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Abstract: In the field of thermal systems, different approaches and methodologies have been
proposed to merge thermodynamics and economics. They are usually referred as thermoeconomic
methodologies and their objective is to find the optimum design of the thermal system given a specific
objective function. Some thermoeconomic analyses go beyond that objective and attempt to find
whether every component of the system is correctly designed or to quantify the inefficiencies of
the components in economic terms. This paper takes another step in that direction and presents
a new methodology to measure the thermoeconomic coherence of thermal systems, as well as the
contribution of each parameter of the system to that coherence. It is based on the equality of marginal
costs in the optimum. The methodology establishes a criterion to design coherently the system.
Additionally, it may be used to evaluate how much a specific design is far from the optimum, which
components are undersized or oversized and to measure the strength of the restrictions of the system.
Finally, it may be extended to the analysis of uncertainties of the design process, providing a coherent
design and sizing of the components with high uncertainties.

Keywords: thermal systems; thermoeconomics; optimisation; incremental cost; thermal power plant;
combined heat and power

1. Introduction

In the field of thermal systems and, more specifically, in power plants and combined heat and
power (CHP) facilities (included trigeneration), different approaches and methodologies have been
proposed to merge thermodynamics and economics. These methodologies try to reach a trade-off
between thermal efficiency and investment, mainly in the form of minimum generation cost or
maximum yearly profit or cash flow.

The common methodology is described, for example, in [1]. It is based on calculating the
exploitation costs of the plant, i.e., amortisation cost, fuel costs and operation and maintenance
(O&M) costs, and later the generation cost or the profit of the plant. It has been used in many works
for the analysis or the optimisation of thermal systems. For example, [2] developed a thermoeconomic
tool based on the cash flow estimation that was applied to a combined cycle power plant and [3]
proposed an optimisation methodology to minimise the generation cost or to maximise the cash flow
using genetic algorithms. Nowadays, the methodology is usually extended to calculate the levelized
cost of energy (LCOE) [4] and even the levelized avoided cost of electricity [5], particularly in the field
of renewable energy.

Additionally, some methodologies attempt to find whether each component of the facility has
been correctly designed or, on the contrary, a wrong design leads to cost inefficiencies. This issue has
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also been deeply studied, especially by means of the thermoeconomics theory, based on the exergy
costing or the exergoeconomic models. These models assign a cost to each exergy flux of the thermal
system, allowing the economic evaluation of the plant and finding the contribution of each component
to the cost. First studies at this regard were carried out between the 60s and 70s [6,7]. The works of
Tsatsaronis and Winhold [8], Frangopoulos [9] and Lozano and Valero [10] as well as the definition of
the CGAM [11] and TADEUS (Thermoeconomic Approach to the Diagnosis of Energy Utility System
Malfunctions) [12] problems spread out the methodology, which became a powerful tool suitable for
any thermal system in general and particularly for CHP systems. These thermoeconomic theories
are the basis of a great amount of analyses, optimisations methodologies and even diagnostic tools.
The methodology is still being improved taking into account advanced exergy characteristics like the
endogenous or exogenous nature of the exergy flux or the avoidable or unavoidable parts of the exergy
flux [13] or considering negentropy [14].

Of course, both groups of methodologies are still used. As examples, in [15] a thermoeconomic
model is applied to obtain the LCOE of a Kalina Cycle, and in [16] a solar Organic Rankine Cycle is
analysed. Besides, exergoeconomics is applied, for example, to new cycle concepts [17], to optimise
the off-design operation of a combined cycle [18] or to desalinisation plants [19].

Despite the great amount of works dedicated to find the economic or thermoeconomic
optimum, very few of them highlight a result well known in economics, which is that marginal
or incremental costs regarding each involved design variable of the system are equal at the optimum.
Dechamps [20,21] applies this concept to the optimisations of some parameters of combined cycle
gas turbines and heat recovery steam generators. Somehow, this result means that each component
has been dimensioned coherently so that all of them contribute with the same weight to achieve the
searched objective.

The present work stresses the importance of this result, well known and used in the field of
economy but barely used in thermal systems (although the optimization methodologies lead implicitly
to it). Marginal costs are defined as the incremental exploitation cost required for a given increment of
the product by means of the improvement obtained through the selected path (χ):

Mχ “
δE
δP

ˇ

ˇ

ˇ

ˇ

χ

“
δχ pEq
δχ pPq

. (1)

Introducing and formulating explicitly marginal costs in the approach, a new thermoeconomic
methodology is proposed, which may be used for the analysis and optimization of the systems as
well as to extend it to robustness and uncertainty analyses. Additionally, it allows the definition of a
criterion for assessing the design coherence of the thermal system and, particularly, of each component
of the system.

The methodology is presented theoretically and applied to a basic example of a closed Brayton
cycle. However, it may be applied to complex thermal systems including CHP, and the main guidelines
for that purpose are given.

2. Theoretical Background and Conventional Approaches

2.1. General Case: Optimization without Constraints

In the design of thermal power plants, besides thermal efficiency and power rate, two economic
results are usually considered: the generation cost (K, in monetary units per kWh) and the yearly cash
flow (CF) [1]. Both figures are results that depend on the design of the power plant. Particularly, they
are calculated by means of the amortisation cost (A), the fuel cost (F), the operation & maintenance
costs (O&M) and the yearly production of the power plant (P). The cash flow also depends on the
selling price of the product (V):

K “
A` F`O&M

P
“

E
P

, (2)
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CF “ P ¨V ´ pA` F`O&Mq “ P ¨V ´ E “ P ¨ pV ´ Kq . (3)

In the above equations, E is the sum of the exploitation costs. All these variables (K, CF, P, E)
are functions that depend on the design parameters of the power plant components, which in turn
determine variables like the acquisition cost (C) of each component. Besides, these functions also
depend on the economic frame considered (interest rate, inflation, escalation rates, expected life, etc.).
These dependences may be written as below:

K, E, CF, PÑ f px1, . . . , xmq. (4)

The set of independent variables xi may be divided into two categories: the first n variables
(i from 1 to n) represent the design parameters of the thermal system, while the last m ´ n (i from n+1
to m) represent the economic frame. The design parameters could be any collection of variables that
define univocally the system. As mentioned above, they also determine the investment required in
each component:

CjÑ f px1, . . . , xnq. (5)

The number of components of the thermal system, k, may be lower, equal or higher than the
number of degrees of freedom of design parameters, n. If the number of components is higher than the
number of the design parameters, the design of one component (or several) is dictated by the others’.
Thus, the associated investments must be considered but this component does not contribute to the
design of the power plant and it may be obviated in an optimization. If the numbers of components (k)
and design parameters (n) are equal, the set of independent variables xi in Equations (4) and (5) may
be substituted by the acquisition costs. Finally, if the number of components is lower than the number
of design parameters, k variables may represent the investment and the other n ´ k are maintained as
design parameters.

The differential form of the functions (4) may be written as below:

d f “
m
ÿ

i“1

B f
Bxi

dxi “

m
ÿ

i“1

fi ¨ dxi. (6)

Besides, considering Equation (1), the marginal cost regarding a specific independent variable of
the system (acquisition cost or design parameter) is:

Mi “
δE
δP

ˇ

ˇ

ˇ

ˇ

i
“
BE{Bxi ¨ δxi
BP{Bxi ¨ δxi

“
Ei
Pi

, i “ 1...n. (7)
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The general optimisation problem is either to minimize the generation cost or to maximize
the yearly cash flow (possibly considering environmental externalities like CO2 or other pollutant
emissions) given a specific economic frame. If the thermal system is not affected by any constraint,
there are n independent variables. Figure 1 depicts the topology of the problem in an example with
two independent variables, assuming that the optimum exists.

2.1.1. Minimization of the Generation Cost

Assuming that the minimum generation cost (K*) exists, at that point the partial derivatives
regarding any variable are null:

BK
Bxi

“ Ki “
Ei
P
´

E
P
¨

Pi
P
“

Ei
P
´ K* ¨

Pi
P
“ 0. (8)

Multiplying Equation (8) by P and considering the definition of the marginal cost:

Ei “ K* ¨ Pi ñ M1 “ M2 “ ... “ Mn “ K*. (9)

Equation (9) establishes that, at the design where the generation cost is minimum, all the marginal
cost are equal to the generation cost [22]. This result means that the expenditure required improving
each parameter or component has a homogeneous contribution to the generation cost. In fact, assuming
that the generation cost decreases with the acquisition cost of the components (if they are well designed)
the marginal cost is lower than the generation cost, and each improvement contributes to decrease it.
In the optimum, where there is not room for further improvements, all the marginal costs equal the
generation cost. It may be formulated applying the logarithmic derivative to Equation (2):

1
K
BK
Bxi

“
Ki
K
“

Ei
E
´

Pi
P
ď 0 ñ

Ei
Pi
ď

E
P
ñ Mi ď K. (10)

This general optimization case is used to establish the basis of the coherence in the design process:
all the marginal costs should be equal. Nevertheless, it is not very representative since in this kind of
problems there are usually economies of scale. Thus, the generation cost always decreases with the
investment and the optimum without any constraint (fixed total investment, power rate or any other)
does not exist.

2.1.2. Maximization of the Yearly Cash Flow

This case is analogous to the previous one but using Equation (3) instead of Equation (2). If the
maximum cash flow exists, at that point, the partial derivatives are null and all the marginal costs
are equal:

BCF
Bxi

“ CFi “ V ¨ Pi ´ Ei “ 0, (11)

Ei “ V ¨ Pi ñ M1 “ M2 “ ... “ Mk “ V. (12)

In this case, the marginal costs take the value of the selling price [22]. As the selling price is
presumably higher than the generation cost, the marginal cost at the maximum cash flow design is
higher than that obtained at the minimum generation cost. Thus, the maximum cash flow is reached at
higher investment rates than the minimum generation cost [23].

2.2. Optimization Subjected to Constraints

The general case described above should be modified in realistic scenarios where there is one or
more restrictions to the design. Indeed, a thermal system is always constrained by several restrictions.
For example, in the design of a gas turbine, once the compressor has been selected, the nominal pressure
ratio of the turbine should fit with the pressure ratio of the compressor. This kind of restrictions may
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be called internal constraints, since they are not checked at the end of the design process but they are
part of the problem formulation. Therefore, they do not require special attention from the designer.
Their main consequence is that the number of degrees of freedom is reduced, but Equations (9) and
(12) are still correct.

Another kind of restrictions may be, for example, a fixed exhaust gas temperature or a maximum
turbine inlet temperature in a gas turbine, the maximum moisture allowed at the exit of a steam turbine,
or a fixed power rate or a given maximum total acquisition cost. Constraints may be even applied to a
subset of the components of the plant, for example, when a determined commercial gas turbine is used
in a project of a combined cycle. These kinds of restrictions may be called external constraints, because
they are formulated externally to the problem definition, which only depends on the design variables.

Each restriction may be internal or external depending on the particular problem formulation.
For example, in a gas turbine with sequential combustion, the reheating pressure can be internally
solved in order to obtain the maximum specific work or to obtain a given exhaust temperature.
However, the reheating pressure may be also considered as an independent design parameter that
leads to a specific work or exhaust gas temperature that is later externally checked. Hereinafter, only
external constraints are considered since internal ones remain hidden. In any case, as it is shown below,
the methodology is consistent regardless of whether the restriction is internal or external.

Each external constraint (R) may affect one design variable or a set of design variables, and it is
formulated as an additional equation of the system:

Rpx1, . . . , xr, . . . , xnq “ R0. (13)

Therefore, it reduces externally the number of degrees of freedom in a unit: although the number
of design parameters does not vary, the constraint determines the selection of one of them once the
others have been established.

In general, the problem subjected to a constraint does have an optimum in the restricted domain.
For example, for a given power rate, there would be multiple solutions but only one leads to the
minimum generation cost. The problem is depicted in Figure 2, similar to Figure 1 but showing the
curve that fulfils the constraint.
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From the figure, it is observed that the optimum takes place at the tangent point of the curve of
the restriction and an iso-curve of the objective function, i.e., the gradient of the iso-curve has null
component on the allowed directions established by R. It is important to note that the optimum is not
the global optimum, so the restrictions always lead to a worse result (in terms of the objective function)
than that obtained considering the unconstrained problem.
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2.2.1. Conventional Approach

Assuming that a variable xr can be solved from Equation (13), the differential form of the objective
function subjected to the restriction R yields:

Rdf “
n
ÿ

i“1

B f
Bxi

dxi “

n´1
ÿ

i“1,i‰r

ˆ

B f
Bxi

`
B f
Bxr

¨
Bxr

Bxi

˙

dxi “

n´1
ÿ

i“1,i‰r

`

fi ` fr ¨ xr,i
˘

dxi. (14)

In the case of the generation cost, the minimum satisfies that the partial derivatives are null:

R|
BK
Bxi

“
Ei ` Er ¨ xr,j

P
´

E
P
¨

Pi ` Pr ¨ xr,j

P
“ 0 ñ RKi “

REi
P
´

E
P
¨ RPi

P
“ 0, (15)

REi “ RK* ¨ RPi ñ R M1 “ ... “ R Mn “ RK*. (16)

Therefore, although in general the marginal costs are not equal (since it is not a global minimum),
the marginal costs in the domain defined by the restriction (RMi) are equal to the minimum cost in
that domain. It is important to note that xr can be a design parameter but also a combination of
them, so it represents any direction for varying the design. It can also be noted that, since all the
restricted marginal costs are equal, the result of the externally constrained optimization is congruent
with the internally constrained one, in which the constraint is intrinsically defined and, as result, all
the marginal costs, internally constrained, are equal.

Equations (15) and (16) also highlight that the marginal costs are not defined if the restriction
affects the yearly production, since RPi becomes zero. Therefore, this approach is not suitable with
such a constraint, which may be a usual restriction if the power rate is fixed. Another singularity arises
when the restriction makes the exploitation costs be constant. In such a case, constrained marginal
costs are always zero.

This formulation conveys another drawback in order to define a measure of the design coherence.
As said before, all the marginal costs are equal at the optimum and coherence should be maximum at
this point. But in other design points different from the optimum, marginal costs are different and,
moreover, they depend on the variable or direction that has been selected as dependent. For that
reason, it can be said that they are not universal, and this is a problem to define a measure of the
coherence, that should lay on the design itself regardless of the set of independent variables.

2.2.2. Lagrange Multipliers

Another approach to solve the constrained problem involves the Lagrange multipliers [24,25].
Using Lagrange multipliers, the function to optimize is the Lagrangian. Following with the generation
cost minimisation, the Lagrangian (noted as LK if it is applied to the generation cost) considering the
restriction R is:

LK “ K´ λ ¨ pR´ R0q . (17)

In the minimum, the partial derivatives are zero:

#

Ki ´ λ ¨ Ri “
Ei
P ´ K* ¨

Pi
P ´ λ ¨ Ri “ 0

R “ R0
, (18)

which establishes that the optimum point fulfils the restriction and that both spaces, iso-curves (of
generation cost) and restriction, are tangent. Besides, the Lagrange multiplier λ represent the variation
of the minimum cost regarding the restriction R. Multiplying the first equation of (18) by P/Pi yields:

Mi ´ K* ´ λ ¨ P ¨
Ri
Pi
“ 0, (19)
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C Mi “ Mi ´ λ ¨ P ¨
Ri
Pi
“ RK*. (20)

Again, the global marginal costs (Mi) at the optimum are not equal but all the corrected marginal
costs (CMi) equal the generation cost. Additionally, the formulation is suitable even at constrained
yearly production, and only is undetermined if Pi is null, which only might take place locally (in such
case, equal marginal costs are ensured in the nearby of that singular point by Equations (19) and (20))
because otherwise this design parameter is not useful. It is important to note that the corrected marginal
cost is not a marginal cost calculated through a specific and allowed direction, but a modification of
the marginal cost following the path of the i-th design parameter. This allows CMi to be defined even
at constant production. Moreover, taking into account that Ri = Pi, Equation (19) gives additional
information and ensures that all the unconstrained marginal costs are equal in all directions, like in the
case of the unconstrained optimum, although they are different from the generation cost.

This result suggests that restriction of production is a singular constraint. In fact, increasing
production is the natural path to increase the size of the plant. And the same can be said when
the restriction makes the exploitation costs constant. If Ri = Ei, then Equation (19) ensures that
unconstrained marginal costs are again equal in the optimum. In both cases, the design is quite coherent
since it ensures minimum exploitation costs given a yearly production or maximum production given
a specific exploitation cost.

As a drawback, this corrected marginal cost based on the Lagrange multipliers is not defined
out of the optimum design because the multiplier, λ, is only defined at the optimum. Thus, another
approach should be formulated to calculate corrected marginal costs out of the optimum and to let
these marginal costs be standard, in the sense of not depending on the set of design parameters selected
for the system.

3. Proposed Methodology: Corrected Standardised Marginal Costs and Divergence from the
Coherent Design

As it has been shown in previous sections, usual approaches convey several disadvantages to
define a coherence criterion, i.e., dependence on the set of variables and definition of the marginal costs
in the constrained domain and out of the optimum. In order to solve these drawbacks, marginal costs
may be re-defined as it is proposed below. This approach involves three steps: the standardization of
marginal costs, the definition of the corrected and standardised marginal costs and the formulation of
the divergence from the optimum design.

3.1. Equivalent Standardised Marginal Costs

The problem of standardisation might be overcome if the paths or directions to calculate the
marginal costs are those defined by increasing the acquisition cost of each component while the others
are constant. The marginal cost regarding an acquisition cost measures the ratio of the incremental
exploitation cost to the incremental production when such acquisition cost is increased. However,
as discussed previously, using the investments instead of the design parameters may lead to a not
completely defined problem. For example, if the number of independent variables were higher than
the number of components, once the investments have been selected there would be still some degrees
of freedom.

Such standardised directions, which would be universal, are the most convenient but they are not
feasible in the cases where the number of components is different to the degrees of freedom.

Another possibility to standardise directions is to find parameters that are common to all thermal
systems regardless of the set of variables that allows the calculation of the system, and that do not
depend on, for example, the kind of fluid, the pressure or temperature levels or the type of component.
These parameters may be a set of exergy fluxes.

Specifically, there are two types of design parameters. One type involves parameters that define
some intensive features of the components (pressures, pressure ratios, temperature differences, etc.)
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and the other type involves extensive parameters (particularly only one, for example, a mass flow rate)
which allow the sizing of the components.

The intensive parameters may be replaced by intensive exergy fluxes associated to the involved
component. Particularly, if the component exchanges exergy with the environment (for example, in
case of compressors, expanders or heat sources or sinks), the incoming or outgoing exergy may be
used. On the contrary, when the component is adiabatic and does not exchange mechanical energy (for
example, heat exchangers), its internal irreversibility may be used. Finally, if a component has several
design parameters associated, the extra parameters may be replaced by extra information related to
the irreversibility. For example, the irreversibility of a compressor if the isentropic efficiency is given,
or the irreversibility caused by the pressure drop of a stream in a heat exchanger.

Regarding the extensive parameter, it is usually defined by a mass flow rate or by a thermal
power. In order to standardise it, the original parameter may be replaced by the power rate supplied
by the source that feeds the system, commonly the thermal power at the heat source. At this regard,
the exergy content of this thermal power should be avoided to ensure linear independence with the
intensive parameters. The power rate of the final products must also be avoided to ensure calculation
of the marginal costs associated to those products.

Finally, the specific exergy fluxes that replace the original intensive parameters may be calculated
as the exergy flux considered (in power units) divided by the thermal power that feeds the system
(also in power units), to ensure the independence of the properties of the fluid.

Using these rules, the standardised marginal costs do not depend on the set of design parameters
selected (of varied nature) but on the design point itself. At the optimum, all of them are equal,
because none of the allowed directions is preferential or leads to improvements, and make possible
comparisons between different types of power plants.

3.2. Corrected Standardised Marginal Costs

Once the standardisation is achieved, the next step is to give an expression for the corrected
marginal cost when the problem is constrained. This expression should be valid both in the optimum
design and out of the optimum and must be defined even in the cases of constraints of constant
production (and non-null at constant exploitation costs).

These requirements may be satisfied if the Lagrange multipliers method is extended to points
different from the optimum. Specifically, as it has been said previously, the Lagrange multipliers
method considers that the gradient of the iso-curve has null component on the span of allowed
directions compatible with the constraints. Thus, in the optimum, the gradient vector (∇K, in the case
of the generation cost) is a linear combination of the gradients of the restrictions (∇Rr):

∇K “
ÿ

r
λr ¨∇Rr ñ Ki “

ÿ

r
λr ¨ Rr,i, (21)

which is Equation (18) written in vector form.
Conversely, out of the optimum, the gradient of the iso-curve has a component (R∇K) in the

allowed span of directions (because there is room for improvement within that constraint) while the
other component is a linear combination of the constraint gradients:

∇K “R ∇K`
ÿ

r
λr ¨∇Rr ñ Ki “R Ki `

ÿ

r
λr ¨ Rr,i. (22)

Additionally, the scalar product of R∇K and each ∇Rr should be zero because they are
perpendicular, so the components of R∇K and the value of the λr may be calculated with the
following system:

$

&

%

RKi `
ř

r
λr ¨ Rr,i “ Ki

ř

i
RKi ¨ Rr,i “ 0

. (23)
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The corrected marginal cost may be defined exactly as in Equation (20). In (22), when the design
is the optimum, RKi is zero and this equation is equal to (21). In that case all the equivalent marginal
costs are equal to the generation cost. Out of the optimum, equivalent marginal costs are defined
thanks to Equation (23) and are not equal due to the existence of R∇K.

3.3. Divergence from the Coherent Design

In previous sections, the importance of equal marginal costs, constrained or unconstrained, has
been highlighted. Also, some standard directions to assess these marginal costs, non-dependent on
the set of design variables, have been proposed. Both issues are necessary to define a function that
measures the distance or divergence from the optimal design.

Particularly, three features are required for that measurement:

‚ It should be congruent for all the possible sets of design parameters of a system (independence of
the coordinate system);

‚ It should allow the comparison of the coherence of different facilities with independence of the
objective function, its value in the optimum and its number of degrees of freedom;

‚ The divergence should be zero at the optimum.

These features imply four requirements. The first feature may be fulfilled if the previously defined
standardised marginal costs are used. The second one implies two requirements. Firstly, marginal costs
should be normalized, in such a way that they vary from 0 to 1. Secondly, the function to assess the
distance should be consistent and comparable regardless of the number of independent variables of
the thermal system. Finally, the last feature should be addressed searching an appropriate function that
reaches a local extreme when all variables are equal. Two possibilities are either a Cartesian distance
or an entropy-like function.

In fact, a suitable function that fulfils these four requirements is the entropy-cross divergence.
This function is commonly used to measure divergences between two probability distributions [26].
Somehow, it provides a value that quantifies the information managed to use one probability
distribution instead another previous one.

The marginal costs may be normalized as below:

di “
C M2

i
ř

C M2
i

, (25)

where CMi are the corrected marginal costs described in Section 3.2. Thus, the sum of di is the unit:

n
ÿ

i“1

di “ 1. (26)

At the optimum, all the normalised marginal costs are equal and take the value of 1/n.
The divergence to the most coherent design (the optimum), in which all the marginal cost are

equal, is calculated by an entropy-cross function and measures the difference between the actual
distribution of normalized marginal costs (a given set of di) and the optimum one (all normalized
marginal costs equal to 1/n):

D “

n
ÿ

i“1

di ¨ logpdi{doptimum,iq “

n
ÿ

i“1

di ¨ logpdi ¨ nq. (27)

Such function, subjected to the restriction (26), is minimum and takes the value of zero when all
di equal 1/n, and increases as one or several di increase or decrease getting different from the others.
Additionally, it ensures the homogeneity of the values for different systems with different amount of
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degrees of freedom n (a Cartesian distance does not achieve this homogeneity). Some examples of this
homogeneity are shown in the appendix.

This measure is suitable but does not consider that all the corrected marginal costs are equal to the
generation cost (or to the selling price if the cash flow is maximised). To take into account that effect
(and following with the generation cost minimization), the summation can be extended including
an additional term that considers the generation cost. Moreover, to guarantee the homogeneity in
different systems, the additional term should be weighted with a factor n. Thus, the normalized
marginal costs and divergence become:

di “
C M2

i
ř

C M2
i ` n ¨ K2

, (28)

D “ n ¨ K ¨ logpK ¨ 2 ¨ nq `
n
ÿ

i“1

di ¨ logpdi ¨ 2 ¨ nq. (29)

Therefore, when the design is optimum, the divergence of coherence D is null. Divergences
different from zero indicate that either the design is not the optimum (because it has been established
taking wrong decisions) or that there are some restrictions or information that justify such divergence
(but they have not been accounted for in the analysis). Also, the higher the divergence, the lower the
design coherence, since some marginal costs are quite different one to the others, and there is room for
improving the system.

The divergence can also be used to measure how strong a constraint is. In fact, if the unconstrained
marginal costs are used instead the corrected ones, the new divergence is higher and the difference
between both ones gives the strength of the constraint.

Finally, the divergence of each parameter may be assessed with the following equation:

Di “ di ¨ logpdi ¨ 2 ¨ nq ´ K ¨ logpK ¨ 2 ¨ nq, (30)

which is useful if the associated marginal cost is positive. When this divergence is positive, then the
marginal cost is higher than the cost and the parameter should be relaxed, and conversely. Besides, if
the marginal cost is negative, the design is very far from the optimum whatever the value of Di.

4. Application Example: Coherence in a Solar Gas Turbine

Let us consider a hypothetical solar gas turbine following a closed Brayton cycle as illustrated
in Figure 3. Nowadays, solar gas turbines are uncommon systems that have been developed only in
research projects. This is an advantage for the present work since the objective of the paper is to present
the proposed methodology without focusing on a particular system optimization or discussing the
results obtained for a specific power plant (that should be done in future works). Moreover, the choice
of a solar gas turbine as an example provides two additional advantages. Firstly, the exploitation
costs only depend on the total investment because there is not any expenditure associated to the fuel
cost, which are part of the exploitation costs in conventional power plants (neglecting O&M costs).
Thus, the effect of constant exploitation costs commented in Sections 2.2.1 and 2.2.2 can be assessed.
Secondly, as a non-conventional system, its design presents some uncertainties that may affect the
specific design of the components and the whole power plant. This issue is analysed in Section 5.1,
where the methodology is adapted to consider uncertainties.

A possible set of design parameters to define the solar gas turbine are the pressure ratio, the
effectiveness of the heater and the cooler, the mass flow rate and the maximum temperature at the
solar field. Note that more design variables might have been chosen, like the isentropic efficiencies
of the turbomachinery or the pressure drops in the heat exchangers. However, such technological
parameters have been maintained constant in order to simplify the analysis (an isentropic efficiency of
90% for the turbomachinery and null pressure drops have been considered).
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The performance of the thermal system may obtained by applying mass and energy balances to
each component. The yearly production may be estimated assuming, for example, 4000 equivalent
hours working at full load. Finally, the exploitation costs may be calculated using a costing model for
each component and a given economic frame (for example, an interest rate of and a life that lead to a
capital recovery factor of 15).

As the objective of this section is to give a qualitative application example, actual and accurate
costing models are not required. Indeed, comprehensive optimisation of thermal systems requires
more data than those used in the example. For that reason, some arbitrary costing models in arbitrary
monetary units (mu) are proposed, qualitatively plausible but without quantitative accuracy. The
models are shown in Table 1. From the equations of the table, it may be observed that the costing
model establishes economy of scale, since specific investment (ratio of acquisition cost to mass flow or
thermal power) decreases with the size of the system (determined by the mass flow rate or supplied
thermal power).

Table 1. Costing models taken for the example (with arbitrary monetary units).

Component Costing Model Reference

Compressor 20` π¨ lnpπq¨ p
.

m{100q [27,28] 1

Turbine 20`
.

m
100 ¨ lnpπq¨ p1` e0.1¨ Tit´100q [27,28] 1

Heat exchangers 0.3¨ p
.

m¨ε
1´ε q

0.8 [2,28] 1,2

Solar field
.

Q`1000
300 ¨ p1` e0.1¨ Tmax´100q [29] 1,3

1 The model is arbitrary, based on the reference but not the one presented in it. 2 .
m¨ ε/(1 ´ ε) is equivalent to

UA (Product of the overall heat transfer coefficient and the heat exchange area (W¨K´1)) if both heat capacities
are equal. 3 Costing models of solar fields of a specific technology (parabolic trough, linear Fresnel reflectors,
central tower system, etc., each one involving characteristic operating temperatures), depend on the total
reflective area of mirrors, which is proportional to the supplied thermal power. A factor depending on the
maximum temperature has been included (in a similar way to the costing model of turbines) to take into account
the effect of the different materials and coatings in the receiver.

Table 2 shows an arbitrary selection of the five design parameters together with the exploitation
cost, yearly production, generation cost and the marginal cost regarding the design parameters. Such
design may serve as the base case for further comparisons. As observed, the marginal costs are different
one to the others, so this arbitrary design is not the optimum. Furthermore, in this case, the global
optimum of the system does not exist because of the economy of scale.
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Table 2. Design parameters and results for the base case.

Design Parameters Marginal Cost Regarding Design Parameters

π 8 Mπ (mu/GWh) 0.076
εheat 80% Mεheat (mu/GWh) 0.429
εcool 95% Mεcool (mu/GWh) 2.491

.
m (kg/s) 50 Mm (mu/GWh) 0.803
Tmax (K) 900 MTmax (mu/GWh) 0.140

Results
Compressor cost (mu) 28.3

Turbine cost (mu) 21.0
Heater cost (mu) 20.8
Cooler cost (mu) 72.3

Solar field cost (mu) 45.5
Exploitation cost (mu) 12.5

Yearly production (GWh) 10.5
Generation cost (mu/GWh) 1.198

According to Section 3.1, marginal costs should be assessed through a set of standardised paths.
In the case of the proposed solar gas turbine, the following parameters are considered:

‚ The pressure ratio (intensive parameter) is replaced by the ratio of the compressor power to the
thermal power supplied to the system (

.
WC{

.
Q).

‚ The effectiveness (intensive parameter) of the heater and cooler are replaced by the ratio of their
irreversibility to the thermal power supplied to the system (

.
I{

.
Q).

‚ The maximum temperature of the solar field (intensive parameter) is replaced by the ratio of the
exergy content of the thermal power to the supplied thermal power (

.
EQ{

.
Q).

‚ The mass flow (the extensive parameter) is replaced by the thermal power supplied to the
system (

.
Q).

In order to assess the partial derivatives required to evaluate the gradients considering the
standardized parameters (fj,standardized) instead the original ones (fi,original), the Jacobian matrix that
contains the derivatives of these standardized parameters (yj) regarding the original ones (xi) should be
assessed. The inverse of this Jacobian matrix gives the derivatives of the original parameters regarding
the standardized ones, and any other derivative may be calculated as below:

f j,standardized “
ÿ

i

fi,original ¨
Bxi
Byj

, (24)

For the solar gas turbine considered, four constrained cases have been selected to illustrate the
value of the different marginal costs. The cases are (1) fixed investment–equal to the base case; (2) fixed
production–equal to the base case; (3) fixed production and turbine exhaust temperature–both equal to
the base case; and (4) fixed production and turbine inlet temperature–again both equal to the base case.

Table 3 shows the results of the main parameters of the solar gas turbine in all cases, including
the base case for comparative purposes. It can be observed that when the investment is fixed the
exploitation cost is constant too because, as mentioned, in this particular system there is not any
expenditure associated to the fuel cost.
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Table 3. Design parameters and main results in the considered cases.

Base (1) Constant I (2) Constant P (3) Constant P + Texh (4) Constant P + Tit

π 8 4.92 4.85 7.25 4.29
εheat 80% 80.9% 80.3% 62.2% 71.4%
εcool 95% 86.4% 86.0% 89.6% 85.7%

.
m (kg/s) 50 64.7 38.9 64.9 46.6
Tmax (K) 900 966.7 966.9 957.0 959.4
Texh (K) 499.4 595.7 596.1 499.4 580.5
Tit (K) 836.7 887.7 885.6 817.3 836.7

Ccomp (mu) 28.3 25.1 23.0 29.3 22.9
Cturb (mu) 21.0 21.0 20.6 21.3 20.7
Cheat (mu) 20.8 26.7 17.3 12.6 13.5
Ccool (mu) 72.3 37.1 23.9 47.3 27.1
Csolar (mu) 45.5 78.1 48.1 53.7 51.9
Itotal (um) 188.0 188.0 132.9 164.2 136.1

E (um/year) 12.5 12.5 8.86 10.9 9.08
P (GWh) 10.5 17.7 10.5 10.5 10.5

K (mu/GWh) 1.198 0.707 0.847 1.046 0.868
ηGT 20.7% 20.5% 20.2% 17.5% 18.3%

Table 4 shows the unconstrained marginal costs regarding the original design parameters and the
standardised and unconstrained marginal costs in all the considered cases. As expected, the marginal
costs regarding the design parameters are only the same in the optimisations of constant investment
(because it leads to constant exploitation costs) and constant production. In the other cases, they are
different because the design is not the optimum in that domain (unrestricted).

Table 4. Unconstrained marginal costs.

(mu/GWh) Base (1) Constant I (2) Constant P (3) Constant P + Texh (4) Constant P + Tit

Design
parameters

Mπ 0.076 0.496 0.518 0.066 0.997
Mεheat 0.429 0.496 0.518 0.235 0.364
Mεcool 2.491 0.496 0.518 0.871 0.582

Mm 0.803 0.496 0.518 0.694 0.539
MTmax 0.140 0.496 0.518 0.235 0.364

Standardised

MWc 1.045 0.496 0.518 0.093 0.334
MIheater 0.891 0.496 0.518 0.196 0.232
MIcool 4.786 0.496 0.518 1.299 0.483
MEQ 0.063 0.496 0.518 0.196 0.232
MQ 0.803 0.496 0.518 0.694 0.539

Also, for the cases of constant production and constant exploitation costs, all standardised
marginal costs are the same as those regarding the design parameters because, as said previously, in
these cases equality of marginal cost takes also place at the unconstrained domain, and none of the
possible directions is preferred.

According to Section 3.2, marginal costs should be corrected taking into account the constraints of
the problem. Table 5 shows these corrected standardized marginal costs for each optimized case, those
corresponding to the base case in each respective constrained domain and the value of the lambdas.
As observed, the corrected marginal costs in the optimized cases are equal to the generation cost.
Conversely, those of the base case are different and, even, some of them are negative, which means
that the design and, particularly, the value of the corresponding parameter are quite far from the
optimum one.

Finally, once the corrected standardised marginal costs are obtained, the divergence from the
coherent design may be assessed with Equations (29) and (30) (Section 3.3).
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Table 5. Corrected marginal costs.

(mu/GWh) (1) Constant I (2) Constant P (3) Constant P + Texh (4) Constant P + Tit

Optimised

cMcomp 0.707 0.847 1.046 0.868
cMturb 0.707 0.847 1.046 0.868
cMheat 0.707 0.847 1.046 0.868
cMcool 0.707 0.847 1.046 0.868
cMsolar 0.707 0.847 1.046 0.868

λr ´1.6 ˆ 10´3 ´3.2 ˆ 10´2 ´3.4 ˆ 10´2 (P)
´6.2 ˆ 10´3 (Texh)

´3.1 ˆ 10´2 (P)
´7.7 ˆ 10´4 (Tit)

Base case

cMWc 0.345 0.919 2.353 –1.343
cMIheater 0.294 0.765 1.603 1.617
cMIcool 1.578 4.660 1.203 1.251
cMEQ 0.021 –0.063 0.775 0.789
cMQ 0.265 0.677 –0.394 –3.305

λr 4.3 ˆ 10´3 1.2 ˆ 10´2 0.11 (P)
´2.0 ˆ 10´2 (Texh)

0.39 (P)
´1.2 ˆ 10´2 (Tit)

Table 6 shows the divergence D of the different cases considered for the example (base case and
optimisations) considering the unconstrained domain and the divergence of each parameter (Di). The
divergence is not zero in any case because none of the design is the optimum in the unconstrained
domain. However, it is close to zero in the cases of constant investment (constant exploitation cost) and
constant production because all marginal costs are equal, although different from the generation cost.
In those cases, the divergence measures the strength of the restriction. The value of the divergences
gets higher in the base case and in the cases of constant production and constant turbine exhaust
temperature or turbine inlet temperature. In the base case, it happens because the design is not an
optimum. In the other cases, the marginal costs used are the unconstrained ones, so the value of the
divergence measures the strength of the restriction.

Table 6. Divergence at the unconstrained domain.

(mu/GWh) Base (1) Constant I (2) Constant P (3) Constant P + Texh (4) Constant P + Tit

DWc –0.001 –0.067 –0.088 –0.054 –0.120
DIheater 0.002 –0.067 –0.088 –0.064 –0.111
DIcool 1.405 –0.067 –0.088 0.121 –0.120
DEQ 0.035 –0.067 –0.088 –0.064 –0.111
DQ 0.004 –0.067 –0.088 –0.079 –0.114
D 1.084 0.059 0.108 0.353 0.281

Table 7 shows the divergence of the optimised designs and the base case at each constrained
domain through the corrected marginal costs. As observed, the divergences for the optimised cases are
roughly zero. Conversely, the base case is far from the coherent design at the constrained domain.

Table 7. Divergence at the constrained domains.

(mu/GWh) (1) Constant I (2) Constant P (3) Constant P + Texh (4) Constant P + Tit

Optimised

DWc ´2.1 ˆ 10´6 1.6 ˆ 10´6 1.3 ˆ 10´6 2.6 ˆ 10´8

DIheater ´2.1 ˆ 10´6 1.2 ˆ 10´7 9.5 ˆ 10´7 1.1 ˆ 10´6

DIcool 2.1 ˆ 10´8 2.6 ˆ 10´6 ´4.3 ˆ 10´8 ´2.7 ˆ 10´8

DEQ 2.1 ˆ 10´6 ´1.9 ˆ 10´6 ´1.0 ˆ 10´6 ´1.2 ˆ 10´6

DQ 1.4 ˆ 10´6 3.7 ˆ 10´6 4.0 ˆ 10´6 1.5 ˆ 10´6

D 7.6 ˆ 10´11 1.1 ˆ 10´10 8.3 ˆ 10´11 2.4 ˆ 10´11

Base case

DWc –0.029 –0.001 0.466 0.023
DIheater –0.025 0.002 0.105 0.062
DIcool 0.740 1.694 0.017 0.014
DEQ 0.004 0.034 –0.011 0.001
DQ –0.022 0.005 0.003 0.876
D 0.620 1.383 0.325 0.608
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5. Extension of the Methodology to Robustness and Uncertainty Analysis and Combined Heat
and Power

5.1. Robustness and Uncertainty: Optimization in Economy of Scales

The methodology shown in previous sections has been developed for a given economic frame
with all the variables and functions well defined in a deterministic way. However, thermal systems are
facilities that work during many years, so the estimation of the economic frame or any other variable
(performance, ambient conditions, etc.) might not be accurate. Likewise, some of the components
may be innovative and not proven in depth. Therefore, the problem may have a certain degree
of uncertainty that should be considered. A possibility to take that uncertainty into account is to
perform sensitivity analyses to the most relevant variables, comparing the results under different
possible frames.

Of course, the uncertainties may affect the selection of the optimum design point. Besides, they
may also introduce some questions about how large the power plant should be taking into account
the risk in predicting the frame, or how much an innovative component should be undersized or
oversized to guarantee a coherent design minimizing risks. These aspects may lead to the existence of
a coherent optimum even in unconstrained problems regarding the size or investment where, without
considering uncertainties, there are economies of scale.

These questions are not usually evaluated quantitatively during the design process. However, the
presented methodology can deal with them by means of a slight modification of the marginal costs.

Specifically, the problem defined by the functions of Equation (4) can depend on design parameters
xi that either are not deterministic or their influence on the functions have some uncertainty. With
such premises, results like the generation cost (K), the cash flow (CF), the exploitation cost (E) or the
yearly production (P) are of probabilistic nature and they follow certain density function. Whatever
the density function, it is possible to define a variability of the results through the variance, σ, and a
selected confidence level for the result. For example, given a set of variables xi it is possible to obtain a
result, for example of the generation cost, which ensures with a confidence level of 95% that the actual
cost is below that value. Therefore, it is possible to represent the curve of the generation cost with a
confidence level of 95%.

Figure 4 shows that curve together with the mean or expected value of the distribution (it is
assumed for comparative purposes that, in the limit, it agrees with the deterministic analysis value).
Both are represented versus the total investment, which depends only on the size of the plant. The
curve has been represented assuming that the variance σ increases with the plant size:

Bσpx1, ..., xnq

BPi

ˇ

ˇ

ˇ

ˇ

i“1...k
ą 0. (31)

Increasing variances with size (or production if the components are well designed) is a plausible
hypothesis, since all magnitudes increases with size. However, this might not necessarily be true.

According to Figure 4 and for increasing variances with investment and production, the minimum
generation cost at a confidence level is obtained at lower sizes than that of the deterministic analysis
(and vice-versa). Therefore, under uncertainties, the sizing of the equipment should be conservative.

For a given density function, the expected generation cost and the generation cost at a confidence
level are related as below:

K95 “ K `A¨σ, (32)

where A is a characteristic of the density function.
Minimising K95:

BK95

Bxi
“ K95,i “

BK
Bxi

` A ¨
Bσ

Bxi
“ Ki ` A ¨ σi “ 0, (33)
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Taking into account Equation (2) and considering the definition of the marginal costs
(Equation (1)):

Ei
P
´ K ¨

Pi
P
` A ¨ σi “ 0, (34)

Mi ` A ¨ P ¨
σi
Pi
“ Mi ` A ¨ P ¨

δiσ

δiP
“ K, (35)

thus, another corrected marginal cost may be defined as below:

Mσ “ Mi ` A ¨ P ¨ σP,i “ K. (36)

For the cash flow, where FC95 = FC ´ A¨σ, Equation (33) becomes:

BFC95

Bxi
“ FC95,i “

BFC
Bxi

´ A ¨
Bσ

Bxi
“ FCi ´ A ¨ σi “ 0, (37)

considering Equation (3) yields:
V ¨ Pi ´ Ei ´ A ¨ σi “ 0. (38)

If Equation (38) is divided by Pi and taking into account the definition of marginal cost:

Mi ` A ¨
σi
Pi
“ Mi ` A ¨

δiσ

δiP
“ V, (39)

which allows the definition of the corrected marginal cost:

Mσ “ Mi ` A ¨ σP,i “ V. (40)

Equations (36) and (40) indicate that if all the variations of variance are equal in all directions,
σP,i, the marginal costs are equal although lower than those obtained in a deterministic optimization.
Thus, the coherent design is reached at the conservative side of sizing (and the contrary if variances
decrease). The level of information or the strength of the restriction given by the probabilistic approach
may be again calculated by comparing the thermal coherence using the corrected and unconstrained
marginal costs, taking the uncertainty as a constraint-like condition.Entropy 2016, 18, 250 16 of 22 
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Besides, if a variance increases at higher rate than the others, the coherent marginal cost should
be lower, so that component should be even more conservative.

Finally, in both cases (balanced or unbalanced variance variations and increasing with production),
the coherent designs lead to undersize the affected components and to worse economic results
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than in a deterministic case without uncertainties. Additionally, if not all the variances decrease
homogeneously, the coherent design is farther than the deterministic optimum, and that situation
should not be obviated.

Innovative technologies and components can have higher uncertainties than conventional ones.
Taking into account the coherence criteria, the investment in those components should not be
disproportionately high regarding the others’. This conclusion, which might be mitigated by incentives,
should be taken as a prudence decision, and not as a disincentive for installing new clean technologies.

There are two possibilities to apply the coherence criterion considering uncertainties. Firstly, a
probabilistic study may be carried out in order to know the density distribution of both the design
variables and the results. Another approach is to introduce a coefficient in the constrained marginal
costs that acts as a safety factor:

R Mσ,i “ R Mm,i “ p1`miq ¨ R Mi. (41)

This formulation is simpler than the probabilistic studies but requires further studies to quantify
the value of the coefficient m, which is characteristic of each problem.

In the case of the solar gas turbine shown as an example, two optimisation cases are presented
to illustrate the effect of an uncertainty in the yearly production. In one case the variance increases
with its own production (equal for all the design parameters) without any constraint, and in the other
it increases only with the maximum temperature of the solar field, that simulates an uncertainty in
an innovative component, and considers a fixed production equal to the base case. Table 8 shows the
results obtained for these optimisations.

Table 8. Results for the optimisations with uncertainties.

Homogeneous
Variance
Variation

Variance
Variation with

Tmax

Homogeneous
Variance
Variation

Variance
Variation with

Tmax

π 4.82 4.78 K (mu/GWh) 0.972 0.849
εheat 80.0% 80.3% K95 1.192 1.247
εcool 85.7% 85.9% ηGT 20.1% 20.0%

.
m (kg/s) 28.3 39.8 Mπ 0.532 0.519
Tmax (K) 967.0 960.0 Mεheat 0.532 0.519
Texh (K) 596.3 594.1 Mεref 0.532 0.519
Tit (K) 884.4 879.3 Mm 0.532 0.519

Ccomp (mu) 22.1 23.0 MTmax 0.532 0.348
Cturb (mu) 20.4 20.6 Dπ –0.036 –0.032
Cheat (mu) 13.2 17.6 Dεheat –0.036 –0.032
Ccool (mu) 18.3 24.3 Dεref –0.036 –0.032
Csolar (mu) 35.9 47.8 Dm –0.036 –0.032
Itotal (mu) 109.9 133.3 DTmax –0.036 –0.035

E (mu/year) 7.33 8.88 D 0.153 0.140
P (GWh) 7.54 10.5 m 0.827 0.253

It may be observed that in the case of a homogenous variation of the variance there is an optimum
despite the economies of scale, as illustrated in Figure 4. All the marginal costs are equal due to
the homogeneous variation of the variance but the divergence is not null because marginal costs are
different from the generation cost. Finally, all the divergences of the parameters are negative, which
means that the parameters are under-sized if they are compared to the deterministic unconstrained
case. It is important to note that the divergence has been calculated with the marginal costs and not
the corrected ones. If they are corrected with the value of m as in Equation (41), the divergences are
null and the marginal costs equal the generation cost.

In the case of a variation of the variance of the production with the maximum temperature, all the
marginal costs are equal except for that of the maximum temperature, which takes a value lower than
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the others’. In fact, the optimisation is similar to a case of maximum temperature constrain. The results
are worse than the obtained in the case of the constant yearly production. Finally, the divergence
to the optimum is not null and the divergence of each parameter is negative, especially that of the
maximum temperature.

5.2. Combined Heat and Power

The objective of this section is to give some guidelines to extend the proposed methodology to
CHP systems. The thermal requirements of CHP are quite varied and the casuistic of the designs may
be high, so further studies to fully develop the methodology should be performed in the future.

Particularly, CHP systems are facilities designed to produce two or more products, one of them is
mechanical power and the others are thermal power (for heating and/or cooling). As the exploitation
costs are common for all the products, some extra information is required to evaluate the cost of each
product or the profit of the power plant.

For example, assuming that there are two products (i.e., power, P1, and heat, P2), the most simple
case is that in which both selling prices (V1, V2) are known. In this case, the thermoeconomic objective
is to maximise the yearly profit or cash flow of the power plant:

CF “ P1 ¨V1 ` P2 ¨V2 ´ E. (42)

In the optimum, the derivatives regarding any variable are null, thus:

P1,i ¨V1 ` P2,i ¨V2 “ Ei. (43)

As the marginal cost of each product is the incremental exploitation cost divided by the
incremental production:

V1{M1,i `V2{M2,i “ 1 ñ M1,i ¨
`

1´V2{M2,i
˘

“ V1. (44)

This expression is analogue to that used to calculate the corrected marginal costs, and indicates that
this corrected marginal cost is the same for all variables in the optimum and equal to the selling price.

Another possible simple case is that in which the selling price of a product (V2) is known and the
cost of the other (K1) is calculated. In such case, the minimum price at which the product should be
sold is:

K1 “
E´ P2 ¨V2

P1
. (45)

Minimising that generation cost and calculating the marginal cost as before yields:

Ei ´ P2,i ¨V2

P1
´ K1 ¨

P1,i

P1
“ 0, (46)

M1,i ¨
`

1´V2{M2,i
˘

“ K1. (47)

The expression above is again analogous to the previous ones and makes all the corrected marginal
costs equal to the generation cost at the optimum.

Finally, the above cases may be extended to that in which none of the selling prices is known and
the cash flow or the generation cost of a product is optimised. In those cases, some extra information is
required. For example, if one of the products is considered as the main one, its generation cost may be
estimated considering a system without cogeneration. Once that cost is estimated, the other may be
calculated as the incremental cost (K1) in the new system (Equation (42) replacing V2 by the cost of the
main product, K2), and this incremental cost can be minimised. In this case, the expression is equal to
Equation (44) changing V2 by the cost of the main product, K2.
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Another possibility is to know information about the demand curve of the products, in the form
of how the selling price varies as function of the production. In such case, one (V2) or both (V1, V2)
selling prices are function on the respective productions, V1 (P1) and V2 (P2), and Equations (44)
and (47) become:

V1 “ M1,i ¨

ˆ

1´
V2 ´V12 ¨ P2,i

M2,i

˙

`V11 ¨ P1,i, (48)

K1 “ M1,i ¨

ˆ

1´
V2 ´V12 ¨ P2,i

M2,i

˙

, (49)

which have the same form as the previous ones.

6. Conclusions

A new methodology to measure the thermoeconomic coherence of thermal systems has been
presented and applied to a solar gas turbine as an example. Based on the equality of marginal costs in
the optimum, the methodology establishes a criterion to design coherently the system. Besides that, it
provides a measure to assess the contribution of each parameter of the system to that coherence.

The basic criterion for the coherent design lies on the equality of all marginal costs in the optimum
design point. However, the marginal cost should be conveniently defined and used to make the
methodology robust and comparable for any thermal system, even when the number of degrees of
freedom are different or the system is constrained by any kind of restriction. Particularly, the set
of paths at which the marginal costs should be evaluated has been proposed, the expressions for
correcting marginal costs have been given and a function to measure the divergence to the optimum
design has been formulated.

The proposed methodology may be used to evaluate how much a specific design is far from
the optimum, which components are undersized or oversized and to measure the strength of the
restrictions of the system. Finally, it may be extended to the analysis of uncertainties of the design
process, providing a coherent design and sizing of the components with highest uncertainty. Despite
it has been applied to a power plant dedicated to electricity production, some guidelines have been
given to extend it to combined heat and power systems.
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Nomenclature

The following nomenclature and abbreviations are used in this manuscript:

Acronyms
CGAM CHP problem defined in [11]
CHP Combined heat and power
LCOE Levelized cost of energy
Mu Monetary units
O&M Operation & maintenance cost
TADEUS Thermoeconomic Approach to the Diagnosis of Energy Utility System Malfunctions [12]
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Symbols
A Amortisation cost (monetary units, mu); Constant of the probability distributions
C Acquisition cost (mu)
CF Cash flow (mu)
d Normalized marginal cost (-)
D Divergence (-)
E Exploitation cost (mu)
.
EQ Exergy content of the thermal power (W)
f generic function
F Fuel cost (mu)
.
I Irreversibility (W)
Itotal Total investment (mu)
K Generation cost (mu¨ J´1)
m safety coefficient, number of variables including the economic frame
.

m Mass flow rate (kg¨ s´1)
M Marginal cost (mu¨ J´1)
n Number of degrees of freedom
P Yearly production of the plant (J)
.

Q Thermal power rate at the heat source (W)
R Restriction
Tit Turbine inlet temperature (K)
Texh Turbine exhaust temperature (K)
Tmax Maximum temperature of the solar field (K)
UA Product of the overall heat transfer coefficient and the heat exchange area (W¨K´1)
V Selling price of the product (mu¨ J´1)

.
WC Compressor power (W)
x Original design parameters
y Standardized variables
Greek letters
∆ increment
ε Heat exchanger effectiveness (-)
η thermal efficiency (-)
Λ Lagrange multiplier
Π pressure ratio (-)
Σ Variance
Subscripts
cool Cooler
comp Compressor
GT Gas turbine
heat Heater
solar Solar field
turb Turbine

Appendix

In this appendix the independence of the divergence to the optimum design regarding the number
of design parameters is shown.

Let us consider two different thermal systems with different number of degrees of freedom (n).
And let us consider that, for example, in both systems a half of normalized marginal cost takes a value
d0 and the other half a value of y times d0. The divergences in both cases are:



Entropy 2016, 18, 250 21 of 22

D “

n{2
ÿ

i“1

di¨ logpdi¨ nq `
n
ÿ

i“n{2`1

di¨ logpdi¨ nq “
n
2
¨ d0¨ log pd0¨ nq `

n
2
¨ y ¨ d0¨ log py ¨ d0¨ nq . (A1)

Considering that the sum of di is 1/n (Equation (26)):

n
ÿ

i“1

di “
n
2

d0 `
n
2
¨ y ¨ d0 “ 1 ñ d0 “

2
n ¨ p1` yq

. (A2)

Equation (A1) becomes:

D “
1

p1` yq
¨ log

ˆ

2
p1` yq

˙

`
y

p1` yq
¨ log

ˆ

2 ¨ y
p1` yq

˙

. (A3)

That does not depend on the number of degrees of freedom, n.
Of course, the highest divergence occurs when a normalized marginal cost is the unit. It that case,

the higher n, the higher the divergence, that is logical since the design is also more unbalanced:

D “

n
ÿ

i“1

di ¨ logpdi ¨ nq “ log pnq . (A4)

However, the comparable cases for two thermal systems that have different degrees of freedom
are, assuming for example that a n is double than the other, those in which one has a normalized
marginal cost of unit and the other two normalized marginal cost are 0.5, because the proportion of
high marginal costs and low marginal costs is the same. In such case the divergences are equal:

D “ logpnq “ 0.5 ¨ log p0.5 ¨ p2 ¨ nqq ` 0.5 ¨ log p0.5 ¨ p2 ¨ nqq . (A5)
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