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Abstract:



This paper studies a continuous Bertrand duopoly game model with two-stage delay. Our aim is to investigate the influence of delay and weight on the complex dynamic characteristics of the system. We obtain the bifurcation point of the system respect to delay parameter by calculating. In addition, the dynamic properties of the system are simulated by power spectrum, attractor, bifurcation diagram, the largest Lyapunov exponent, 3D surface chart, 4D Cubic Chart, 2D parameter bifurcation diagram, and 3D parameter bifurcation diagram. The results show that the stability of the system depends on the delay and weight, in order to maintain stability of price and ensure the firm profit, the firms must control the parameters in the reasonable region. Otherwise, the system will lose stability, and even into chaos, which will cause fluctuations in prices, the firms cannot be profitable. Finally, the chaos control of the system is carried out by a control strategy of the state variables’ feedback and parameter variation, which effectively avoid the damage of chaos to the economic system. Therefore, the results of this study have an important practical significance to make decisions with multi-stage delay for oligopoly firms.
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1. Introduction


When the market is supplied by only a few firms, oligopolistic competition is easy to occur where they produce homogeneous goods in the same market. In fact, the firms make optimal decisions for the maximization of profit. In this paper, we consider a firm that adopts a delay strategy, which refers to two different historical prices, to make a decision. Another firm makes a decision without delay. The Bertrand model considers a duopoly with a single homogeneous product, which has been studied in many papers. Some researchers have studied the Bertrand duopoly with differentiated products. The results show that the degree of product differentiation has a great influence on the price and quantity of sale [1,2,3]. In the Bertrand game model, the amount of information that the duopoly has will affect the stability of the system, mainly reflected in the change of the basin of attraction [4]. In order to maximize profits, the duopoly enterprise launches a price competition and expands market share. However, this will have a greater impact on the dynamics of the game model [5,6,7], having studied the price competition and chaos control of the air conditioning market. They focused on the role of coordination and distributed demand in price competition in the air conditioner market. Since the market information is not complete, the duopoly enterprise must adopt bounded rationality for a price decision. The scholars have studied the complexity of the game model with bounded rationality about synchronization, marginal costs, and so on [8,9,10]. The duopoly enterprise makes price decisions not only in reference to the current price but also in reference to historical prices. The effect of two-stage delay on the complexity of the system is studied in [11,12], and the stability region of the system is given. The nonlinear dynamic behavior of the triopoly game model is studied from heterogeneous and delayed bounded rationality, respectively, in [13,14]. The research conclusions are the same as that of a two-dimensional game model, but the research process is more complex. Scholars have studied not only the Bertrand game model, but also investigated the complexity of the Cournot game model, the Stackelberg game model and the Holling–Tanner model. Their research methods are useful for reference in this paper [15,16,17].



In short, most of the studies are discrete, and there are very few with respect to two-stage delay. In this paper, we establish a continuous Bertrand duopoly game model with two-stage delay. We focus on the influence of delay parameters on the dynamic characteristics of the system.



This paper is organized as follows: in Section 2, a continuous differential Bertrand duopoly game mode with two-stage delay is established. The process solution of delay is given, and studies the influence of delay on the stability of the system. In Section 3, numerical simulation is conducted, through the attractor, bifurcation diagram, the largest Lyapunov exponent, and initial value sensitivity, etc., to study the influence of delay and weight on the stability of price and profit. In Section 4, the effective control of chaos by a feedback control method is adopted in the system. Finally, the conclusion of this paper is provided in the last section.




2. The Model


In this part, we study the influence of delay on the dynamics of the system when the economic system is composed of two firms. Let us assume they produce similar products. Let [image: there is no content] denote the price of product i and [image: there is no content] denote the demand of product i (i = 1, 2). We assume demand function is linear form:


[image: there is no content]



(1)




where [image: there is no content], [image: there is no content], [image: there is no content] (i = 1, 2), [image: there is no content] are the basic demand for the market, [image: there is no content] denotes the elastic demand for itself and [image: there is no content] denotes the substitution rate between products. Where [image: there is no content] is constant are the marginal costs of Firm i [2]. Further, we assume linear cost function given by:


[image: there is no content]



(2)







Then the profit of the i-th Firm becomes:


[image: there is no content]



(3)







In such a way, we have a game in which the firms are a duopoly. In the real market, the information of the firms is not complete, and they exhibit bounded rationality when making decisions. Typically, the firm makes price decisions, not only considering the current profit margin, but also consider the profit margin before [image: there is no content], so that the final price is closer to the actual value of the product.



In this paper, we assume that Firm 1 implements a two-stage delay, that is to say, it refers to the historical price of two different periods, the delay parameters are [image: there is no content] and [image: there is no content]. Firm 2 makes price decisions without delay. Since the current price cannot be obtained accurately, here we do not consider the current price. When making price decisions, Firm 1 only considers two historical prices. Thus, the dynamic process of decision is changed into:


[image: there is no content]



(4)




where [image: there is no content] indicates the degree of change in the product price with the marginal profit. We assume that [image: there is no content] are a linear form [image: there is no content], [image: there is no content]. Where [image: there is no content] indicates the speed of the price adjustment of Firm i.


[image: there is no content]



(5)




where [image: there is no content] is the price weight of [image: there is no content], [image: there is no content] is the price weight of [image: there is no content]. From Equations (3)–(5), the dynamical system model with two-stage delay is as follows:


[image: there is no content]



(6)








3. Equilibrium Points and Local Stability


When the price competition of firms reaches equilibrium, we can get the following equilibrium point of Equation (6): [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], where:


[image: there is no content]











According to the economic significance, the equilibrium point should be non-negative, so [image: there is no content], [image: there is no content], and [image: there is no content] are the boundary equilibrium points, and only [image: there is no content] is the Nash equilibrium point. It means that the price of firms can be stabilized in a state of equilibrium through competition. In this paper, we focus on the influence of [image: there is no content], [image: there is no content] and [image: there is no content] on the dynamic behavior of Equation (6) at the Nash equilibrium point.



The linearized Equation (6) at the equilibrium point [image: there is no content] by Jacobian matrix is:


[image: there is no content]



(7)







The characteristic equation associated with Equation (7) is given by:


[image: there is no content]



(8)




where:


[image: there is no content]










[image: there is no content]










[image: there is no content]










[image: there is no content]











So we can get the characteristic equation for system Equation (7) as follows


[image: there is no content]



(9)




where:


[image: there is no content]










[image: there is no content]










[image: there is no content]











3.1. Case 1. [image: there is no content], [image: there is no content]


For [image: there is no content], the characteristic Equation (9) reduces to:


[image: there is no content]



(10)







Let [image: there is no content] be the root of Equation (10). Separating the real and imaginary parts, we get the following:


[image: there is no content]



(11)







From (11), we can obtain:


[image: there is no content]



(12)







Squaring both sides, adding both equations and regrouping by powers of [image: there is no content], we obtain that [image: there is no content] satisfies the following fourth degree polynomial:


[image: there is no content]



(13)







In order to give the main results in this paper, we make the following assumption [image: there is no content]: Equation (13) has at least one positive root [image: there is no content], which is:


[image: there is no content]



(14)







If condition [image: there is no content] holds, such that Equation (10) has a pair of purely imaginary roots [image: there is no content]. The corresponding critical value of the delay by Equation (12) is:


[image: there is no content]



(15)







Next, take the derivative with respect to [image: there is no content] in Equation (10), we can obtain:


[image: there is no content]











Thus:


[image: there is no content]



(16)




where:


[image: there is no content]










[image: there is no content]











If condition [image: there is no content]: [image: there is no content], then [image: there is no content]. According to the Hopf bifurcation theorem in [18], we obtain the following results.



Theorem 1. 

If the conditions [image: there is no content]–[image: there is no content]hold, the equilibrium point [image: there is no content]of Equation (6) is asymptotically stable for [image: there is no content]and unstable for [image: there is no content]; Equation (6) undergoes a Hopf bifurcation when [image: there is no content].






3.2. Case 2. [image: there is no content], [image: there is no content]


In this case, we consider the characteristic Equation (9) with [image: there is no content] in its stable intervals, i.e., [image: there is no content] or [image: there is no content] [19]. We study the influence of [image: there is no content] on the stability of the system when [image: there is no content] fixed.



Let [image: there is no content] is a root of Equation (9). Then we obtain:


[image: there is no content]



(17)







It follows from Equation (17) that:


[image: there is no content]








with:


[image: there is no content]








Then we have:


[image: there is no content]



(18)




where


[image: there is no content]











Next, we give the following assumption [image: there is no content]: Equation (18) has finite positive root. If [image: there is no content] holds, without loss of generality, we define the roots of Equation (18) as [image: there is no content]. Then, for every fixed [image: there is no content], there exists a sequence [image: there is no content] which satisfies Equation (18).


[image: there is no content]



(19)







Let [image: there is no content], [image: there is no content].



Then [image: there is no content] are a pair of purely imaginary roots of (9) when [image: there is no content] and [image: there is no content]. To verify the transversal condition of Hopf bifurcation, we take the derivative of [image: there is no content] with respect to [image: there is no content] in Equation (9), we can obtain


[image: there is no content]



(20)







Inputting [image: there is no content] into Equation (20), we can get:


[image: there is no content]








where:


[image: there is no content]










[image: there is no content]








Due to [image: there is no content].



Next, we make the following assumption [image: there is no content]: [image: there is no content]. Thus, by the discussion above and by the general Hopf bifurcation theorem in Hale [18], we have the following results:



Theorem 2. 

For [image: there is no content], [image: there is no content]is defined by Equation (15). If the conditions [image: there is no content]–[image: there is no content]hold, then the equilibrium point [image: there is no content]of Equation (6) is asymptotically stable for [image: there is no content]and unstable when [image: there is no content]. The Equation (6) has a Hopf bifurcation at [image: there is no content].







4. Numerical Simulations


In order to support the above analysis, we give some numerical simulations in this section. Let [image: there is no content]; [image: there is no content]; [image: there is no content]; [image: there is no content]; [image: there is no content]; [image: there is no content]; [image: there is no content]; [image: there is no content]; [image: there is no content]; [image: there is no content]; [image: there is no content]. Let initial value [image: there is no content] and [image: there is no content]. We consider the following system by specify the parameter value:


[image: there is no content]



(21)







By calculation, we can get the Nash equilibrium point [image: there is no content]. From Equations (14) and (15), we can obtain [image: there is no content], [image: there is no content]. To keep calculations simple, let [image: there is no content], we can get [image: there is no content] by Equation (18) and [image: there is no content] by Equation (19). For case 1, Equation (10) has a pair of purely imaginary roots [image: there is no content], [image: there is no content], and the condition [image: there is no content]–[image: there is no content] holds. For case 2, Equation (9) has a pair of purely imaginary roots [image: there is no content], [image: there is no content], and the condition [image: there is no content]–[image: there is no content] holds.



Thus, by Theorem 1, the equilibrium point [image: there is no content] of Equation (6) is asymptotically stable when [image: there is no content] and unstable when [image: there is no content]. It has a Hopf bifurcate at [image: there is no content]. By Theorem 2, the equilibrium point [image: there is no content] is asymptotically stable when [image: there is no content] for [image: there is no content] and unstable when [image: there is no content] for [image: there is no content]. Equation (6) undergoes a Hopf bifurcation when [image: there is no content] for [image: there is no content].



In this game model, in order to maximize profits, the two firms will make their price decision based on historical prices. However, the length and proportion of historical time affects the game results directly. The influence of the length and proportion of the two historical times on the dynamic behaviors of Equation (21) will be analyzed in the following subsections.



4.1. The Influence of [image: there is no content] on the Stability of the System (21) When [image: there is no content]


Figure 1 shows that the system (21) undergoes Hopf bifurcation at [image: there is no content]. When [image: there is no content], the system is stable, and the system is unstable for [image: there is no content]. The largest Lyapunov exponent (LLE) can judge whether the system is stable according to the exponent value. In this paper, we use the Wolf reconstruction method to calculate LLE. If the exponent value is less than 0, the system is stable. If it is more than 0, the system is unstable. When it equal to 0, the system will appear bifurcated. Thus, the meaning of the largest Lyapunov exponent plot is consistent with the bifurcation diagram. In Figure 2 and Figure 3, we can find that when [image: there is no content], Equation (21) tends to equilibrium point [image: there is no content] for [image: there is no content]. However, it has a limit cycle when [image: there is no content] and [image: there is no content].


Figure 1. The influence of [image: there is no content] on the stability of the Equation (21) when [image: there is no content]. (a) Bifurcation diagram; (b) The largest Lyapunov exponent plot.



[image: Entropy 18 00266 g001 1024]





Figure 2. The Equation (21) is stable when [image: there is no content]. (a) Power spectrum; (b) Attractor.



[image: Entropy 18 00266 g002 1024]





Figure 3. The Equation (21) is unstable when [image: there is no content]. (a) Power spectrum; (b) Attractor.



[image: Entropy 18 00266 g003 1024]







4.2. The Influence of [image: there is no content] on the Stability of the System (21) When [image: there is no content]


The stability of Equation (21) will be changed as [image: there is no content] increases. When [image: there is no content], Equation (21) is stable for [image: there is no content]. As [image: there is no content], which makes the system lose stability. This is consistent with the theoretical derivation. These dynamical properties are displayed in Figure 4, Figure 5 and Figure 6. So we can know that the change of [image: there is no content] will affect the stability of the system when [image: there is no content] fixed. Firm 1 price decisions must be [image: there is no content], otherwise, it will lead to price fluctuations.


Figure 4. The influence of [image: there is no content] on the stability of the Equation (21) when [image: there is no content]. (a) Bifurcation diagram; (b) The largest Lyapunov exponent plot.



[image: Entropy 18 00266 g004 1024]





Figure 5. The Equation (21) is stable when [image: there is no content]. (a) Power spectrum; (b) Attractor.



[image: Entropy 18 00266 g005 1024]





Figure 6. The Equation (21) is unstable when [image: there is no content][image: there is no content]. (a) Power spectrum; (b) Attractor.



[image: Entropy 18 00266 g006 1024]







4.3. Initial Value Sensitivity


One of the most important characteristics of chaos is the extremely sensitive dependence on initial conditions. Figure 7 shows the difference between [image: there is no content] and [image: there is no content] with a change of time. We can see that the difference is almost indistinct when [image: there is no content], only 0.01382. When [image: there is no content], the difference is larger, up to 0.353. It indicates that the little change of initial value can lead to the amplification of the difference. Figure 4b confirms the Equation (21) is in chaotic state. At this point, the market will be destroyed and it is difficult for the two firms to make long term plan. Therefore, it can result in a great loss for every firm.


Figure 7. The power spectrum of the difference between [image: there is no content] and [image: there is no content] when [image: there is no content]. (a) [image: there is no content]; and (b) [image: there is no content].



[image: Entropy 18 00266 g007 1024]







4.4. The Influence of [image: there is no content] and [image: there is no content] on the Stability of the Price [image: there is no content]


Here, let [image: there is no content], we mainly study the influence of increase of [image: there is no content] and [image: there is no content] on the price [image: there is no content] From Figure 8 and Figure 9, we can find that when the [image: there is no content] increase to 0.18, Equation (21) starts to appear price fluctuations; as [image: there is no content] is more than 0.31, the prices begins to unstable. When [image: there is no content] and [image: there is no content] are in the stability region (green region in Figure 9), [image: there is no content] stabilizes at 2.611. As [image: there is no content] and [image: there is no content] are in the instability region (blue region in Figure 9), it occurs the price fluctuation. The maximum value of [image: there is no content] is 10.61 for [image: there is no content], and the minimum value of [image: there is no content] is 0.1243 for [image: there is no content]. At this time the price difference is huge, the market has suffered serious damage. In order to maintain price stability, two firms must make [image: there is no content] and [image: there is no content] in stability region.


Figure 8. The influences of [image: there is no content] and [image: there is no content] on price [image: there is no content].



[image: Entropy 18 00266 g008 1024]





Figure 9. 2D parameter bifurcation in the ([image: there is no content], [image: there is no content]) plane, where different colors represent different price regions: stability region (green), and instability region (blue). For interpretation of the references to color in this figure, the reader is referred to the web version of this article.



[image: Entropy 18 00266 g009 1024]







4.5. The Influence of [image: there is no content] and [image: there is no content] on the Profit [image: there is no content]


In this section, we mainly concern about the impact of [image: there is no content] and [image: there is no content] on profit [image: there is no content]. Figure 10 and Figure 11 show that it makes a sharp reduction in profit with increase of [image: there is no content] and [image: there is no content]. When [image: there is no content] is higher than 0.25, the profit [image: there is no content] begins to lose stability. As [image: there is no content] more than 0.37, the profit [image: there is no content] becomes unstable, and appears fluctuation. When [image: there is no content] and [image: there is no content] are in stability region (green region in Figure 11), the value of [image: there is no content] is 6.241. When [image: there is no content] and [image: there is no content] are in instability region (blue region in Figure 11), the maximum profit is 6.241, and the minimum profit is −83.89 for [image: there is no content]. We can determine that with the increase of [image: there is no content] and [image: there is no content], profit [image: there is no content] will be reduced, or even negative, but will not increase. Thus, the two firms must control the values of [image: there is no content] and [image: there is no content] to avoid the loss. By comparing Figure 8 and Figure 10 it can be seen that if the system is in an instability state, the price will only rise, but not be able to increase profit, and it will cause the profit to decline.


Figure 10. The influence of [image: there is no content] and [image: there is no content] on profit [image: there is no content].



[image: Entropy 18 00266 g010 1024]





Figure 11. 2D parameter bifurcation in the ([image: there is no content], [image: there is no content]) plane, where different colors represent different profit regions: stability region (green), instability region (blue). For interpretation of the references to color in this figure, the reader is referred to the web version of this article.



[image: Entropy 18 00266 g011 1024]







4.6. The Influence of [image: there is no content], [image: there is no content] and [image: there is no content] on the Stability of the Price [image: there is no content]


In this section, we consider the influence of [image: there is no content], [image: there is no content] and [image: there is no content] on the stability of price [image: there is no content]. Figure 12 and Figure 13 show that with the increase of [image: there is no content], [image: there is no content] is gradually moves to instability when [image: there is no content] and [image: there is no content]. However, there is no obvious change to [image: there is no content] when [image: there is no content] and [image: there is no content]. Similarly, when [image: there is no content] and [image: there is no content], [image: there is no content] moves from stable to unstable with [image: there is no content] becoming large. However, when [image: there is no content] and [image: there is no content], [image: there is no content] loses stability and results in a larger fluctuation with an increase in [image: there is no content]. With [image: there is no content] and [image: there is no content] (green region in Figure 13), in this stable region, the change of [image: there is no content] have no effect on [image: there is no content]. When [image: there is no content] and [image: there is no content], the increase of [image: there is no content] causes [image: there is no content] to shift from unstable to stable, and the value of [image: there is no content] becomes larger. When [image: there is no content] and [image: there is no content], [image: there is no content] shifts from a stable state to an unstable state with an increase of [image: there is no content], and [image: there is no content] generates a large fluctuation. As [image: there is no content] and [image: there is no content] (blue region in Figure 13), in this instability region, no matter how [image: there is no content] changes, [image: there is no content] is still unstable.


Figure 12. The influence of [image: there is no content], [image: there is no content] and [image: there is no content] on [image: there is no content]. (a,b) are shown from different angles.



[image: Entropy 18 00266 g012 1024]





Figure 13. 3D parameter bifurcation in the ([image: there is no content], [image: there is no content], [image: there is no content]) plane, where different colors represent different regions of [image: there is no content]: stability region (green), instability region (blue). (a,b) are shown from different angles. For interpretation of the references to color in this figure, the reader is referred to the web version of this article.



[image: Entropy 18 00266 g013 1024]






Through above analysis, in order to maintain the stability of [image: there is no content], the two firms must keep [image: there is no content] and [image: there is no content] in the green region (stability) of Figure 13. The boundary of the region is composed of the following points: A’(0.5, 0.8, 1), B’(0.1, 0.8, 0.24), C’(0.1, 0.5, 0), D’(0.8, 0.1, 0.76) and E’(0.5, 0.1, 1).




4.7. The Influence of [image: there is no content], [image: there is no content] and [image: there is no content] on the Profit [image: there is no content]


In this part, we focus on the influence of [image: there is no content], [image: there is no content] and [image: there is no content] on the stability of profit [image: there is no content]. We can see from Figure 14 and Figure 15 that when [image: there is no content] and [image: there is no content], the [image: there is no content] shifts gradually into instability with the increase of [image: there is no content]. When [image: there is no content] and [image: there is no content], it shifts [image: there is no content] into an unstable state with [image: there is no content] becoming larger. Similarly, when [image: there is no content] and [image: there is no content], [image: there is no content] shifts from stable to unstable with [image: there is no content] increasing. However, when [image: there is no content] and [image: there is no content], [image: there is no content] loses stability and a larger fluctuation appears with an increase of [image: there is no content]. As [image: there is no content] and [image: there is no content] (green region in Figure 15), the change of [image: there is no content] has no effect on [image: there is no content] in this stable region. When [image: there is no content] and [image: there is no content], [image: there is no content] shifts from an unstable state to a stable state with an increase of [image: there is no content], and the value of [image: there is no content] becomes larger. When [image: there is no content] and[image: there is no content], [image: there is no content] shifts from the stable state, gradually becoming unstable with an increase of [image: there is no content], and [image: there is no content] appears to fluctuate greatly. As [image: there is no content] and [image: there is no content] (blue region in Figure 15), no matter how [image: there is no content] changes, [image: there is no content] is still unstable.


Figure 14. The influence of [image: there is no content], [image: there is no content] and [image: there is no content] on [image: there is no content]. (a,b) are shown from different angles.



[image: Entropy 18 00266 g014 1024]





Figure 15. 3D parameter bifurcation in the ([image: there is no content], [image: there is no content], [image: there is no content]) plane, where different colors represent different regions of [image: there is no content]: stability region (green), instability region (blue). (a,b) are shown from different angles. For interpretation of the references to color in this figure, the reader is referred to the web version of this article).



[image: Entropy 18 00266 g015 1024]






Through the above analysis, in order to maintain [image: there is no content] stability, the two firms must make [image: there is no content] and [image: there is no content] remain in the green region (stability) of Figure 15. The boundary of the region is composed of the following points: A’’(0.45, 0.8, 1), B’’(0.1, 0.8, 0.32), C’’(0.1, 0.45, 0), D’’(0.8, 0.1, 0.68) and E’’(0.45, 0.1, 1).





5. Chaos Control


We know that an unstable or chaotic market will cause price fluctuations and hurt firms’ bottom lines. Thus, we must take measures to control chaos. Therefore, some methods are found to control the chaos of the system, such as the OGY method (a control method of chaos was proposed by Ott E., Grebogi C. and Yorke J.A. in America) [20], modified straight-line stabilization method [21], time-delayed feedback method [22], pole placement method [23], and so on. In this section, we use the state variables’ feedback and parameter variation to control the chaotic system (21) [24]. The controlled system is given by:


[image: there is no content]



(22)







In order to show more clearly the effect of chaos control, we only let [image: there is no content], [image: there is no content], while other parameter values remain unchanged. We know that [image: there is no content] in the blue region of Figure 9, and Equation (21) is chaotic. Without chaos control, the dynamic properties of the system (21) are shown in Figure 16.


Figure 16. The Equation (21) is unstable when [image: there is no content]. (a) Power spectrum; (b) Attractor.



[image: Entropy 18 00266 g016 1024]






Figure 17 shows that the bifurcation point of Equation (22) is [image: there is no content]. When [image: there is no content], Equation (22) is chaotic, and when [image: there is no content], Equation (22) is stable. The largest Lyapunov exponent plot verifies the correctness of the conclusion.


Figure 17. The influence of [image: there is no content] on the stability of the Equation (22) when [image: there is no content]. (a) Bifurcation diagram; (b) The largest Lyapunov exponent plot.



[image: Entropy 18 00266 g017 1024]






First, let [image: there is no content], the power spectrum and attractor of Equation (22) are as shown in Figure 18. We find that Equation (22) is still in the state of chaos, which is not effectively controlled. Secondly, let [image: there is no content], the power spectrum and attractor of Equation (22) are as shown in Figure 19. It clearly shows that Equation (22) gets out of chaos and becomes stable. Thus, chaos control is successful when the control parameter [image: there is no content] is sufficiently large.


Figure 18. The Equation (22) is unstable when [image: there is no content] for [image: there is no content]. (a) Power spectrum; (b) Attractor.
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Figure 19. The Equation (22) is stable when [image: there is no content] for [image: there is no content]. (a) Power spectrum; (b) Attractor.
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6. Conclusions


This paper establishes a continuous Bertrand duopoly game model with two-stage delay. We choose the delay and weight as the research parameters, and focus on the influence of parameters on the dynamic characteristics of the system, such as bifurcation, chaos, and initial value sensitivity, etc. We study the influence of parameters on the system from four aspects. Firstly, we consider [image: there is no content] as a parameter when [image: there is no content]. Our research focus is the influence of [image: there is no content] on the stability of the system. Secondly, [image: there is no content] as a constant, we study the influence of [image: there is no content] on the stability of the system through the power spectrum, attractor, bifurcation diagram, and LLE plot. Thirdly, we focus on the effect of [image: there is no content] and [image: there is no content] on the stability of the system by the 2D parameter bifurcation diagram, 3D surface chart, and stability region. Finally, we consider the influence of delay and weight on the stability of the system through the 4D cubic chart and 3D parameter bifurcation diagram. The stability region of the system is given. At the end of this paper, the effective control of chaos is carried out by a control strategy of the state variables’ feedback and parameter variation. It is successful to avoid the destruction of chaos for the economic system.



This study shows that the change of delay will lead to the system from stable state to unstable state, which causes a large fluctuation in prices and results in a decline in profits. The above analysis can provide help a firm’s decision-making process to avoid pushing the price into chaos.
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