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Abstract:



Estimators derived from a divergence criterion such as [image: there is no content]divergences are generally more robust than the maximum likelihood ones. We are interested in particular in the so-called minimum dual [image: there is no content]–divergence estimator (MD[image: there is no content]DE), an estimator built using a dual representation of [image: there is no content]–divergences. We present in this paper an iterative proximal point algorithm that permits the calculation of such an estimator. The algorithm contains by construction the well-known Expectation Maximization (EM) algorithm. Our work is based on the paper of Tseng on the likelihood function. We provide some convergence properties by adapting the ideas of Tseng. We improve Tseng’s results by relaxing the identifiability condition on the proximal term, a condition which is not verified for most mixture models and is hard to be verified for “non mixture” ones. Convergence of the EM algorithm in a two-component Gaussian mixture is discussed in the spirit of our approach. Several experimental results on mixture models are provided to confirm the validity of the approach.
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1. Introduction


The Expectation Maximization (EM) algorithm is a well-known method for calculating the maximum likelihood estimator of a model where incomplete data is considered. For example, when working with mixture models in the context of clustering, the labels or classes of observations are unknown during the training phase. Several variants of the EM algorithm were proposed (see [1]). Another way to look at the EM algorithm is as a proximal point problem (see [2,3]). Indeed, one may rewrite the conditional expectation of the complete log-likelihood as a sum of the log-likelihood function and a distance-like function over the conditional densities of the labels provided an observation. Generally, the proximal term has a regularization effect in the sense that a proximal point algorithm is more stable and frequently outperforms classical optimization algorithms (see [4]). Chrétien and Hero [5] prove superlinear convergence of a proximal point algorithm derived from the EM algorithm. Notice that EM-type algorithms usually enjoy no more than linear convergence.



Taking into consideration the need for robust estimators, and the fact that the maximum likelihood estimator (MLE) is the least robust estimator among the class of divergence-type estimators that we present below, we generalize the EM algorithm (and the version of Tseng [2]) by replacing the log-likelihood function by an estimator of a [image: there is no content]divergence between the true distribution of the data and the model. A [image: there is no content]–divergence in the sense of Csiszár [6] is defined in the same way as [7] by:


[image: there is no content]








where [image: there is no content] is a nonnegative strictly convex function. Examples of such divergences are: the Kullback–Leibler (KL) divergence , the modified KL divergence, the Hellinger distanceamong others. All these well-known divergences belong to the class of Cressie-Read functions [8] defined by


φγ(x)=xγ-γx+γ-1γ(γ-1)forγ∈R\{0,1}.



(1)




for [image: there is no content] respectively. For [image: there is no content], the limit is calculated, and we denote [image: there is no content] for the case of the modified KL and [image: there is no content] for the KL.



Since the [image: there is no content]divergence calculus uses the unknown true distribution, we need to estimate it. We consider the dual estimator of the divergence introduced independently by [9,10]. The use of this estimator is motivated by many reasons. Its minimum coincides with the MLE for [image: there is no content]. In addition, it has the same form for discrete and continuous models, and does not consider any partitioning or smoothing.



Let [image: there is no content] be a parametric model with [image: there is no content], and denote [image: there is no content] as the true set of parameters. Let [image: there is no content] be the Lebesgue measure defined on [image: there is no content]. Suppose that [image: there is no content], the probability measure [image: there is no content] is absolutely continuous with respect to [image: there is no content] and denote [image: there is no content] the corresponding probability density. The dual estimator of the [image: there is no content]divergence given an [image: there is no content]sample [image: there is no content] is given by:


[image: there is no content]



(2)




with [image: there is no content]. Al Mohamad [11] argues that this formula works well under the model; however, when we are not, this quantity largely underestimates the divergence between the true distribution and the model, and proposes the following modification:


[image: there is no content]



(3)




where [image: there is no content] is the Rosenblatt–Parzen kernel estimate with window parameter w. Whether it is [image: there is no content], or [image: there is no content], the minimum dual [image: there is no content]divergence estimator (MD[image: there is no content]DE) is defined as the argument of the infimum of the dual approximation:


[image: there is no content]



(4)






[image: there is no content]



(5)







Asymptotic properties and consistency of these two estimators can be found in [7,11]. Robustness properties were also studied using the influence function approach in [11,12]. The kernel-based MD[image: there is no content]DE (5) seems to be a better estimator than the classical MD[image: there is no content]DE (4) in the sense that the former is robust whereas the later is generally not. Under the model, the estimator given by (4) is, however, more efficient, especially when the true density of the data is unbounded. More investigation is needed in the context of unbounded densities, since we may use asymmetric kernels in order to improve the efficiency of the kernel-based MD[image: there is no content]DE, see [11] for more details.



In this paper, we propose calculation of the MD[image: there is no content]DE using an iterative procedure based on the work of Tseng [2] on the log-likelihood function. This procedure has the form of a proximal point algorithm, and extends the EM algorithm. Our convergence proof demands some regularity (continuity and differentiability) of the estimated divergence with respect to the parameter vector φ) which is not simply checked using (2). Recent results in the book of Rockafellar and Wets [13] provide sufficient conditions to prove continuity and differentiability of supremal functions of the form of (2) with respect to φ. Differentiability with respect to φ still remains a very hard task; therefore, our results cover cases when the objective function is not differentiable.



The paper is organized as follows: in Section 2, we present the general context. We also present the derivation of our algorithm from the EM algorithm and passing by Tseng’s generalization. In Section 3, we present some convergence properties. We discuss in Section 4 a variant of the algorithm with a theoretical global infimum, and an example of the two-Gaussian mixture model and a convergence proof of the EM algorithm in the spirit of our approach. Finally, Section 5 contains simulations confirming our claim about the efficiency and the robustness of our approach in comparison with the MLE. The algorithm is also applied to the so-called minimum density power divergence (MDPD) introduced by [14].




2. A Description of the Algorithm


2.1. General Context and Notations


Let [image: there is no content] be a couple of random variables with joint probability density function [image: there is no content] parametrized by a vector of parameters [image: there is no content]. Let [image: there is no content][image: there is no content] be n copies of [image: there is no content] independently and identically distributed. Finally, let [image: there is no content] be n realizations of the n copies of [image: there is no content]. The [image: there is no content]s are the unobserved data (labels) and the [image: there is no content]s are the observations. The vector of parameters φ is unknown and needs to be estimated. The observed data [image: there is no content] are supposed to be real numbers, and the labels [image: there is no content] belong to a space [image: there is no content] not necessarily finite unless mentioned otherwise. The marginal density of the observed data is given by [image: there is no content], where [image: there is no content] is a measure defined on the label space (for example, the counting measure if we work with mixture models).



For a parametrized function f with a parameter a, we write [image: there is no content]. We use the notation [image: there is no content] for sequences with the index above. The derivatives of a real valued function ψ defined on [image: there is no content] are denoted [image: there is no content] etc. We denote [image: there is no content] the gradient of a real function f defined on [image: there is no content]. For a generic function of two (vectorial) arguments [image: there is no content], then [image: there is no content] denotes the gradient with respect to the first (vectorial) variable. Finally, for any set A, we use [image: there is no content] to denote the interior of A.




2.2. EM Algorithm and Tseng’s Generalization


The EM algorithm estimates the unknown parameter vector by (see [15]):


[image: there is no content]








where [image: there is no content], [image: there is no content] and [image: there is no content]. By independence between the couples [image: there is no content]’s, the previous iteration may be written as:


ϕk+1=arg maxΦ∑i=1nElog(f(Xi,Yi|ϕ))Yi=yi,ϕk=arg maxΦ∑i=1n∫Xlog(f(x,yi|ϕ))hi(x|ϕk)dx,



(6)




where [image: there is no content] is the conditional density of the labels (at step k) provided [image: there is no content] which we suppose to be positive [image: there is no content]almost everywhere. It is well-known that the EM iterations can be rewritten as a difference between the log-likelihood and a Kullback–Liebler distance-like function. Indeed,


ϕk+1=arg maxΦ∑i=1n∫Xloghi(x|ϕ)×pϕ(yi)hi(x|ϕk)dx=arg maxΦ∑i=1n∫Xlogpϕ(yi)hi(x|ϕk)dx+∑i=1n∫Xloghi(x|ϕ)hi(x|ϕk)dx=arg maxΦ∑i=1nlogpϕ(yi)+∑i=1n∫Xloghi(x|ϕ)hi(x|ϕk)hi(x|ϕk)dx+∑i=1n∫Xloghi(x|ϕk)hi(x|ϕk)dx.








The final line is justified by the fact that [image: there is no content] is a density, therefore it integrates to 1. The additional term does not depend on ϕ and, hence, can be omitted. We now have the following iterative procedure:


[image: there is no content]











The previous iteration has the form of a proximal point maximization of the log-likelihood, i.e., a perturbation of the log-likelihood by a distance-like function defined on the conditional densities of the labels. Tseng [2] generalizes this iteration by allowing any nonnegative convex function ψ to replace the [image: there is no content] function. Tseng’s recurrence is defined by:


[image: there is no content]



(7)




where J is the log-likelihood function and [image: there is no content] is given by:


[image: there is no content]



(8)




for any real nonnegative convex function ψ such that [image: there is no content]. [image: there is no content] is nonnegative, and [image: there is no content] if and only if [image: there is no content][image: there is no content] almost everywhere.




2.3. Generalization of Tseng’s Algorithm


We use the relationship between maximizing the log-likelihood and minimizing the Kullback–Liebler divergence to generalize the previous algorithm. We, therefore, replace the log-likelihood function by an estimate of a [image: there is no content]divergence [image: there is no content] between the true distribution and the model. We use the dual estimators of the divergence presented earlier in the introduction (2) or (3), which we denote in the same manner [image: there is no content], unless mentioned otherwise. Our new algorithm is defined by:


[image: there is no content]



(9)




where [image: there is no content] is defined by (8). When [image: there is no content], it is easy to see that we get recurrence (7). Indeed, for the case of (2) we have:


[image: there is no content]











Using the fact that the first term in [image: there is no content] does not depend on φ, so it does not count in the arg inf defining [image: there is no content], we easily get (7). The same applies for the case of (3). For notational simplicity, from now on, we redefine [image: there is no content] with a normalization by n, i.e.,


[image: there is no content]



(10)







Hence, our set of algorithms is redefined by:


[image: there is no content]



(11)







We will see later that this iteration forces the divergence to decrease and that, under suitable conditions, it converges to a (local) minimum of [image: there is no content]. It results that algorithm (11) being a way to calculate both the MD[image: there is no content]DE (4) and the kernel-based MD[image: there is no content]DE (5).





3. Some Convergence Properties of [image: there is no content]


We show here how, according to some possible situations, one may prove convergence of the algorithm defined by (11). Let [image: there is no content] be a given initialization, and define


[image: there is no content]








which we suppose to be a subset of [image: there is no content]. The idea of defining this set in this context is inherited from the paper Wu [16], which provided the first correct proof of convergence for the EM algorithm. Before going any further, we recall the following definition of a (generalized) stationary point.



Definition 1. 

Let [image: there is no content] be a real valued function. If f is differentiable at a point [image: there is no content] such that [image: there is no content], we then say that [image: there is no content] is a stationary point of f. If f is not differentiable at [image: there is no content] but the subgradient of f at [image: there is no content], say [image: there is no content], exists such that [image: there is no content], then [image: there is no content] is called a generalized stationary point of f.





Remark 1. 

In the whole paper, the subgradient is defined for any function not necessarily convex (see Definition 8.3) in [13] for more details.





We will be using the following assumptions:

	A0.

	
Functions [image: there is no content] are lower semicontinuous;




	A1.

	
Functions [image: there is no content] and [image: there is no content] are defined and continuous on, respectively, [image: there is no content] and [image: there is no content];




	AC.

	
Function [image: there is no content] is defined and continuous on Φ;




	A2.

	
[image: there is no content] is a compact subset of int[image: there is no content];




	A3.

	
[image: there is no content] for all [image: there is no content].









Recall also that we suppose that [image: there is no content] We relax the convexity assumption of function ψ. We only suppose that ψ is nonnegative and [image: there is no content] iff [image: there is no content]. In addition, [image: there is no content] if [image: there is no content].



Continuity and differentiability assumptions of function [image: there is no content] for the case of (3) can be easily checked using Lebesgue theorems. The continuity assumption for the case of (2) can be checked using Theorem 1.17 or Corollary 10.14 in [13]. Differentiability can also be checked using Corollary 10.14 or Theorem 10.31 in the same book. In what concerns [image: there is no content], continuity and differentiability can be obtained merely by fulfilling Lebesgue theorems conditions. When working with mixture models, we only need the continuity and differentiability of ψ and functions [image: there is no content]. The later is easily deduced from regularity assumptions on the model. For assumption A2, there is no universal method, see Section 4.2 for an Example. Assumption A3 can be checked using Lemma 2 in [2].



We start the convergence properties by proving that the objective function [image: there is no content] decreases alongside the the sequence [image: there is no content], and give a possible set of conditions for the existence of the sequence [image: there is no content].



Proposition 1. 

(a) Assume that the sequence [image: there is no content] is well defined in Φ, then [image: there is no content], and (b) [image: there is no content]. (c) Assume A0 and A2 are verified, then the sequence [image: there is no content] is defined and bounded. Moreover, the sequence [image: there is no content] converges.





Proof. 

We prove [image: there is no content]. We have by definition of the arginf:


[image: there is no content]








We use the fact that [image: there is no content] for the right-hand side and that [image: there is no content] for the left-hand side of the previous inequality. Hence, [image: there is no content].





We prove [image: there is no content] using the decreasing property previously proved in (a). We have by recurrence [image: there is no content]. The result follows directly by definition of [image: there is no content].



We prove [image: there is no content] by induction on k. For [image: there is no content], clearly [image: there is no content] is well defined since we choose it. The choice of the initial point [image: there is no content] of the sequence may influence the convergence of the sequence. See the Example of the Gaussian mixture in Section 4.2. Suppose, for some [image: there is no content], that [image: there is no content] exists. We prove that the infimum is attained in [image: there is no content]. Let [image: there is no content] be any vector at which the value of the optimized function has a value less than its value at [image: there is no content], i.e., [image: there is no content]. We have:


D^φ(pϕ,pϕT)≤D^φ(pϕ,pϕT)+Dψ(ϕ,ϕk)≤D^φ(pϕk,pϕT)+Dψ(ϕk,ϕk)≤D^φ(pϕk,pϕT)≤D^φ(pϕ0,pϕT).











The first line follows from the non negativity of [image: there is no content]. As [image: there is no content], then [image: there is no content]. Thus, the infimum can be calculated for vectors in [image: there is no content] instead of Φ. Since [image: there is no content] is compact and the optimized function is lower semicontinuous (the sum of two lower semicontinuous functions), then the infimum exists and is attained in [image: there is no content]. We may now define [image: there is no content] to be a vector whose corresponding value is equal to the infimum.



Convergence of the sequence [image: there is no content] comes from the fact that it is non increasing and bounded. It is non increasing by virtue of (a). Boundedness comes from the lower semicontinuity of [image: there is no content]. Indeed, [image: there is no content]. The infimum of a proper lower semicontinuous function on a compact set exists and is attained on this set. Hence, the quantity [image: there is no content] exists and is finite. This ends the proof.   □



Compactness in part (c) can be replaced by inf-compactness of function [image: there is no content] and continuity of [image: there is no content] with respect to its first argument. The convergence of the sequence [image: there is no content] is an interesting property, since, in general, there is no theoretical guarantee, or it is difficult to prove that the whole sequence [image: there is no content] converges. It may also continue to fluctuate around a minimum. The decrease of the error criterion [image: there is no content] between two iterations helps us decide when to stop the iterative procedure.



Proposition 2. 

Suppose A1 verified, [image: there is no content] is closed and [image: there is no content].

	(a) 

	
If AC is verified, then any limit point of [image: there is no content] is a stationary point of [image: there is no content];




	(b) 

	
If AC is dropped, then any limit point of [image: there is no content] is a “generalized” stationary point of [image: there is no content], i.e., zero belongs to the subgradient of [image: there is no content] calculated at the limit point.











Proof. 

We prove [image: there is no content]. Let [image: there is no content] be a convergent subsequence of [image: there is no content] which converges to [image: there is no content]. First, [image: there is no content], because [image: there is no content] is closed and the subsequence [image: there is no content] is a sequence of elements of [image: there is no content] (proved in Proposition 1b).





Let us now show that the subsequence [image: there is no content] also converges to [image: there is no content]. We simply have:


[image: there is no content]











Since [image: there is no content] and [image: there is no content], we conclude that [image: there is no content].



By definition of [image: there is no content], it verifies the infimum in recurrence (11), so that the gradient of the optimized function is zero:


[image: there is no content]











Using the continuity assumptions A1 and AC of the gradients, one can pass to the limit with no problem:


[image: there is no content]











However, the gradient [image: there is no content] because (recall that [image: there is no content]) for any [image: there is no content]


[image: there is no content]








which is equal to zero since [image: there is no content]. This implies that [image: there is no content].



We prove (b). We use again the definition of the arginf. As the optimized function is not necessarily differentiable at the points of the sequence [image: there is no content], a necessary condition for [image: there is no content] to be an infimum is that 0 belongs to the subgradient of the function on [image: there is no content]. Since [image: there is no content] is assumed to be differentiable, the optimality condition is translated into:


-∇Dψ(ϕk+1,ϕk)∈∂D^φ(pϕk+1,pϕT)∀k.











Since [image: there is no content] is continuous, then its subgradient is outer semicontinuous (see [13] Chapter 8, Proposition 7). We use the same arguments presented in (a) to conclude the existence of two subsequences [image: there is no content] and [image: there is no content] which converge to the same limit [image: there is no content]. By definition of outer semicontinuity, and since [image: there is no content], we have:


[image: there is no content]



(12)







We want to prove that [image: there is no content]. By definition of the (outer) limsup (see [13] Chapter 4, Definition 1 or Chapter 5B):


lim supϕ→ϕ∞∂D^φ(pϕ,pϕT)=u|∃ϕk→ϕ∞,∃uk→uwithuk∈∂D^φ(pϕk,pϕT).











In our scenario, [image: there is no content], [image: there is no content], [image: there is no content] and [image: there is no content]. The continuity of [image: there is no content] with respect to both arguments and the fact that the two subsequences [image: there is no content] and [image: there is no content] converge to the same limit, imply that [image: there is no content]. Hence, [image: there is no content]. By inclusion (12), we get our result:


[image: there is no content]











This ends the proof.   □



The assumption [image: there is no content] used in Proposition 2 is not easy to be checked unless one has a close formula of [image: there is no content]. The following proposition gives a method to prove such assumption. This method seems simpler, but it is not verified in many mixture models (see Section 4.2 for a counter Example).



Proposition 3. 

Assume that A1, A2 and A3 are verified, then [image: there is no content]. Thus, by Proposition 2 (according to whether AC is verified or not), any limit point of the sequence [image: there is no content] is a (generalized) stationary point of [image: there is no content].





Proof. 

By contradiction, let us suppose that [image: there is no content] does not converge to 0. There exists a subsequence such that ∥ϕN0(k)+1-ϕN0(k)∥>ε,∀k≥k0. Since [image: there is no content] belongs to the compact set [image: there is no content], there exists a convergent subsequence [image: there is no content] such that [image: there is no content]. The sequence [image: there is no content] belongs to the compact set [image: there is no content]; therefore, we can extract a further subsequence [image: there is no content] such that [image: there is no content]. Besides [image: there is no content]. Finally since the sequence [image: there is no content] is convergent, a further subsequence also converges to the same limit [image: there is no content]. We have proved the existence of a subsequence of [image: there is no content] such that [image: there is no content] does not converge to 0 and such that [image: there is no content], [image: there is no content] with [image: there is no content].





The real sequence [image: there is no content] converges as proved in Proposition 1c. As a result, both sequences [image: there is no content] and [image: there is no content] converge to the same limit being subsequences of the same convergent sequence. In the proof of Proposition 1, we can deduce the following inequality:


[image: there is no content]



(13)




which is also verified for any substitution of k by [image: there is no content]. By passing to the limit on k, we get [image: there is no content]. However, the distance-like function [image: there is no content] is nonnegative, so that it becomes zero. Using assumption A3, [image: there is no content] implies that [image: there is no content]. This contradicts the hypothesis that [image: there is no content] does not converge to 0.



The second part of the Proposition is a direct result of Proposition 2.   □



Corollary 1. 

Under assumptions of Proposition 3, the set of accumulation points of [image: there is no content] is a connected compact set. Moreover, if [image: there is no content] is strictly convex in the neighborhood of a limit point of the sequence [image: there is no content], then the whole sequence [image: there is no content] converges to a local minimum of [image: there is no content].





Proof. 

Since the sequence [image: there is no content] is bounded and verifies [image: there is no content], then Theorem 28.1 in [17] implies that the set of accumulation points of [image: there is no content] is a connected compact set. It is not empty since [image: there is no content] is compact. The remaining of the proof is a direct result of Theorem 3.3.1 from [18]. The strict concavity of the objective function around an accumulation point is replaced here by the strict convexity of the estimated divergence.   □





Proposition 3 and Corollary 1 describe what we may hope to get of the sequence [image: there is no content]. Convergence of the whole sequence is bound by a local convexity assumption in the neighborhood of a limit point. Although simple, this assumption remains difficult to be checked since we do not know where might be the limit points. In addition, assumption A3 is very restrictive, and is not verified in mixture models.



Propositions 2 and 3 were developed for the likelihood function in the paper of Tseng [2]. Similar results for a general class of functions replacing [image: there is no content] and [image: there is no content] which may not be differentiable (but still continuous) are presented in [3]. In these results, assumption A3 is essential. Although in [18] this problem is avoided, their approach demands that the log-likelihood has [image: there is no content] limit as [image: there is no content]. This is simply not verified for mixture models. We present a similar method to the one in [18] based on the idea of Tseng [2] of using the set [image: there is no content] which is valid for mixtures. We lose, however, the guarantee of consecutive decrease of the sequence [image: there is no content].



Proposition 4. 

Assume A1, AC and A2 verified. Any limit point of the sequence [image: there is no content] is a stationary point of [image: there is no content]. If AC is dropped, then 0 belongs to the subgradient of [image: there is no content] calculated at the limit point.





Proof. 

If [image: there is no content] converges to, say, [image: there is no content], then the result falls simply from Proposition 2.





If [image: there is no content] does not converge. Since [image: there is no content] is compact and [image: there is no content] (proved in Proposition 1), there exists a subsequence [image: there is no content] such that [image: there is no content]. Let us take the subsequence [image: there is no content]. This subsequence does not necessarily converge; it is still contained in the compact [image: there is no content], so that we can extract a further subsequence [image: there is no content] which converges to, say, [image: there is no content]. Now, the subsequence [image: there is no content] converges to [image: there is no content], because it is a subsequence of [image: there is no content]. We have proved until now the existence of two convergent subsequences [image: there is no content] and [image: there is no content] with a priori different limits. For simplicity and without any loss of generality, we will consider these subsequences to be [image: there is no content] and [image: there is no content], respectively.



Conserving previous notations, suppose that [image: there is no content] and [image: there is no content]. We use again inequality (13):


[image: there is no content]











By taking the limits of the two parts of the inequality as k tends to infinity, and using the continuity of the two functions, we have


[image: there is no content]











Recall that under A1-2, the sequence [image: there is no content] converges, so that it has the same limit for any subsequence, i.e., [image: there is no content]. We also use the fact that the distance-like function [image: there is no content] is non negative to deduce that [image: there is no content]. Looking closely at the definition of this divergence (10), we get that if the sum is zero, then each term is also zero since all terms are nonnegative. This means that:


∀i∈{1,⋯,n},∫Xψhi(x|ϕ˜)hi(x|ϕ¯)hi(x|ϕ¯)dx=0.











The integrands are nonnegative functions, so they vanish almost everywhere with respect to the measure [image: there is no content] defined on the space of labels.




∀i∈{1,⋯,n},ψhi(x|ϕ˜)hi(x|ϕ¯)hi(x|ϕ¯)=0dx-a.e.









The conditional densities [image: there is no content] are supposed to be positive (which can be ensured by a suitable choice of the initial point [image: there is no content]), i.e., [image: there is no content] Hence, [image: there is no content] On the other hand, ψ is chosen in a way that [image: there is no content] iff [image: there is no content]. Therefore:


∀i∈{1,⋯,n},hi(x|ϕ˜)=hi(x|ϕ¯)dx-a.e.



(14)







Since [image: there is no content] is, by definition, an infimum of [image: there is no content], then the gradient of this function is zero on [image: there is no content]. It results that:


∇D^(pϕk+1,pϕT)+∇Dψ(ϕk+1,ϕk)=0,∀k.











Taking the limit on k, and using the continuity of the derivatives, we get that:


[image: there is no content]



(15)







Let us write explicitly the gradient of the second divergence:


[image: there is no content]











We use now the identities (14), and the fact that [image: there is no content], to deduce that:


[image: there is no content]











This entails using (15) that [image: there is no content].



Comparing the proved result with the notation considered at the beginning of the proof, we have proved that the limit of the subsequence [image: there is no content] is a stationary point of the objective function. Therefore, the final step is to deduce the same result on the original convergent subsequence [image: there is no content]. This is simply due to the fact that [image: there is no content] is a subsequence of the convergent sequence [image: there is no content], hence they have the same limit.



When assumption AC is dropped, similar arguments to those used in the proof of Proposition 2b. are employed. The optimality condition in (11) implies:


-∇Dψ(ϕk+1,ϕk)∈∂D^φ(pϕk+1,pϕT)∀k.











Function [image: there is no content] is continuous, hence its subgradient is outer semicontinuous and:


[image: there is no content]



(16)







By definition of the limsup:


lim supϕ→ϕ∞∂D^φ(pϕ,pϕT)=u|∃ϕk→ϕ∞,∃uk→uwithuk∈∂D^φ(pϕk,pϕT).











In our scenario, [image: there is no content], [image: there is no content], [image: there is no content] and [image: there is no content]. We have proved above in this proof that [image: there is no content] using only the convergence of [image: there is no content], inequality (13) and the properties of [image: there is no content]. Assumption AC was not needed. Hence, [image: there is no content]. This proves that [image: there is no content]. Finally, using the inclusion (16), we get our result:


[image: there is no content]








which ends the proof.   □



The proof of the previous proposition is very similar to the proof of Proposition 2. The key idea is to use the sequence of conditional densities [image: there is no content] instead of the sequence [image: there is no content]. According to the application, one may be interested only in Proposition 1 or in Propositions 2–4. If one is interested in the parameters, Propositions 2 to 4 should be used, since we need a stable limit of [image: there is no content]. If we are only interested in minimizing an error criterion [image: there is no content] between the estimated distribution and the true one, Proposition 1 should be sufficient.




4. Case Studies


4.1. An Algorithm With Theoretically Global Infimum Attainment


We present a variant of algorithm (11) which ensures theoretically the convergence to a global infimum of the objective function [image: there is no content] as soon as there exists a convergent subsequence of [image: there is no content]. The idea is the same as Theorem 3.2.4 in [18]. Define [image: there is no content] by:


[image: there is no content]











The proof of convergence is very simple and does not depend on the differentiability of any of the two functions [image: there is no content] or [image: there is no content]. We only assume A1 and A2 to be verified. Let [image: there is no content] be a convergent subsequence. Let [image: there is no content] be its limit. This is guaranteed by the compactness of [image: there is no content] and the fact that the whole sequence [image: there is no content] resides in [image: there is no content] (see Proposition 1b). Suppose also that the sequence [image: there is no content] converges to 0 as k goes to infinity.



Now assumptions of Theorem 3.2.4. from [18] are verified. Thus, using the same lines from the proof of this theorem (inverting all inequalities since we are minimizing instead of maximizing), we may prove that [image: there is no content] is a global infimum of the estimated divergence, that is


D^φ(pϕ∞,pϕT)≤D^φ(pϕ,pϕT),∀ϕ∈Φ.











The problem with this approach is that it depends heavily on the fact that the supremum on each step of the algorithm is calculated exactly. This does not happen in general unless function [image: there is no content] is convex or that we dispose of an algorithm that can perfectly solve non convex optimization problems (In this case, there is no meaning in applying an iterative proximal algorithm. We would have used the optimization algorithm directly on the objective function [image: there is no content]. Although in our approach, we use a similar assumption to prove the consecutive decreasing of [image: there is no content], we can replace the infimum calculus in (11) by two things. We require at each step that we find a local infimum of [image: there is no content] whose evaluation with [image: there is no content] is less than the previous term of the sequence [image: there is no content]. If we can no longer find any local minima verifying the claim, the procedure stops with [image: there is no content]. This ensures the availability of all the proofs presented in this paper with no change.




4.2. The Two-Component Gaussian Mixture


We suppose that the model [image: there is no content] is a mixture of two gaussian densities, and that we are only interested in estimating the means [image: there is no content] and the proportion [image: there is no content]. The use of η is to avoid cancellation of any of the two components, and to keep the hypothesis [image: there is no content] for [image: there is no content] verified. We also suppose that the components variances are reduced ([image: there is no content]). The model takes the form


[image: there is no content]



(17)







Here, [image: there is no content]. The regularization term [image: there is no content] is defined by (8) where:


hi(1|ϕ)=λe-12(yi-μ1)2λe-12(yi-μ1)2+(1-λ)e-12(yi-μ2)2,hi(2|ϕ)=1-hi(1|ϕ).











Functions [image: there is no content] are clearly of class [image: there is no content](int(Φ)), and so does [image: there is no content]. We prove that [image: there is no content] is closed and bounded, which is sufficient to conclude its compactness, since the space [image: there is no content] provided with the euclidean distance is complete.



If we are using the dual estimator of the [image: there is no content]divergence given by (2), then assumption A0 can be verified using the maximum theorem of Berge [19]. There is still a great difficulty in studying the properties (closedness or compactness) of the set [image: there is no content]. Moreover, all convergence properties of the sequence [image: there is no content] require the continuity of the estimated [image: there is no content]divergence [image: there is no content] with respect to ϕ. In order to prove the continuity of the estimated divergence, we need to assume that Φ is compact, i.e., assume that the means are included in an interval of the form [image: there is no content]. Now, using Theorem 10.31 from [13], [image: there is no content] is continuous and differentiable almost everywhere with respect to φ.



The compactness assumption of Φ implies directly the compactness of [image: there is no content]. Indeed,


Φ0=ϕ∈Φ,D^φ(pϕ,pϕT)≤D^φ(pϕ0,pϕT)=D^φ(pϕ,pϕT)-1(-∞,D^φ(pϕ0,pϕT)].








[image: there is no content] is then the inverse image by a continuous function of a closed set, so it is closed in Φ. Hence, it is compact.



Conclusion 1. 

Using Propositions 4 and 1, if [image: there is no content], the sequence [image: there is no content]defined through Formula (2) converges and there exists a subsequence [image: there is no content] which converges to a stationary point of the estimated divergence. Moreover, every limit point of the sequence [image: there is no content] is a stationary point of the estimated divergence.





If we are using the kernel-based dual estimator given by (3) with a Gaussian kernel density estimator, then function [image: there is no content] is continuously differentiable over Φ even if the means [image: there is no content] and [image: there is no content] are not bounded. For example, take [image: there is no content] defined by (1). There is one condition which relates the window of the kernel, say w, with the value of γ. Indeed, using Formula (3), we can write


[image: there is no content]











In order to study the continuity and the differentiability of the estimated divergence with respect to ϕ, it suffices to study the integral term. We have


[image: there is no content]











The dominating term at infinity in the nominator is [image: there is no content], whereas it is [image: there is no content] in the denominator. It suffices now in order that the integrand to be bounded by an integrable function independently of [image: there is no content] that we have [image: there is no content]. That is [image: there is no content], which is equivalent to [image: there is no content]. This argument also holds if we differentiate the integrand with respect to λ or either of the means [image: there is no content] or [image: there is no content]. For [image: there is no content] (the Pearson’s [image: there is no content]), we need [image: there is no content]. For [image: there is no content] (the Hellinger), there is no condition on w.



Closedness of [image: there is no content] is proved similarly to the previous case. Boundedness, however, must be treated differently since Φ is not necessarily compact and is supposed to be [image: there is no content]. For simplicity, take [image: there is no content]. The idea is to choose [image: there is no content] an initialization for the proximal algorithm in a way that [image: there is no content] does not include unbounded values of the means. Continuity of [image: there is no content] permits calculation of the limits when either (or both) of the means tends to infinity. If both the means go to infinity, then [image: there is no content]. Thus, for [image: there is no content], we have [image: there is no content]. For [image: there is no content], the limit is infinity. If only one of the means tends to ∞, then the corresponding component vanishes from the mixture. Thus, if we choose [image: there is no content] such that:


D^φ(pϕ0,pϕT)<min1γ(γ-1),infλ,μD^φ(p(λ,∞,μ),pϕT)ifγ∈(0,∞)\{1},



(18)






D^φ(pϕ0,pϕT)<infλ,μD^φ(p(λ,∞,μ),pϕT)ifγ<0,



(19)




then the algorithm starts at a point of Φ whose function value is inferior to the limits of [image: there is no content] at infinity. By Proposition 1, the algorithm will continue to decrease the value of [image: there is no content] and never goes back to the limits at infinity. In addition, the definition of [image: there is no content] permits to conclude that if [image: there is no content] is chosen according to conditions (18) and (19), then [image: there is no content] is bounded. Thus, [image: there is no content] becomes compact. Unfortunately the value of [image: there is no content] can be calculated but numerically. We will see next that in the case of the likelihood function, a similar condition will be imposed for the compactness of [image: there is no content], and there will be no need for any numerical calculus.



Conclusion 2. 

Using Propositions 4 and 1, under conditions (18) and (19) the sequence [image: there is no content] defined through Formula (3) converges and there exists a subsequence [image: there is no content] that converges to a stationary point of the estimated divergence. Moreover, every limit point of the sequence [image: there is no content] is a stationary point of the estimated divergence.





In the case of the likelihood [image: there is no content], the set [image: there is no content] can be written as:


Φ0=ϕ∈Φ,JN(ϕ)≥JN(ϕ0)=JN-1[JN(ϕ0),+∞),








where [image: there is no content] is the log-likelihood function of the Gaussian mixture model. The log-likelihood function [image: there is no content] is clearly of class [image: there is no content](int(Φ)). We prove that [image: there is no content] is closed and bounded which is sufficient to conclude its compactness, since the space [image: there is no content] provided with the euclidean distance is complete.



Closedness. The set [image: there is no content] is the inverse image by a continuous function (the log-likelihood) of a closed set. Therefore it is closed in [image: there is no content].



Boundedness. By contradiction, suppose that [image: there is no content] is unbounded, then there exists a sequence [image: there is no content] which tends to infinity. Since [image: there is no content], then either of [image: there is no content] or [image: there is no content] tends to infinity. Suppose that both [image: there is no content] and [image: there is no content] tend to infinity, we then have [image: there is no content]. Any finite initialization [image: there is no content] will imply that [image: there is no content] so that [image: there is no content]. Thus, it is impossible for both [image: there is no content] and [image: there is no content] to go to infinity.



Suppose that [image: there is no content], and that [image: there is no content] converges (or that [image: there is no content] is bounded; in such case we extract a convergent subsequence) to [image: there is no content]. The limit of the likelihood has the form:


[image: there is no content]








which is bounded by its value for [image: there is no content] and [image: there is no content]. Indeed, since [image: there is no content], we have:


[image: there is no content]











The right-hand side of this inequality is the likelihood of a Gaussian model [image: there is no content], so that it is maximized when [image: there is no content]. Thus, if [image: there is no content] is chosen in a way that [image: there is no content], the case when [image: there is no content] tends to infinity and [image: there is no content] is bounded would never be allowed. For the other case where [image: there is no content] and [image: there is no content] is bounded, we choose [image: there is no content] in a way that [image: there is no content]. In conclusion, with a choice of [image: there is no content] such that:


JN(ϕ0)>maxJN0,∞,1n∑i=1nyi,JN1,1n∑i=1nyi,∞,



(20)




the set [image: there is no content] is bounded.



This condition on [image: there is no content] is very natural and means that we need to begin at a point at least better than the extreme cases where we only have one component in the mixture. This can be easily verified by choosing a random vector [image: there is no content], and calculating the corresponding log-likelihood value. If [image: there is no content] does not verify the previous condition, we draw again another random vector until satisfaction.



Conclusion 3. 

Using Propositions 4 and 1, under condition (20) the sequence [image: there is no content] converges and there exists a subsequence [image: there is no content] which converges to a stationary point of the likelihood function. Moreover, every limit point of the sequence [image: there is no content] is a stationary point of the likelihood.





Assumption A3 is not fulfilled (this part applies for all aforementioned situations). As mentioned in the paper of Tseng [2], for the two Gaussian mixture example, by changing [image: there is no content] and [image: there is no content] by the same amount and suitably adjusting λ, the value of [image: there is no content] would be unchanged. We explore this more thoroughly by writing the corresponding equations. Let us suppose, absurdly, that for distinct ϕ and [image: there is no content], we have [image: there is no content]. By definition of [image: there is no content], it is given by a sum of nonnegative terms, which implies that all terms need to be equal to zero. The following lines are equivalent [image: there is no content]:


[image: there is no content]











Looking at this set of n equations as an equality of two polynomials on y of degree 1 at n points, we deduce that as we have two distinct observations, say, [image: there is no content] and [image: there is no content], the two polynomials need to have the same coefficients. Thus, the set of n equations is equivalent to the following two equations:


[image: there is no content]



(21)







These two equations with three variables have an infinite number of solutions. Take, for example, μ1=0,μ2=1,λ=23,μ1′=12,μ2′=32,λ′=12.



Remark 2. 

The previous conclusion can be extended to any two-component mixture of exponential families having the form:


[image: there is no content]








One may write the corresponding n equations. The polynomial of [image: there is no content] has a degree of at most [image: there is no content]. Thus, if one disposes of [image: there is no content] distinct observations, the two polynomials will have the same set of coefficients. Finally, if [image: there is no content] with [image: there is no content], then assumption A3 does not hold.





Unfortunately, we have no an information about the difference between consecutive terms [image: there is no content] except for the case of [image: there is no content] which corresponds to the classical EM recurrence:


λk+1=1n∑i=1nhi(0|ϕk),μ1k+1=∑i=1nyihi(0|ϕk)∑i=1nhi(0|ϕk)μ1k+1=∑i=1nyihi(1|ϕk)∑i=1nhi(1|ϕk).











Tseng [2] has shown that we can prove directly that [image: there is no content] converges to 0.





5. Simulation Study


We summarize the results of 100 experiments on 100 samples by giving the average of the estimates and the error committed, and the corresponding standard deviation. The criterion error is the total variation distance (TVD), which is calculated using the [image: there is no content] distance. Indeed, the Scheffé Lemma (see [20] (Page 129)) states that:


[image: there is no content]











The TVD gives a measure of the maximum error we may commit when we use the estimated model in lieu of the true distribution. We consider the Hellinger divergence for estimators based on [image: there is no content]divergences, which corresponds to [image: there is no content]. Our preference of the Hellinger divergence is that we hope to obtain robust estimators without loss of efficiency (see [21]). [image: there is no content] is calculated with [image: there is no content]. The kernel-based MD[image: there is no content]DE is calculated using the Gaussian kernel, and the window is calculated using Silverman’s rule. We included in the comparison the minimum density power divergence (MDPD) of [14]. The estimator is defined by:


ϕ^n=arg infϕ∈Φ∫pϕ1+a(z)dz-a+1a1n∑inpϕa(yi)=arg infϕ∈ΦEPϕpϕa-a+1aEPnpϕa,



(22)




where [image: there is no content]. This is a Bregman divergence and is known to have good efficiency and robustness for a good choice of the tradeoff parameter. According to the simulation results in [11], the value of [image: there is no content] seems to give a good tradeoff between robustness against outliers and a good performance under the model. Notice that the MDPD coincides with MLE when a tends to zero. Thus, our methodology presented here in this article, is applicable on this estimator and the proximal point algorithm can be used to calculate the MDPD. The proximal term will be kept the same, i.e., [image: there is no content].



Remark 3 

(Note on the robustness of the used estimators) In Section 3, we have proved under mild conditions that the proximal point algorithm (11) ensures the decrease of the estimated divergence. This means that when we use the dual Formulas (2) and (3), then the proximal point algorithm (11) returns at convergence the estimators defined by (4) and (5), respectively. Similarly, if we use the density power divergence of Basu et al. [14], then the proximal-point algorithm returns at convergence the MDPD defined by (22). The robustness properties of the dual estimators (4) and (5) are studied in [12] and [11] respectively using the influence function (IF) approach. On the other hand, the robustness properties of the MDPD are studied using the IF approach in [14]. The MD[image: there is no content]DE (4) has generally an unbounded IF (see [12] Section 3.1), whereas the kernel-based MD[image: there is no content]DE’s IF may be bounded for example in a Gaussian model and for any [image: there is no content]divergence with [image: there is no content] with [image: there is no content], see [11] Example 2. On the other hand, the MDPD has generally a bounded IF if the tradeoff parameter a is positive, and, in particular, in the Gaussian model. The MDPD becomes more robust as the tradeoff parameteraincreases (see Section 3.3 in [14]). Therefore, we should expect that the proximal point algorithm produces robust estimators in the case of the kernel-based MDφDE and the MDPD, and thus obtain better results than the MLE calculated using the EM algorithm.





Simulations from two mixture models are given below—a Gaussian mixture and a Weibull mixture. The MLE for both mixtures was calculated using the EM algorithm.



Optimizations were carried out using the Nelder–Mead algorithm [22] under the statistical tool R [23]. Numerical integrations in the Gaussian mixture were calculated using the distrExIntegrate function of package distrEx. It is a slight modification of the standard function integrate. It performs a Gauss–Legendre quadrature when function integrate returns an error. In the Weibull mixture, we used the integral function from package pracma. Function integral includes a variety of adaptive numerical integration methods such as Kronrod–Gauss quadrature, Romberg’s method, Gauss–Richardson quadrature, Clenshaw–Curtis (not adaptive) and (adaptive) Simpson’s method. Although function integral is slow, it performs better than other functions even if the integrand has a relatively bad behavior.



5.1. The Two-Component Gaussian Mixture Revisited


We consider the Gaussian mixture (17) presented earlier with true parameters [image: there is no content], [image: there is no content][image: there is no content] and known variances equal to 1. Contamination was done by adding in the original sample to the five lowest values random observations from the uniform distribution [image: there is no content]. We also added to the five largest values random observations from the uniform distribution [image: there is no content]. Results are summarized in Table 1. The EM algorithm was initialized according to condition (20). This condition gave good results when we are under the model, whereas it did not always result in good estimates (the proportion converged towards 0 or 1) when outliers were added, and thus the EM algorithm was reinitialized manually.



Table 1. The mean and the standard deviation of the estimates and the errors committed in a 100 run experiment of a two-component Gaussian mixture. The true set of parameters is [image: there is no content][image: there is no content], [image: there is no content].







	
Estimation Method

	
λ

	
sd (λ)

	
[image: there is no content]

	
sd ([image: there is no content])

	
[image: there is no content]

	
sd ([image: there is no content])

	
TVD

	
sd (TVD)






	
Without Outliers




	
Classical MD[image: there is no content]DE

	
0.349

	
0.049

	
–1.989

	
0.207

	
1.511

	
0.151

	
0.061

	
0.029




	
New MD[image: there is no content]DE–Silverman

	
0.349

	
0.049

	
–1.987

	
0.208

	
1.520

	
0.155

	
0.062

	
0.029




	
MDPD [image: there is no content]

	
0.360

	
0.053

	
–1.997

	
0.226

	
1.489

	
0.135

	
0.065

	
0.025




	
EM (MLE)

	
0.360

	
0.054

	
–1.989

	
0.204

	
1.493

	
0.136

	
0.064

	
0.025




	
With [image: there is no content] Outliers




	
Classical MD[image: there is no content]DE

	
0.357

	
0.022

	
–2.629

	
0.094

	
1.734

	
0.111

	
0.146

	
0.034




	
New MD[image: there is no content]DE–Silverman

	
0.352

	
0.057

	
–1.756

	
0.224

	
1.358

	
0.132

	
0.087

	
0.033




	
MDPD [image: there is no content]

	
0.364

	
0.056

	
–1.819

	
0.218

	
1.404

	
0.132

	
0.078

	
0.030




	
EM (MLE)

	
0.342

	
0.064

	
–2.617

	
0.288

	
1.713

	
0.172

	
0.150

	
0.034










Figure 1 shows the values of the estimated divergence for both Formulas (2) and (3) on a logarithmic scale at each iteration of the algorithm.


Figure 1. Decrease of the (estimated) Hellinger divergence between the true density and the estimated model at each iteration in the Gaussian mixture. The figure to the left is the curve of the values of the kernel-based dual Formula (3). The figure to the right is the curve of values of the classical dual Formula (2). Values are taken at a logarithmic scale [image: there is no content].



[image: Entropy 18 00277 g001 1024]






Concerning our simulation results, the total variation of all four estimation methods is very close when we are under the model. When we added outliers, the classical MD[image: there is no content]DE was as sensitive as the maximum likelihood estimator. The error was doubled. Both the kernel-based MD[image: there is no content]DE and the MDPD are clearly robust since the total variation of these estimators under contamination has slightly increased.




5.2. The Two-Component Weibull Mixture Model


We consider a two-component Weibull mixture with unknown shapes [image: there is no content] and a proportion [image: there is no content]. The scales are known an equal to [image: there is no content]. The desity function is given by:


[image: there is no content]



(23)







Contamination was done by replacing 10 observations of each sample chosen randomly by 10 i.i.d. observations drawn from a Weibull distribution with shape [image: there is no content] and scale [image: there is no content]. Results are summarized in Table 2. Notice that it would have been better to use asymmetric kernels in order to build the kernel-based MD[image: there is no content]DE since their use in the context of positive-supported distributions is advised in order to reduce the bias at zero, see [11] for a detailed comparison with symmetric kernels. This is not, however, the goal of this paper. In addition, the use of symmetric kernels in this mixture model gave satisfactory results.



Table 2. The mean and the standard deviation of the estimates and the errors committed in a 100-run experiment of a two-component Weibull mixture. The true set of parameter is [image: there is no content].







	
Estimation Method

	
λ

	
sd (λ)

	
[image: there is no content]

	
sd ([image: there is no content])

	
[image: there is no content]

	
sd ([image: there is no content])

	
TVD

	
sd (TVD)






	
Without Outliers




	
Classical MD[image: there is no content]DE

	
0.356

	
0.066

	
1.245

	
0.228

	
2.055

	
0.237

	
0.052

	
0.025




	
New MD[image: there is no content]DE–Silverman

	
0.387

	
0.067

	
1.229

	
0.241

	
2.145

	
0.289

	
0.058

	
0.029




	
MDPD [image: there is no content]

	
0.354

	
0.068

	
1.238

	
0.230

	
2.071

	
0.345

	
0.056

	
0.029




	
EM (MLE)

	
0.355

	
0.066

	
1.245

	
0.228

	
2.054

	
0.237

	
0.052

	
0.025




	
With [image: there is no content] Outliers




	
Classical MD[image: there is no content]DE

	
0.250

	
0.085

	
1.089

	
0.300

	
1.470

	
0.335

	
0.092

	
0.037




	
New MD[image: there is no content]DE–Silverman

	
0.349

	
0.076

	
1.122

	
0.252

	
1.824

	
0.324

	
0.067

	
0.034




	
MDPD [image: there is no content]

	
0.322

	
0.077

	
1.158

	
0.236

	
1.858

	
0.344

	
0.060

	
0.029




	
EM (MLE)

	
0.259

	
0.095

	
0.941

	
0.368

	
1.565

	
0.325

	
0.095

	
0.035










Simulations results in Table 2 confirm once more the validity of our proximal point algorithm and the clear robustness of both the kernel-based MD[image: there is no content]DE and the MDPD.





6. Conclusions


We introduced in this paper a proximal-point algorithm that permits calculation of divergence-based estimators. We studied the theoretical convergence of the algorithm and verified it in a two-component Gaussian mixture. We performed several simulations which confirmed that the algorithm works and is a way to calculate divergence-based estimators. We also applied our proximal algorithm on a Bregman divergence estimator (the MDPD), and the algorithm succeeded to produce the MDPD. Further investigations about the role of the proximal term and a comparison with direct optimization methods in order to show the practical use of the algorithm may be considered in a future work.
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