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Abstract: We prove that, for a measure preserving action of a sofic group with positive sofic entropy,
the stabilizer is finite on a set of positive measures. This extends the results of Weiss and Seward
for amenable groups and free groups, respectively. It follows that the action of a sofic group on its
subgroups by inner automorphisms has zero topological sofic entropy, and that a faithful action that
has completely positive sofic entropy must be free.
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1. Introduction

The last decade brought a number of important developments in dynamics of non-amenable
group actions. Among these we note the various extensions of classical entropy theory. For actions of
free groups, Bowen introduced a numerical invariant known as f -invariant entropy [1]. Some time
later Bowen defined a new invariant for actions of sofic groups, called sofic entropy [2]. Kerr and Li
further developed sofic entropy theory and also adapted it to groups actions on topological spaces by
homeomorphisms [3]. The classical notion of entropy for amenable groups and Bowen’s f -invariant
both turned out to be special cases of sofic entropy [4,5].

The study of non-free measure-preserving group actions is another fruitful and active trend
in dynamics. These are closely related to the notion of invariant random subgroups, that is,
probability measures on the space of subgroups whose law is invariant under conjugation. Any such
law can be realized as the law of the stabilizer for a random point for some probability preserving
action [6]. In this note we prove the following:

Theorem 1. Suppose G y (X,B, µ) is an action of a countable sofic group G that has positive sofic entropy
(with respect to some sofic approximation). Then the set of points in X with finite stabilizer has positive measure.
In particular, if the action is ergodic, almost every point has finite stabilizer.

The amenable case of Theorem 1 appears as a remark in the last section of Weiss’s survey paper
on actions of amenable groups [7]. To be precise, Weiss stated the amenable case of Corollary 2 below.

Another interesting case of Theorem 1 for free groups is due to Seward [8]. The result proved
in [8] applies to the random sofic approximation. By a non-trivial result of Bowen, this coincides
with the f -invariant for free groups. Sewards’s proof in [8] is based on a specific formula for
f -entropy, which does not seem to be available for sofic entropy in general. Our proof below proceeds
essentially by proving a combinatorial statement about finite objects. In personal communication,
Seward informed me of another proof of Theorem 1 that is expected to appear in a forthcoming paper
of Alpeev and Seward as a byproduct of their study of an entropy theory for general countable groups.

Theorem 1 confirms the point of view that the “usual” notions of sofic entropy for sofic groups
(or mean-entropy in the amenable case) are not very useful as invariants for non-free actions. A version
of sofic entropy for some non-free actions of sofic groups was developed by Bowen [9] as a particular
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instance of a more general framework called “entropy theory of sofic groupoids”. It seems likely
that both the statement of Theorem 1 and our proof should have a generalization to “sofic class
bijective extensions of groupoids” (see [9] for definition of this term) . We will not pursue this direction.
Thanks to Yair Glasner, Guy Salomon, Brandon Seward and Benjy Weiss for interesting discussions,
and the referees for valuable remarks and suggestions.

2. Notation and Definitions

2.1. Sofic Groups

Sofic groups were introduced by Gromov [10] (under a different name) towards the end of
the millennium. The name “sofic groups” is due to Weiss [11]. Sofic groups retain some properties of
finite groups. They are a common generalization of amenable and residually finite groups. We include
a definition below. There are several other interesting equivalent definitions. For further background,
motivation and discussions on sofic groups, we refer the reader, for instance to [12].

Throughout G, we will denote a countable discrete group with identity denoted by 1. We will
write F b G to indicate that F is a finite subset of G. For a finite set V, let SV denote the group of
permutations over V. We will consider maps from a group G to SV . These maps are not necessarily
homomorphisms. Given a map ξ : G → SV , g ∈ G and v ∈ V, we write ξg ∈ SV for the image of g
under ξ and ξg(v) ∈ V for the image of v under the permutation ξg.

Let V be a finite set, F b G and ε > 0. A map ξ : G → SV is called an (F, ε)-approximation of G if
it satisfies the following properties:

1
|V|#{v ∈ V : ξg(ξh(v)) 6= ξgh(v)} < ε for every choice of g, h ∈ F, (1)

and
1
|V| |#{v ∈ V : ξg(v) = v} < ε for every choice of g ∈ F \ {1}. (2)

A sofic group is a group G that admits an (F, ε)-approximation for any F b G and any ε > 0.
A symmetric (F, ε)-approximation of G is ξ : G → SV that in addition to (1) and (2) also satisfies

ξg(ξg−1(v)) = v for every choice of g ∈ F \ {1} and v ∈ V. (3)

Standard arguments show that a sofic group admits a symmetric (F, ε)-approximation for any
F b G and any ε > 0, so from now assume our (F, ε)-approximations also satisfy (3).

Let (Vn)∞
n=1 be a sequence of finite sets. A sequence (ξn)∞

n=1 of maps ξn : G → Vn is called a sofic
approximation for G if

{n ∈ N : ξn is an (F, ε)− approximation}

is co-finite in N, for every F b G and every ε > 0. It follows directly from the definition that G is sofic
if and only if there exists a sofic approximation for G.

2.2. Sofic Entropy

Roughly speaking, the sofic entropy of an action is h if there are “approximately” eh|V| “sufficiently
distinct good approximations” for the action that “factor through” a finite “approximate action”
ξ : G → SV . Various definitions have been introduced in the literature, that have been shown to lead
to an equivalent notion. Most definitions involve some auxiliary structure. Here, we follow a recent
presentation of sofic entropy by Austin [13]. Ultimately, this presentation is equivalent to Bowen’s
original definition and also to definitions given by Kerr and Li. We briefly describe Austin’s definition
and refer to [13] for details.
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From now on we denote
X := {0, 1}N. (4)

The space X will be equipped with the metric d defined by

d(ω, ω′) := 2−min{n∈N : ωn 6=ω′n} for ω, ω′ ∈ X. (5)

The above metric induces the product topology on X with respect to the discrete topology on
{0, 1}, making X into a compact topological space.

Let G y (X, µ) be a probability preserving action on a standard probability space. As explained
in [13], by passing to an isomorphic action we can assume without loss of generality that:

1. The space X is equal to XG, equipped the product topology;
2. The action of G on XG is the shift action: (gx)h := xg−1h;
3. µ ∈ Prob(XG) is a Borel probability measure on XG.

Note that X is a compact topological space (in fact X is homeomorphic to X).
To see that the above assumptions are no loss of generality, start with an arbitrary measure

preserving G-action on a standard Borel probability space (X, µ). Choose a countable sequence
(An)∞

n=1 of Borel subsets An ⊂ X so that the smallest G-invariant σ-algebra containing {An}∞
n=1 is the

Borel σ-algebra. There is a G-equivariant Borel embedding of x ∈ X to x̂ ∈ XG defined by

(x̂g)n := 1g−1 An
(x) for n ∈ N and g ∈ G.

Let µ̂ ∈ Prob(XG) denote the push-forward measure of µ, it follows that the G-action on (XG, µ̂)

is measure-theoretically isomorphic to the G-action on (X, µ).
It follows from the choice of metric in (5) that

d(ω, ω′) ∈ {0} ∪ {2−n : n ∈ Z+} for every ω, ω′ ∈ X. (6)

We recall some definitions and notation that Austin introduced in [13]:

Definition 1. Given a finite or countable set V, ω ∈ XV , ξ : G → SV and v ∈ V, the pullback name of ω

at v, denoted by Πξ
v(ω) ∈ XG is defined to be:

(Πξ
v(ω))g−1 := ωξg(v). (7)

The empirical distribution of ω with respect to ξ is defined by:

Pξ
ω :=

1
|V| ∑

v∈V
δ

Πξ
v(ω)

. (8)

Given a weak-∗ neighborhood O ⊂ Prob(XG) of µ ∈ Prob(XG), the set of (O, ξ)-approximations
for the action G y (XG, µ) is given by

Map(O, ξ) := {ω ∈ XV : Pξ
ω ∈ O}.

In [13] elements of Map(O, ξ) are called “good models”.
The space Map(O, ξ) ⊂ XV , if it is non-empty, is considered as a metric space with respect to the

following metric

dV(ω, ω′) :=
1
|V| ∑

v∈V
d(ωv, ω′v) for ω, ω′ ∈ Map(O, ξ).

Given a compact metric space (Y, ρ) and δ > 0 we denote by sepδ(Y, ρ) the maximal cardinality
of a δ-separated set in (Y, ρ), and by covδ(Y, ρ) the minimal number of ρ-balls of radius δ needed
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to cover 5Y. Let us recall a couple of classical relations between these quantities. Because distinct
2δ-separated points cannot be in the same δ-ball the following holds:

sep2δ(Y, ρ) ≤ covδ(Y, ρ).

Consider a maximal δ-separated set Y0 ⊂ Y. The collection of δ-balls with centers in Y0

covers Y. Thus:
covδ(Y, ρ) ≤ sepδ(Y, ρ).

Definition 2. Let Σ = (ξn)∞
n=1 be a sofic approximation of G, with ξn : G → SVn . The Σ-entropy (or sofic

entropy with respect to Σ) of G y (XG, µ) is defined by:

hΣ(µ) := sup
δ>0

inf
O3µ

lim sup
n→∞

1
|Vn|

log sepδ

(
Map(O, ξn), dVn

)
, (9)

where the infimum is over weak-∗ neighborhoods O of µ in Prob(X). If Map(O, ξn) = ∅ for all
large n’s, define hΣ(µ) := −∞.

A curial property of the quantity hΣ(µ) is that it does not depend on the way we choose the
topological model XG or on choice of metric d, and thus defines an isomorphism-invariant for
probability preserving G-actions.

Remark 1. We recall a slight generalization of Σ-entropy: A random sofic approximation is Σ = (Pn)∞
n=1

where Pn ∈ Prob((SVn)
G) so that the conditions (1) and (2) hold “on average” with respect to Pn for

any ε > 0 and F b G, if n is large enough.
In this case Σ-entropy is defined by

hΣ(µ) := sup
δ>0

inf
O3µ

lim sup
n→∞

1
|Vn|

log
(∫

sepδ

(
Map(O, ξ), dVn

)
dPn(ξ)

)
. (10)

For the special case where G is a free group on d generators and Pn is chosen uniformly among
the homomorphisms from G to the group of permutations of {1, . . . , n}, Bowen proved that Σ-entropy
coincides with the so called f -invariant [4].

Our proof of Theorem 1 applies directly with no changes to random sofic approximations,
in particular to f -entropy.

2.3. Stabilizers and the Space of Subgroups

Let SubG ⊂ 2G denote the space of subgroups of G. The space SubG comes with a
compact topology, inherited from the product topology on 2G. The group G acts on SubG by
inner automorphisms. Now let G y X be an action of G on a standard Borel space X. For x ∈ X let

stab(x) := {g ∈ G : g(x) = x} . (11)

It is routine to check that the map stab : X → SubG is Borel and G-equivariant. The following
observation appears implicitly for instance in [7]:

Lemma 1. Let G y (X, µ) be an ergodic action of a countable group. If the action has finite stabilizers, the map
stab : X → SubG induces a finite factor G y (SubG, µ ◦ stab−1).

Proof. Suppose stab(x) is finite on a set of positive measure. By ergodicity |stab(x)| < ∞ on a set of full
measure. Since there are only countably many finite subgroups, the measure µ ◦ stab−1 ∈ Prob(SubG)

must be purely atomic. To finish the proof, note that a purely atomic invariant probability measure
must be supported on a single finite orbit, if it is ergodic.
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Here is a quick corollary of Theorem 1 that concerns the action G y SubG:

Corollary 1. Let G be an infinite sofic group and Σ a sofic approximation sequence. The topological Σ-entropy
of the action G y SubG by conjugation is zero.

Proof. The variational principle for Σ-entropy states that the topological Σ-entropy of an action
G y X is equal to the supremum of the measure-theoretic Σ-entropy over all G-invariant measures [3].
SubG always admits at least two trivial fixed points G and {1}. The delta measures δG and
δ{1} Prob(SubG) are thus G-invariant and have hΣ(δG) = hΣ(δ{1}) = 0. It thus suffices to prove
that any G-invariant measure µ ∈ Prob(SubG) has hΣ(µ) ≤ 0. By Theorem 1, it is enough to show
that the set A = {H ∈ SubG : |stab(H)| < ∞} is null. Indeed, for any H ∈ SubG, H ⊂ stab(H),
because any subgroup is contained in its normalizer. Thus, groups H ∈ SubG with finite stabilizer
must be finite, so A is a countable set. Suppose µ(A) > 0. Then A has positive measure for some
ergodic measure and as in Lemma 1 this measure must be supported on a finite set. An action of an
infinite group on a finite set cannot have finite stabilizers. This shows that µ(A) = 0.

3. Sampling from Finite Graphs

In this section we prove an auxiliary result on finite labeled graphs. We begin with
some terminology:

Definition 3. A finite , simple and directed graph is a pair G = (V, E) where V is a finite set and E ⊂ V2

(we allow self-loops but no parallel edges).

• The out-degree and in-degree of v ∈ V are given by

degout(v) := |{w ∈ V : (v, w) ∈ E}| ,

degin(v) := |{w ∈ V : (w, v) ∈ E}| .

• We say that G is (ε, k, M)-regular if at most ε|V| vertices have out-degree less than k, and all vertices
have in-degree at most M.

• A set W ⊂ V is ε-dominating if the number of vertices in v ∈ V so that {w ∈W : (v, w) ∈ E} = ∅
is at most ε|V|.

• A p-Bernoulli set W ⊂ V for p ∈ (0, 1) is a random subset of V such that for each v ∈ V the
probability that v ∈W is p, independently of the other vertices.

Lemma 2. Fix any κ ∈ (0, 1). Suppose k ≤ M ≤ N satisfy

(1− 1√
k
)k < κ and N > 2M2κ−3. (12)

For any (κ, k, M)-regular graph G = (V, E) with |V| > N, a 1√
k
-Bernoulli subset is 3κ-dominating and

has size at most 2√
k
|V| with probability at least 1− κ.

Proof. Suppose (12) holds. Let G = (V, E) be a graph satisfying the assumptions in the statement of
the lemma, and let W ⊂ V be 1√

k
-Bernoulli.

For v ∈ V, let n(v) be number of edges (v, w) ∈ E with w ∈ W. The random variable n(v) is
Binomial B( 1√

k
, degout(v)). Let

Φ := ∑
v∈V

1[n(v)=0].

It follows that

E(Φ) = ∑
v∈V

P (n(v) = 0) = ∑
v∈V , degout(v)<k

P (n(v) = 0) + ∑
v∈V , degout(v)≥k

P (n(v) = 0) .
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Thus

E(Φ) ≤ κ|V|+
(

1− 1√
k

)k
|V| < 2κ|V|.

For v, w ∈ V, the random variables n(v) and n(w) are independent, unless there is a vertex u ∈ V
so that (v, u) ∈ E and (w, u) ∈ E. Because the maximal in-degree is at most M, each u ∈ V can account
for at most M2 such pairs, so there are at most M2|V| pairs which are not independent. Also note that
Var(1[n(v)=0]) ≤ 1 for every v ∈ V so Cov(1[n(v)=0], 1[n(w)=0]) ≤ 1. It follows that

Var(Φ) = ∑
v,w∈V

Cov(1[n(v)=0], 1[n(w)=0]) ≤ M2|V|.

By Chebyshev’s inequality, the probability that W is not 3κ-dominating is at most

P (Φ > 3κ|V|) ≤ P(|Φ− E(Y)| > κ|V|) ≤ Var(Φ)

κ2|V|2 ≤
M2

κ2|V| <
κ

2
.

Also E(|W|) = 1√
k
|V| and Var(|W|) < 1√

k
|V|, so again by Chebyshev’s inequality

P(|W| > 2√
k
|V|) ≤ kVar(|W|)

|V|2 ≤
√

k
|V| ≤

κ

2
.

It follows that with probability at least 1− κ, W is 3κ-dominating and |W| ≤ 2√
k
|V|.

4. Proof of Theorem 1

From now on we assume that XG with the shift action described above is a fixed topological
model for an action G y (X, µ). Suppose stab(x) is infinite µ-almost-surely. Our goal is to prove that
the sofic entropy of this G-action is non-positive with respect to any sofic approximation (in the case of
a deterministic approximation sequence this means it is either 0 or −∞). By a direct inspection of the
definition of sofic entropy in (9), our goal is to show that for any η > 0 there exists a neighborhood
O ⊂ Prob(XG) of µ so that for any sufficiently good approximation ξ : G → SV ,

1
|V| log sepη(Map(O, ξ), dV) < η.

We will show that we can choose the neighborhood O ⊂ Prob(XG) to be of the form
O = O[M, δ, ε, F1, F2, ψ] (see Definition 5 below), for some parameters F1, F2 b G and ε, δ > 0.

Definition 4. (Approximate stabilizer) For F b G and δ > 0 and x ∈ XG let

stabδ,F(x) :=
⋂

h∈F

{g ∈ G : d(xh, g(x)h) < δ}. (13)

Lemma 3. For any measure µ ∈ Prob(XG), ε > 0, F1 b G there exists F2 b G and a continuous function
ψ : XF2 → 2F1 so that

µ
({

x ∈ XG : ψ(x |F2) 6= (stab(x) ∩ F1)
})

< ε. (14)

Proof. By Lusin’s theorem there exists a compact set E ⊂ XG with µ(X \ E) < ε so that the
function x 7→ (stab(x) ∩ F1) is continuous on E, where (stab(x) ∩ F1) is considered as a discrete set.
Let ψ̃ : E→ (stab(x) ∩ F1) denote the restriction of x 7→ (stab(x) ∩ F1) to E, then ψ̃−1(s) is clopen for
every s ∈ 2F1 . Thus there exists F2 ⊂ G and ψ : XF

2 → G so that ψ̃(x) = ψ(x |F2).
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Definition 5. Let ε, δ, M > 0, F1, F2 b G and ψ : XF2 → 2F1 . Define

O[M, δ, ε, F1, F2, ψ] ⊂ Prob(XG)

to be the set of probability measures ν ∈ Prob(XG) satisfying the following conditions:

ν({x : |ψ(x |F2)| < M}) < ε, (15)

ν
({

x : ψ(x |F2) 6= (stabδ,F2
2
(x) ∩ F1)

})
< ε. (16)

Lemma 4. If δ−1 is not an integer power of 2, then the set O[M, δ, ε, F1, F2, ψ] ⊂ Prob(XG) is open.

Proof. Suppose δ−1 is not an integer power of 2. By (6) it follows that for ω, ω′ ∈ X, d(ω, ω′) < δ if
and only if d(ω, ω′) ≤ δ. So for every F b G,

stabδ,F(x) =
⋂

h∈F

{g ∈ G : d(xh, g(x)h) < δ} =
⋂

h∈F

{g ∈ G : d(xh, g(x)h) ≤ δ}.

It follows that for any g ∈ G and F b G the set {x ∈ XG : g ∈ stabδ,F(x)} is a clopen set: It is both
open and closed in XG.

Because F1 and F2 are both finite and ψ : XF2 → 2F1 is continuous,

A :=
{

x ∈ XG : ψ(x |F2) 6= (stabδ,F2
2
(x) ∩ F1)

}
and

B :=
{

x ∈ X : |ψ(x |F2)| < M
}

are also clopen in X. So the indicator functions 1A, 1B : X → R are continuous. Now

O[M, δ, ε, F1, F2, ψ] =

{
ν ∈ Prob(XG) :

∫
1A(x)dν(x) < ε and

∫
1B(x)dν(x) < ε

}
,

so O[M, δ, ε, F1, F2, ψ] ⊂ Prob(XG) is an open set.

Fix η > 0. We now specify how to choose the parameters ε > 0, δ > 0, M > 0, F1, F2 b G,
and ψ : XF

2 → 2F1 .

• Choose ε so that
0 < ε < min{ η

100
,

1
3
}. (17)

• Choose δ > 0 so that δ−1 is not an integer power of 2 and so that

3δ < η − 100ε. (18)

• Choose M > 0 depending on ε and δ, and big enough so that

sup
n≥M

(1− 1√
n
)n < ε/3 and

4√
M

log sepδ/2(X, d) <
η

2
. (19)

It is clear that the left hand side in both expressions tends to 0 as M→ ∞, so such choice of M is
indeed possible.

• Choose a finite subset F1 b G depending on M, ε, and the measure µ so that 1 ∈ F1 and

µ
({

x ∈ XG : |stab(x) ∩ F1| ≤ M
})

< ε/2. (20)



Entropy 2016, 18, 263 8 of 14

We prove the existence of such a set F1 in Lemma 5 below.
• By Lemma 3 choose F2 b G and ψ : XF2 → 2F1 so that (14) holds. Furthermore, by making F2 bigger,

assume that F1 ⊂ F2, that F2 = F−1
2 and that

2√
|F2|
|F1| log(2) <

η

2
. (21)

• Choose a finite set V big enough so that

|V| > 2|F2|2(ε/3)−3. (22)

• Choose ξ : G → SV to be a symmetric (F6
2 , ε/6)-approximation of G.

Lemma 5. Under the assumption that µ(|stab(x)| < ∞) = 0, for every M > 0 and ε > 0 there exists F1 b G
so that 1 ∈ F and (20) holds.

Proof. Because stab(x) = ∞ µ-a.e, it follows that for any M > 0,

µ ({x ∈ X : |stab(x)| ≤ M}) = 0.

Note that
{x ∈ X : |stab(x)| ≤ M} =

⋂
FbG
{x ∈ X : |stab(x) ∩ F| ≤ M} .

So by σ-additivity of µ, it follows that (20) holds for some F1 b G. Furthermore, we can assume
that 1 ∈ F1 by further increasing F1.

Lemma 6. For M > 0, ε, δ > 0 and F1, F2 b G as above, µ ∈ O[M, δ, ε, F1, F2, ψ].

Proof. Because F1 ⊆ F2
2 , it follows that

stab(x) ⊆ stabδ,F2
2
(x) ⊆ stabδ,F1(x).

So by (14) it follows that (16) also holds with ν replaced by µ. Using (14) and (20) we see that (15)
holds with ν replaced by µ. Thus µ ∈ O[M, δ, ε, F1, F2, ψ].

The following lemma shows that approximate stabilizers behave well under conjugation:

Lemma 7. If F1 ⊂ F2 = F−1
2 and x ∈ XG satisfies

ψ(x |F2) = stabδ,F2
2
(x) ∩ F1, (23)

then
gψ(x |F2)g−1 ⊆ stabδ,F1(g(x)) for every g ∈ F2. (24)

Proof. Suppose (23) holds. Choose any f ∈ ψ(x |F2). By (23),

d(xh, x f−1h) < δ for every h ∈ F2
2 . (25)

Now choose any g ∈ F2. For any h ∈ F1 we have g−1h ∈ F−1
2 F1 ⊂ F2

2 so we can substitute g−1h
instead of h in (25) to obtain

d(xg−1h, x f−1g−1h) < δ.

Now (g(x))h = xg−1h and

(g f g−1g(x))h = x f−1g−1h.



Entropy 2016, 18, 263 9 of 14

So we have
d((g(x))h, (g f g−1g(x))h) < δ.

This means that (g f g−1) ∈ stabδ,F1(g(x)). We conclude that (23) implies (24).

Definition 6. Call v ∈ V good for ω ∈ XV if the following conditions are satisfied:

|ψ(Πξ
v(ω) |F2)| ≥ M, (26)

ψ(Πξ
v(ω) |F2) = stabδ,F2

2
(Πξ

v(ω)) ∩ F1, (27)

and
ξg1 ◦ ξg2 ◦ ξg3(v) = ξg1g2g3(v) for every g1, g2, g3 ∈ F4

2 . (28)

Otherwise, say that v ∈ V is bad for ω ∈ XV .

Lemma 8. Let Ω ⊂ Map(O[M, δ, ε, F1, F2, ψ], ξ) with 2 ≤ |Ω| < ∞. Then there exists a set C ⊂ V and a
function τ : V → F2 with the following properties:

(I) |C| < 2√
|F2|
|V|,

(II) 1
|V| |{v ∈ V : ξτ(v) 6∈ C}| ≤ ε,

(III) 1
|Ω| |{x ∈ Ω : |{v ∈ V : ξτ(v) is bad for x}| < 8ε|V|}| ≥ 1

2 ,

where ξτ : V → V is defined by
ξτ(v) := ξτ(v)(v). (29)

Proof. Consider the directed graph Gξ,F2 = (V, E) with

E =
{
(u, v) ∈ V ×V : ∃g ∈ F2 s.t. ξg(u) = v

}
.

We aim to apply Lemma 2 to find a small ε-dominating set C ⊂ V in Gξ,F2 . Let us check that Gξ,F2

satisfies the assumptions of Lemma 2:
Because ξg is a permutation of V for every g ∈ G, the maximal out-degree in Gξ,F2 is at most |F2|.

Because the approximation ξ : G → SV is symmetric and F2 = F−1
2 , the maximal in-degree in Gξ,F2 is

also at most |F2|. Let V′ ⊂ V denote the set of v’s for which the mapping g 7→ ξg(v) is injective on F2.
Because ξ : G → SV is an (F6

2 , ε/6)-good approximation of G it follows that |V \V′| ≤ ε
3 |V|, so Gξ,F2 is

(ε/3, |F2|, |F2|)-regular.
By Lemma 2, a 1√

|F2|
-Bernoulli set C ⊂ V is ε-dominating and has size at most 2√

|F2|
|V| with

probability at least 1− 2
3 ε > 1

2 . To see that Lemma 2 applies, we used the left inequality in (19) (keeping
in mind that |V| > M), and (22) to deduce that (12) is satisfied with k = M = |F2| and κ replaced with
ε/3 and N = |V|. In this case C ⊂ V satisfies (I). Choose the value of τ : V → F2 at v ∈ V randomly
as follows: Whenever the set Nv := {g ∈ F2 : ξg(v) ∈ C} is non-empty, choose τ(v) uniformly at
random from Nv ⊂ F2. If Nv = ∅, then τ(v) be chosen uniformly at random from F2. We see that if C
is ε-dominating, then (I I) is satisfied.

To conclude the proof we will show that (I I I) is satisfied with probability at least 1/2.
For ω ∈ Ω and v ∈ V denote:

Ψω,v :=

{
0 if v is good for ω;

1 if v is bad for ω.
(30)

Because Ω ⊂ O[M, δ, ε, F1, F2, ψ], it follows that for every ω ∈ Ω, all but an ε-fraction of the v’s
are good so

1
|V| ∑

v∈V
Ψω,v < ε for every ω ∈ Ω. (31)
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Now let Zω,v denote the indicator of the event “ξτ(v) is bad for ω”, that is,

Zω,v := ∑
g∈F2

1[τ(v)=g]Ψω,ξg(v).

Then Zω,v is a random variable, because τ : V → F2 is a random function.
Because g 7→ ξg(v) is injective for every v ∈ V′, each v ∈ V′ has |F2| outgoing edges. So for

v ∈ V′, τ(v) is uniform in F2 in case Nv is empty and uniform in {g ∈ F2 : ξg(v) ∈ C} otherwise.
It follows that

P (τ(v) = g) = |F2|−1 for every v ∈ V′ and g ∈ F2. (32)

It follows that for v ∈ V′,

E(Zω,v) =
1
|F2| ∑

g∈F2

Ψω,ξg(v).

Because |V \V′| < ε|V| it follows that

E
(

1
|V| ∑

v∈V
Zω,v

)
≤ 1
|V| ∑

v∈V

1
|F2| ∑

g∈F2

Ψω,ξg(v) + ε. (33)

Because ξg ∈ SV is a permutation:

∑
v∈V

Ψω,ξg(v) = ∑
v∈V

Ψx,v.

So from (33) and (31) we get that for every x ∈ Ω

E
(

1
|V| ∑

v∈V
Zω,v

)
≤ 1
|V| ∑

v∈V
Ψω,v + ε ≤ 2ε.

Averaging over ω ∈ Ω we obtain:

E
(

1
|Ω| ∑

ω∈Ω

1
|V| ∑

v∈V
Zω,v

)
=

1
|Ω| ∑

ω∈Ω
E
[

1
|V| ∑

v∈V
Zω,v

]
≤ 2ε.

Using Markov’s inequality, we get that

P
[(

1
|Ω| ∑

x∈Ω

1
|V| ∑

v∈V
Zω,v

)
> 4ε

]
≤ 1

2
.

So (I I I) holds with probability at least 1
2 .

Given a finite set V, the following “Hamming-like” metric is defined on XV :

dV(ω, ω′) :=
1
|V| ∑

v∈V
d(ωv, ω′v) for ω, ω′ ∈ XV . (34)

We also have the following “uniform” metric dD
∞ on XD, where D is a finite set:

dD
∞(ω, ω′) := max

v∈D
d(ωv, ω′v) for ω, ω′ ∈ XV . (35)

We will use the following estimate:
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Lemma 9. For any finite set D and δ > 0 we have

log sep2δ(X
D, dD

∞) ≤ |D| log sepδ(X, d).

Proof. If S ⊂ X is such that X =
⋃

ω∈S Bδ(ω) and |S| = covδ(X, d) then the union of δ-balls in (XD, dD
∞)

with centers in SV covers XV . It follows that

log covδ(XD, dD
∞) ≤ |D| log covδ(X, d).

The claim now follows because sep2δ(XD, dD
∞) ≤ covδ(XD, dD

∞) and covδ(X, d) ≤ sepδ(X, d).

We record the following Lemma (see Lemma 3.1 in [13], and recall that we use a left-action):

Lemma 10. Suppose v ∈ V is good for ω ∈ XV and g ∈ F3
2 . Then

g−1(Πξ
ξg(v)

(ω)) |F3
2
= Πξ

v(ω) |F3
2

.

Proof. Because v is good for ω it follows that

ξh−1g−1(ξg(v)) = ξh−1(v)for every h ∈ F3
2 ,

so for every h ∈ F3
2 we have

g−1(Πξ
ξg(v)

(ω))h = (Πξ
ξg(v)

(ω))gh = ωξh−1g−1 (ξg(v)) = ωξh−1 (v) = (Πξ
v(x))h.

The following lemma is the heart of our proof of Theorem 1:

Lemma 11. The following holds:

1
|V| log sepη(Map(O[M, δ, ε, F1, F2, ψ], ξ), dV) <

4√
|F2|
· |F1| log(2) +

4√
M

log sepδ/2(X, d). (36)

Proof. Fix any subset Ω ⊂ Map(O[M, δ, ε, F1, F2, ψ], ξ) that is η-separated with respect to the metric dV .
Let τ : V → F2 and C ⊂ V be as in the conclusion of Lemma 8. By condition (I I I) there exists Ω′ ⊂ Ω
with 2|Ω′| ≥ |Ω| such that

1
|V| |{v ∈ V : ξτ(v) is bad for ω}| < 8ε for every ω ∈ Ω′. (37)

Denote by S the set of functions from C to subsets of F1, that is S := (2F1)C. For each s ∈ S, let

Ωs :=
{

ω ∈ Ω′ : ψ(Πξ
v(ω) |F2) = sv for every v ∈ C

}
.

Then Ω′ =
⋃

s∈S Ωs, so
|Ω| ≤ 2 · 2|F1|·|C| ·max

s∈S
|Ωs|. (38)

By (I), |C| ≤ 2√
|F2|
|V|. It follows that

1
|V| log |Ω| ≤ 4√

|F2|
|F1| log(2) + max

s∈S

1
|V| log |Ωs|. (39)
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So our next goal is to bound |Ωs|, for s ∈ S. For this s and v ∈ V define:

stab(v, s) :=

{
(τ(v))−1sξτ(v)τ(v) if ξτ(v) ∈ C,

∅ otherwise.
(40)

We claim that if ω ∈ Ωs and v, ξτ(v) are both good for ω then

stab(v, s) ⊂ stabδ,F1(Π
ξ
v(ω)). (41)

Indeed, we can assume that ξτ(v) ∈ C otherwise stab(v, s) = ∅ and (41) holds trivially. Then

sξτ(v) = stabδ,F1(Π
ξ
ξτ(v)

(ω)) ∩ F1.

Denote gv := τ(v). Because v is good for ω and gv ∈ F2, by Lemma 10,

g−1
v (Πξ

ξgv (v)
(ω)) |F3

2
= Πξ

v(ω) |F3
2

.

So
stabδ,F1

(
g−1

v (Πξ
ξgv (v)

(ω))
)
∩ F3

2 = stabδ,F1

(
Πξ

v(ω)
)
∩ F3

2 .

Because ξτ(v) is good for ω (27) holds with v replaced by ξτ(v). So by Lemma 7 applied with
g = τ(v)−1,

τ(v)−1sξτ(v)τ(v) ⊂ stabδ,F1(g−1
v (Πξ

ξτ(v)
(ω))) ∩ F3

2 = stabδ,F1(Π
ξ
v(ω)) ∩ F3

2 .

This proves that (41) holds.
Consider the graph Gs = (V, Es) where

Es := {(v, ξg(v)) : g ∈ stab(v, s)}.

Claim A: If (v, u) is an edge in Gs and ω ∈ Ωs and v, ξτ(v) are both good for ω then d(ωv, ωu) < δ.

Proof of Claim A: By definition of Gs there exists g ∈ stab(v, s) so that ξg(v) = u. By the argument
above g ∈ stabδ,F1(Π

ξ
v(ω)), so d((Πξ

v(ω))1, g(Πξ
v(ω))1) < δ. Now xv = (Πξ

v(ω))1 and

xu = ωξg(v) = (Πξ
v(ω))g−1 = g((Πξ

v(ω))1,

so indeed d(ωv, ωu) < δ.

Claim B: The graph Gs is (11ε, M, |F2|3)-regular.

Proof of Claim B: Note that by definition stab(v, s) ⊂ F−1
2 F1F2 ⊂ F3

2 , so (u, v) ∈ Es implies that
v = ξg(u) for some g ∈ F3

2 . This shows that Gs has maximal in-degree at most |F2|3.
The properties of C, τ and Ω′ assure that

|{v ∈ V : ξτ(v) 6∈ C}| < 2ε|V|

and
|{v ∈ V : ξτ(v) is bad for ω}| < 8ε|V| for every ω ∈ Ω′.

It follows that |stab(v, x)| < M for at most 10ε|V| v’s. Also, as in the proof of Lemma 8,
because ξ : G → SV is a sufficiently good sofic approximation the map g 7→ ξg(v) is injective on
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F3
2 for all but at most ε|V| v’s. It follows that at most 11ε|V| of the vertices in Gs have degree smaller

than M. This completes the proof of Claim B.
By (19) and (22), the condition (12) is satisfied with M replaced by |F2|3, k replaced by M and κ

replaced by 11ε. So using Claim B we can apply Lemma 2 to deduce that there is a set D ⊂ V of size
at most 2√

M
|V| which is 33ε-dominating in Gs. As in the proof of Lemma 8, there exists a function

τ′ : V → F3
2 so that for all but 33ε v’s the pair (v, ξτ′(v)(v)) is an edge in Gs and ξτ′(v)(v) ∈ D.

Claim C: If ω, ω′ ∈ Ωs and d(ωv, ω′v) < δ for all v ∈ D then dV(ω, ω′) < η.

Proof of Claim C: Suppose ω, ω′ ∈ Ωs and d(ωv, ω′v) < δ for all v ∈ D. Fix u ∈ V. Denote
v = ξτ′(u)(u). If u and ξτ(u) are both good with respect to ω and with respect to ω′, and (u, v) is an
edge in Gs, it follows from Claim A that d(ωu, ω′v) < δ and d(ω′u, ω′v) < δ. Furthermore, if v ∈ D, then
d(ωv, ω′v) < δ so in that case d(ωu, ω′u) < 3δ. So if d(ωu, ω′u) > 3δ, either v 6∈ D or one of u, ξτ(u) is
not good for ω or for ω′. Thus

|
{

u ∈ V : d(ωu, ω′u) > 3δ
}
| < 2(33 + 8)ε|V| < 100ε|V|.

Thus, because the diameter of X is bounded by 1,

1
|V| ∑

v∈V
d(ωv, ω′v) ≤ 3δ + 100ε < η,

where in the last inequality we used (18). This completes the proof of Claim C.
Because Ωs is η-separated, Claim C implies that the restriction map πD : XV → XD is injective

on Ωs, and that πD(Ωs) is δ-separated with respect to the metric dD
∞. Thus by Lemma 9,

log |Ωs| = log |πD(Ωs)| ≤ log sepδ(X
d, dD

∞) ≤ |D| log sepδ/2(X, d).

We conclude that
log |Ωs| ≤

4√
M
|V| log sepδ/2(X, d). (42)

Together with (39) this shows that

1
|V| log |Ω| ≤ 4√

|F2|
· |F1| log(2) +

4√
M

log sepδ/2(X, d).

Since Ω was an arbitrary η-separated subset of O[M, δ, ε, F1, F2, ψ], this completes the proof.

To conclude the proof of Theorem 1, observe that the right hand side of (36) is bounded above by
η because of (21) and the right inequality in (19).

5. Finite Stabilizers and Completely Positive Entropy

We conclude with a corollary regarding actions with completely positive Σ-entropy, due to
Weiss [7] in the amenable case. Recall that an action G y (X, µ) is faithful if µ({x ∈ X : g(x) 6= x}) > 0
for all g ∈ G, and free if µ({x ∈ X : stab(x) 6= {1}}) = 0. Also, recall that G y (Y, ν) is a factor of
G y (X, µ), that is there is a G-equivariant map π : X → Y with ν = µ ◦ π−1. An action G y (X, µ)

of a sofic group has completely positive Σ-entropy if any non-trivial factor has positive Σ-entropy.

Corollary 2. Let G be an infinite countable sofic group. If an ergodic action G y (X, µ) is faithful and has
completely positive entropy with respect to some sofic approximation Σ, it is free.

Proof. By Theorem 1, the stabilizers must be finite, thus by Lemma 1 the map x 7→ stab(x) induces a
finite factor. But an action of an infinite group on finite probability space must have infinite stabilizers.
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In particular by Theorem 1 this factor has zero entropy. Because G y (X, µ) has completely positive
sofic entropy it follows that stab(x) is constant, and because the action is faithful it must be trivial,
so the action is free.
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