ
(
k, x

θ

)
Γ(k)

−
γ
( d

2 , x
2λmax

)
Γ( d

2 )

)
≤ log(x)(G(x)− F(x)) ≤ log(x)

(
γ
(
k, x

θ

)
Γ(k)

−
γ
( d

2 , x
2λmin

)
Γ( d

2 )

)
. (A8)

Using the same strategy as above, we want to show that for any positive choices of k, k̂, θ, and θ̂,
the following limit holds:

lim
x→0+

log(x)
(

γ
(
k, x

θ

)
Γ(k)

−
γ
(
k̂, x

θ̂

)
Γ(k̂)

)
= 0. (A9)

Using L’Hôpital’s rule, it can be seen that

lim
x→0+

log(x)
(

γ
(
k, x

θ

)
Γ(k)

)
H
= lim

x→0+
x log(x)2

(
1

θΓ(k)
( x

θ

)k−1 exp
(
− x

θ

))
= 0.

Therefore (A9) holds, and from (A8), we have

0 ≤ lim
x→0+

log(x)(G(x)− F(x)) ≤ 0. (A10)

By squeeze theorem, we can conclude that (A7) holds.

Appendix B. Proof of Lemma 3

From the expression of F and G, we have

∫ ∞

0

G(σ)−F (σ)
σ

dσ =
∫ ∞

0

∏d
i=1 (1 + 2λiσ)

1
2 − (1 + θσ)k

σ(1 + θσ)k ∏d
i=1 (1 + 2λiσ)

1
2

dσ. (B1)

In this proof, for the simplicity of notation, we define L(σ) = (G(σ) − F (σ))/σ and
V(σ) = ∏d

i=1 (1 + 2λiσ)
1/2 − (1 + θσ)k.
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We give separate proofs for the cases d > 2k, d < 2k and d = 2k. For the first case d > 2k,
we have

lim
σ→∞

V(σ) = lim
σ→∞

[ d

∏
i=1

(1 + 2λiσ)
1
2 − (1 + θσ)k

]
= +∞.

Consequently, it can be said that there exists a number a > 0 that for all x ≥ a, the function V(σ)
is positive.

Therefore, the integrand of
∫ ∞

a L(σ)dσ is positive in its domain of integration. If we choose
1 < p < 1 + k, then

lim
σ→∞

L(σ)
1

σp
= 0. (B2)

Since
∫ ∞

a
1

σp dσ is convergent and its integrand is positive in its domain, from the limit
comparison test, it follows that the integral

∫ ∞
a L(σ)dσ is convergent.

Now, we want to show that the integral
∫ a

0 L(σ)dσ is also convergent. Since G(σ) − F (σ) is
bounded for σ ∈ R+, and

lim
σ→0+

G(σ)−F (σ)
σ

=
d

∑
i=1

λi − kθ, (B3)

then L(σ) is bounded and consequently
∫ a

0 L(σ)dσ is convergent.
Since

∫ a
0 L(σ)dσ and

∫ ∞
a L(σ)dσ are convergent, the integral

∫ ∞
0 L(σ)dσ is also convergent.

For the case of 2k > d, we have

lim
σ→∞

−V(σ) = lim
σ→∞

[
(1 + θσ)k −

d

∏
i=1

(1 + 2λiσ)
1
2

]
= +∞.

Therefore, there exists a number a > 0 that for all x ≥ a, the function −V(σ) is positive.
Therefore, the integrand of

∫ ∞
a −L(σ)dσ is positive in its domain of integration. If we choose

1 < p < 1 + d/2, then

lim
σ→∞

−L(σ)
1

σp
= 0. (B4)

Knowing that
∫ ∞

a
1

σp dσ is bounded, using limit comparison test, we can conclude that∫ ∞
a −L(σ)dσ is convergent. Now, with the same strategy as the previous case, we can show that

the integral
∫ a

0 −L(σ)dσ is convergent and it is easy to see that
∫ ∞

0 L(σ)dσ is also convergent.
For 2k = d, excluding the obvious case G(σ) = F (σ), there exists a number a > 0 that for all

x ≥ a, the function V(σ) is either positive or negative. If it is positive, then we use the proof strategy
for the case d > 2k. Otherwise, we exploit the strategy for the case d < 2k.

Appendix C. Proof of Theorem 2

We first give a proof for the inequality E[log(U)] ≤ Ψ(d/2) + log(2tr(Σ)/d). Using integral
formula (13) with k = d/2 and θ = 2tr(Σ)/d for E[log(U)], we obtain

∫ ∞

0

(
1 + 2tr(Σ)

d σ
)− d

2 −∏d
i=1
(
1 + 2λiσ

)− 1
2

σ
dσ ≤ 0. (C1)
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For proving this inequality, it is enough to show

(
1 +

2tr(Σ)
d

σ

)− d
2
−

d

∏
i=1

(1 + 2λiσ)
− 1

2 ≤ 0, for all σ ∈ R+.

Assume ai = 1 + 2λiσ, then we can rewrite the above inequality as

( d

∏
i=1

ai

) 1
d
≤ ∑d

i=1 ai

d
, for all ai ∈ [1,+∞), (C2)

which is the well-known arithmetic mean-geometric mean inequality.
For proving the second inequality, E[log(U)] ≥ Ψ(tr(Σ)2/2tr(Σ2)) + log(2tr(Σ2)/tr(Σ)), we use

the integral formula in (13) with k = tr(Σ)2/(2tr(Σ2)) and θ = 2tr(Σ2)/tr(Σ) to obtain

∫ ∞

0

(
1 + 2tr(Σ2)

tr(Σ) σ
)− tr(Σ)2

2tr(Σ2) −∏d
i=1
(
1 + 2λiσ

)− 1
2

σ
dσ ≥ 0. (C3)

For proving the above inequality, it is enough to show

d

∏
i=1

(1 + 2λiσ) ≥
(

1 +
2tr(Σ2)

tr(Σ)
σ

) tr(Σ)2

tr(Σ2)
, for all σ ∈ R+. (C4)

Assume A(σ) = ∏d
i=1 (1 + 2λiσ), B(σ) = (1 + 2tr(Σ2)σ/tr(Σ))tr(Σ)2/tr(Σ2) and

P(σ) = A(σ)/B(σ), then (C4) can be rewrited as

P(σ) ≥ 1, for all σ ∈ R+. (C5)

It is easy to see that P(0) = 1. Therefore, for proving (C5), it is enough to show that the function
P(σ) is increasing for positive sigmas.

The derivative of the function P(σ) is

P′(σ) =
A(σ)′B(σ)− B(σ)′A(σ)

B2(σ)
.

We want to show P′(σ) ≥ 0, for all positive sigmas, and it is equivalent to say

A′(σ)
A(σ)

≥ B′(σ)
B(σ)

, for all σ ∈ R+. (C6)

Computing the left and right sides of the above inequality, we obtain

d

∑
i=1

2λi
1 + 2λiσ

≥ 2tr(Σ)2

tr(Σ) + 2tr(Σ)σ
, for all σ ∈ R+. (C7)

We can rewrite the above inequality as( d

∑
i=1

2λi
1 + 2λiσ

)( d

∑
i=1

λi(1 + 2λiσ)

)
≥
( d

∑
i=1

λi

)2

, for all σ ∈ R+.
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If we assume x2
i = 2λi/(1+ 2λiσ) and y2

i = λi(1+ 2λiσ), we can rewrite the above inequality as

( d

∑
i=1

x2
i

)( d

∑
i=1

y2
i

)
≥
( d

∑
i=1

xiyi

)2

, for all {xi, yi} ∈ R+, (C8)

which is the Cauchy-Schwarz inequality. So the function P(σ) is increasing and consequently, the
second inequality holds.

Appendix D. Proof of Lemma 4

As we can see in [14], the following bound exists for ci:

|ci| ≤ c0εi Γ( d
2 + i)

Γ( d
2 )i!

, (D1)

where ε = maxj |1− βλ−1
j |. If we put our chosen β given by (23) in ε formula, we obtain

ε =
λmax − λmin

λmax + λmin
. (D2)

Consider ĉi to be the corresponding bound for ci,

ĉi = c0εi Γ( d
2 + i)

Γ( d
2 )i!

,

then we have

ĉi+1

ĉi
=

d
2 + i

i
ε.

Since
(
d/2 + i

)
/i decreases with increasing i, we have

ĉi+k
ĉi
≤
( d

2 + i
i

ε︸ ︷︷ ︸
εi

)k

. (D3)

By summing up the both sides of above inequality and changing the variables, we can conclude

∞

∑
k=i+1

ĉk ≤ ĉi+1

∞

∑
k=0

εk
i+1 (D4)

≤ ĉi+1

∞

∑
k=0

εk
i

= ĉi+1
1

1− εi
,

which is true if i is large enough such that εi < 1. Since L > dε/(2− 2ε), it can be observed that
εi < 1 for i ≥ L, hence for the total approximation error, we obtain
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E[log U]− Ê[log U] =
∞

∑
i=L

(
1

d
2 + i

∞

∑
k=i+1

ĉk

)
(D5)

≤
∞

∑
i=L

1
d
2 + i

ĉi+1
1

1− εi

≤ 1
( d

2 + L)(1− εL)

∞

∑
i=L

ĉi+1

≤ ĉL+1

( d
2 + L)(1− εL)2

≤ c0
εL+1(

1−
d
2+L

L ε

)2
Γ( d

2 + L)

Γ( d
2 + 1)(L + 1)!

.
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