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Abstract: The minimum error entropy (MEE) algorithm is known to be superior in signal processing
applications under impulsive noise. In this paper, based on the analysis of behavior of the optimum
weight and the properties of robustness against impulsive noise, a normalized version of the
MEE algorithm is proposed. The step size of the MEE algorithm is normalized with the power
of input entropy that is estimated recursively for reducing its computational complexity. The
proposed algorithm yields lower minimum MSE (mean squared error) and faster convergence
speed simultaneously than the original MEE algorithm does in the equalization simulation. On
the condition of the same convergence speed, its performance enhancement in steady state MSE is
above 3 dB.
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1. Introduction

Wired or wireless communication channels are under multipath fading as well as impulsive
noise from various sources [1,2]. The impulsive noise can cause large instantaneous errors and
system failure so that enhanced signal processing algorithms for coping with such obstacles are
needed. Most algorithms are designed based on the mean squared error (MSE) criterion, but it often
fails in impulsive noise environments [3].One of the cost functions based on information theoretic
learning (ITL), minimum error entropy (MEE) has been developed by Erdogmus [4]. As a nonlinear
version of MEE, the decision feedback MEE (DF-MEE) algorithm has been known to yield superior
performance under severe channel distortions and impulsive noise environments [5]. It also has been
shown for shallow underwater communication channels that the DF-MEE algorithm has not only
robustness against impulsive noise and severe multipath fading but can also be more improved by
some modification of the kernel size [6].

One of the problems of the MEE algorithm is its heavy computational complexity caused by the
computation of double summations for the gradient estimation of MEE algorithm at each iteration time.
In the work conducted by [7], a computation reducing method by the recursive gradient estimation of
the DF-MEE has been proposed for practical implementation. Though those practical difficulties have
been removed through the recursive method, theoretic analysis in depth on its optimum solutions and
their behavior has not been carried out yet for further enhancement of the algorithm.

In this paper, based on the analysis of behavior of optimum weight and some factors on
mitigation of influence from large errors due to impulsive noise, we propose to employ a time-varying
step size through normalization by the input power that is recursively estimated for effectiveness
in computational complexity. The performance comparison with MEE will be discussed and
experimented through simulation in equalization as well as in system identification problems with
impulsive noise that can be encountered in experiments investigating physical phenomenon [8].
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2. MSE Criterion and Related Algorithms

The overall communication system model for this work is described in Figure 1. The transmitter
sends a symbol dk at time k through the multipath channel described in z-transform, Hpzq “

ř

hiz´i,
and then impulsive noise nk is added to the channel output to become the received signal xk so that the
adaptive system input xk contains noise nk and intersymbol interference (ISI) caused by the channel’s
multipath [9].
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xk “
ÿ

hidk´i ` nk. (1)

With the input Xk “ rxk, xk´1, . . . , xk´j, . . . , xk´L`1s
T and weight Wk “ rw0,k, w1,k, .., wj,k, . . . , wL´1,ks

T

of the tapped delay line (TDL) equalizer, the output yk and the error ek become

yk “ WT
k Xk, (2)

ek “ dk ´ yk “ dk ´WT
k Xk. (3)

With the current weight Wk, a set of error samples and a set of input samples, the adaptive
algorithms designed according to their own criteria such as MSE or MEE produce updated weight
Wk`1 with which the adaptive system makes the next output yk`1.

Taking statistical average Er¨s to the error power ek
2, the MSE criterion is defined as Erek

2s.
For practical reasons, instantaneous error power e2

k can be used and the LMS (least mean square)
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algorithm has been developed based on minimization of e2
k [9].The minimization of e2

k can be carried
out by the steepest descent method utilizing the gradient of e2

k as

Be2
k

BW
“ ´2ekXk. (4)

With Equation (4) and the step size µLMS, the well-known LMS algorithm is presented as

Wk`1 “ Wk ´ µLMS ¨
Be2

k
BW

“ Wk ` 2µLMS ¨ ekXk. (5)

By letting the gradient Be2
k

BW be zero, we have the optimum condition of the LMS as

ekXk “ 0. (6)

Taking statistical average Er¨s to Equation (6) leads us to the optimum condition of the MSE
criterion as

ErekXks “ 0. (7)

Inserting (3) into (6), we get the optimum weight of the LMS algorithm, Wopt
LMS as

Wopt
LMS “

´

XkXT
k

¯´1
dkXk. (8)

The optimum weight Wopt
LMS in (8)might be expected to get wildly shaky in impulsive noise

situations since it has no protection measures from such impulses existing in the input vector Xk.
When the effect of fluctuations in the input power levels is considered, the fact that the step

size µLMS of the LMS algorithm should be inversely proportional to the power of the input signal
Xk leads to the normalized LMS algorithm (NLMS) where its step size is normalized by the squared
norm of the input vector ||Xk||

2, that is, µNLMS{||Xk||
2 [9]. One of the principal characteristics of the

NLMS algorithm is that the parameter µNLMS is dimensionless, whereas µLMS has the dimensioning
of inverse power as mentioned above. Therefore, we may view that the NLMS algorithm has an input
power-dependent adaptation step size, so that the effect of fluctuations in the power levels of the input
signal is compensated at the adaptation level. When we assume that in the steady state ek and Xk are
independent, the input vector Xk can be viewed as being normalized by its squared norm ||Xk||

2 in the
NLMS algorithm as Wk`1 “ Wk ` 2µNLMS ¨ ek ¨Xk{||Xk||

2.
Unlike the LMS or NLMS, the MEE algorithm based on the error entropy criterion is known for its

robustness against impulsive noise [6]. In the following section, the MEE algorithm will be analyzed
with respect to its weight behavior under impulsive noise environments.

3. MEE Algorithm and Magnitude Controlled Input Entropy

The MSE criterion is effective under the assumptions of linearity and Gaussianity since it uses
only second order statistics of the error signal. When the noise is impulsive, a criterion considering all
the higher order statistics of the error signal would be more appropriate.

Error entropy as a scalar quantity provides a measure of the average information contained in
a given error distribution. With N samples (sample size N) of error samples tek, ek´1, . . . , ek´N`1u

the distribution function of error, fEpeq can be constructed based on Kernel density estimation as in
Equation (9) [10].

fEpeq “
1
N

k
ÿ

i“k´N`

Gσpe´ eiq “
1
N

k
ÿ

i“k´N`1

1
σ
?

2π
expr

´pe´ eiq
2

2σ2 s. (9)
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Since the Shannon’s entropy in [9] is hard to estimate and to minimize due to the integral of the
logarithm of a given distribution function, Renyi’s quadratic error entropy Hpeq has been effectively
used in ITL methods as described in (10).

Hpeq “ ´logp
ż

fEpeq
2deq. (10)

When error entropy Hpeq in (10) is minimized, the error distribution fEpeq of an adaptive system
is contracted and all higher order moments are minimized [4].

Inserting (9) into (10) leads to the following Hpeq that can be interpreted as interactions among
pairs of error samples where error samples act as physical particles.

Hpeq “ ´log

»

–

1
N2

k
ÿ

i“k´N`1

k
ÿ

j“k´N`1

Gσ
?

2pej ´ eiq

fi

fl . (11)

Since the Gaussian kernel Gσ
?

2pej ´ eiq is always positive and is an exponential decay function
with the distance square, the Gaussian kernel may be considered to create a potential field. The sum of
all pairs of interactions in the argument of log [.] in (11) is called information potential IPe [4].

IPe “
1

N2

k
ÿ

i“k´N`1

k
ÿ

j“k´N`1

Gσ
?

2pej ´ eiq. (12)

Then, minimization of error entropy is equivalent to maximization of IPe. For the maximization
of IPe, the gradient of (12) becomes

BIPe

BW
“

1
2σ2N2

k
ÿ

i“k´N`1

k
ÿ

j“k´N`1

pej ´ eiq ¨ Gσ
?

2pej ´ eiq ¨ pXj ´Xiq. (13)

At the optimum state (BIPe{BW “ 0), we have

k
ÿ

i“k´N`1

k
ÿ

j“k´N`1

pej ´ eiq ¨ Gσ
?

2pej ´ eiq ¨ pXj ´Xiq. (14)

Since the term pej ´ ekq implies how far the current error ek is located from each error sample ej,
we may define the error pair pej ´ ekq as ej,k which is generated from the error space E at each iteration
time as in Figure 2. The term ej,k can be considered to contain information of the extent of spread of
error samples. Considering that entropy is a measure of how evenly energy is distributed or the range
of positions of components of a system, we will refer to this information as error entropy (EE) in this
paper for convenience.

Similarly, the term pXj ´ Xkq indicates the distance between the current input vector Xk and
another input vector Xj in the input vector space. Therefore, with the following definition, we can say
that Xj,k contains the information of the extent of spread of input vectors, that is, input entropy (IE).
Likewise, we will refer to Xj,k as an IE vector in this paper.

Xj,k “ pXj ´Xkq. (15)

Then, with the EE sample ej,k and IE vector Xj,k Equation (14) can be rewritten as

1
N

k
ÿ

i“k´N`1

r

k
ÿ

j“k´N`1

ej,i ¨ Gσ
?

2pej,iqXj,is “ 0. (16)
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In an element expression,

xMCIE
j,k “ Gσ

?
2pej,kqxj,k “ Gσ

?
2pej,kqpxj ´ xkq. (18)

With XMCIE
j,k , the MEE algorithm becomes

Wk`1 “ Wk `
µMEE

2σ2N2

k
ÿ

i“k´N`1

k
ÿ

j“k´N`1

ej,iXMCIE
j,i . (19)
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The optimum condition in (16) can be rewritten as

Er
k
ÿ

j“k´N`1

ej,k ¨X
MCIE
j,k s “ 0. (20)

We may observe that the MEE algorithm in (20) is very similar to (7) in the aspect of the error and
input terms. One different part is that the MEE algorithm consists of summations of error entropy
samples and input entropy vectors, while the LMS just has an error sample and an input vector.

On the other hand, it can be noticed that MCIE XMCIE
j,i can keep the algorithm stable even at the

occurrences of large error entropy that occurs mostly when the input is contaminated by impulse
noise. The summation process over ej,iXMCIE

j,i can also mitigate the influence of impulses, but it does
not contribute much to deterring the influence of large errors since even an impulse can dominate the
averaging (summation) operation.

4. Recursive Power Estimation of MCIE

The fixed step size of the MEE algorithm may make the MEE require an understanding of the
statistics of the input entropy prior to the adaptive filtering operation. This makes it hard in practice to
choose an appropriate step size µMEE that controls its learning speed and stability.

Like the approach of the normalized LMS that solves this kind of problem through normalization
by the summed power of the current input samples as in [9,11], we propose heuristically to normalize
the step size by the summed power of the current MCIE element in (18) as

µNMEE “
µ

k
ř

j“k´N`1

ˇ

ˇ

ˇ
xMCIE

j,k

ˇ

ˇ

ˇ

2
. (21)

Considering the fact that impulses can defeat the average operation as explained in Section 3,
we can notice that the denominator may become large in an incident with impulsive noise; in turn,
µNMEE becomes a very small value, so that it may induce a very slow convergence. To avoid this kind
of situation, we may adopt a sliding window as

µNMEE “
µ

1
N

k
ř

i“k´N`1

k
ř

j“k´N`1

ˇ

ˇ

ˇ
xMCIE

j,i

ˇ

ˇ

ˇ

2
. (22)

However, this approach places a heavier computational complexity on the MEE algorithm.
For reducing the burdensome computations, we need to track the power recursively using a single-pole
low-pass filter, i.e.,

Ppkq “ βPpk´ 1q ` p1´ βq
k
ÿ

j“k´N`1

ˇ

ˇ

ˇ
xMCIE

j,k

ˇ

ˇ

ˇ

2
, (23)

where β p0 ă β ă 1q controls the bandwidth and time constant of the system whose transfer function

Tpzqwith its input
k
ř

j“k´N`1

ˇ

ˇ

ˇ
xMCIE

j,k

ˇ

ˇ

ˇ

2
is given by

Tpzq “ p1´ βq
z

z´ β
. (24)

Then, the resulting algorithm that we will refer to in this paper as normalized MEE
(NMEE) becomes

Wk`1 “ Wk `
µ

Ppkq2σ2N2

k
ÿ

i“k´N`1

k
ÿ

j“k´N`1

ej,iXMCIE
j,i . (25)
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On the other hand, the NLMS in (19) has been developed based on the principle of minimum
disturbance that states the tap weight change of an adaptive filter from one iteration to the next, that is,
the squared Euclidean norm (SEN) of the change in the tap-weight vector, ||Wk`1 ´Wk||

2 should be
minimal [9]. From that perspective, the effectiveness of the proposed NMEE algorithm can be analyzed
based on the disturbance, SEN, at around the optimum state as

SEN “ ||Wk`1 ´Wk||
2. (26)

For the existing MEE algorithm of (19),

SENMEE “
´

µMEE
2σ2 N2

¯2
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

k
ř

i“k´N`1

k
ř

j“k´N`1
ej,iXMCIE

j,i

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

“

´

1
2σ2 N2

¯2
µMEE

2
k
ř

i“k´N`1

k
ř

j“k´N`1

k
ř

l“k´N`1

k
ř

m“k´N`1
ej,iem,lXMCIET

j,i XMCIE
m,l .

(27)

For the proposed NMEE algorithm,

SENNMEE “

ˆ

µ

2σ2N2Ppkq

˙2
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

k
ÿ

i“k´N`1

k
ÿ

j“k´N`1

ej,iXMCIE
j,i

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

. (28)

Then

SENNMEE “

ˆ

1
2σ2N2

˙2 ˆ µ

Ppkq

˙2 k
ÿ

i“k´N`1

k
ÿ

j“k´N`1

k
ÿ

l“k´N`1

k
ÿ

m“k´N`1

ej,iem,lX
MCIET
j,i XMCIE

m,l . (29)

Comparison of SENMEE in (27) and SENNMEE in (29) leads to

SENNMEE ą SENMEE for Ppkq ă
µ

µMEE
, (30)

SENNMEE “ SENMEE for Ppkq “
µ

µMEE
, (31)

SENNMEE ă SENMEE for Ppkq ą
µ

µMEE
. (32)

This result indicates that the proposed method is more suitable for the conventional MEE when
the MCIE power is greater than µ{µMEE, which means when a smaller µMEE is demanded, such as
when the input signal is contaminated with strong impulsive noise. On the other hand, it can be noticed
that when the input signal is not large so that a bigger µMEE can be employed for faster convergence,
the proposed method may not be guaranteed to be better than the fixed step size MEE algorithm.

On the other hand, we know there are a lot of step size selection methods for gradient-based
algorithms, and we need to verify that this approach is the right one for the MEE problems. Considering
that the proposed step size selection method is motivated and designed by the concept of the input
power normalization as in the NLMS algorithm, it may be reasonable to investigate whether the input
power normalization is effective in the MEE algorithm under impulsive noise.

When we employ the squared norm of the input vector ||Xk||
2, that is,

k
ř

i“k´N`1
|xi|

2 in the MEE

algorithm (we will refer to this as NMEE2 for convenience), the squared Euclidean norm becomes
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SENNMEE2 “

¨

˚

˝

µ

2σ2 N2
k
ř

i“k´N`1
|xi|

2

˛

‹

‚

2
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

k
ř

i“k´N`1

k
ř

j“k´N`1
ej,iXMCIE

j,i

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

“

´

µ

2σ2 N2

¯2

k
ř

i“k´N`1

k
ř

j“k´N`1

k
ř

l“k´N`1

k
ř

m“k´N`1
ej,iem,lXMCIET

j,i XMCIE
m,l

˜

k
ř

i“k´N`1
|xi|

2

¸2 .

(33)

Assuming the error entropy ej,i and MCIE XMCIE
j,i are independent in the steady sate, (33) becomes

SENNMEE2 “
´ µ

2σ2N2

¯2 k
ÿ

i“k´N`1

k
ÿ

j“k´N`1

k
ÿ

l“k´N`1

k
ÿ

m“k´N`1

ej,iem,l
XMCIET

j,i
k
ř

p“k´N`1

ˇ

ˇxp
ˇ

ˇ

2

XMCIE
m,l

k
ř

q“k´N`1

ˇ

ˇxq
ˇ

ˇ

2
. (34)

The SEN in (29) adopting the squared norm of the MCIE instead of ||Xk||
2 can be rewritten as

SENNMEE “
´ µ

2σ2N2

¯2 k
ÿ

i“k´N`1

k
ÿ

j“k´N`1

k
ÿ

l“k´N`1

k
ÿ

m“k´N`1

ej,iem,l
XMCIET

j,i

Ppkq

XMCIE
m,l

Ppkq
. (35)

Comparing the two SENs, (34) and (35), the MCIE in SENNMEE is normalized by MCIE power

Ppkq, whereas the MCIE in SENNMEE2 is normalized by the simply summed input power
k
ř

p“k´N`1

ˇ

ˇxp
ˇ

ˇ

2.

This indicates that SENNMEE2 might vary to some degree since the denominator
k
ř

p“k´N`1

ˇ

ˇxp
ˇ

ˇ

2

containing impulsive noise can fluctuate from small values to large values due to strong impulses
dominating the sum operation. From this analysis, the fact that the MCIE in SENNMEE is normalized
by MCIE power Ppkq that uses the output of the magnitude controller cutting the outliers from strong
impulses leads us to the argument that our proposed method is appropriate for impulsive noise
situations. This will be tested in Section 5. As observed in (30), when the input signal is not in
strong impulsive noise environments, the proposed method may not be better than the existing
MEE algorithm.

The effectiveness of the proposed NMEE algorithm under strong impulsive noise will be
investigated in the following section.

5. Results and Discussion

The simulation for observations of the optimum weight behavior of MEE algorithm
is carried out in equalization of the multipath channel of Hpzq “ 0.26` 0.93z´1 ` 0.26z´2 [12].
The transmitted symbol dk sent at time k is randomly chosen from the symbol set
td1 “ ´3, d2 “ ´1, d3 “ 1, d4 “ 3u(M “ 4). The impulsive noise nk in (1) consists of the background
white Gaussian noise (BWGN) and impulses (IM) with variance σ2

BWGN and σ2
IN , respectively. The

impulses are generated according to a Poisson process with its incident rate ε [10]. The distribution
fNpnkq of the impulses is

fNpnkq “
1´ ε

σBWGN
?

2π
expr

´nk
2

2σ2
BWGN

s `
ε

b

2πpσ2
BWGN ` σ

2
INq

expr
´nk

2

2pσ2
BWGN ` σ

2
INq
s. (36)

The BWGN with σ2
BWGN = 0.001 is added throughout the whole time to the channel output.

The impulses are generated with variance σ2
IN = 50. The TDL equalizer has 11 tap weights pL “ 11q.

For the parameters for the MEE algorithm, the sample size N, the kernel size σ and convergence
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parameter µMEE are 20, 0.7 and 0.01, respectively. The step size µLMS for the LMS algorithm is 0.001.
All parameter values are selected when they produce the lowest minimum MSE in this simulation.

Firstly, the weight traces will be investigated through simulation in order to verify the property of
robustness against impulsive noise. The impulses are generated with ε = 0.01 for clear observation of
the weight behavior. The impulse noise as depicted in Figure 4 is applied to the channel output in the
steady state, that is, after convergence.
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Figure 4. The impulse and background noise for the simulation for the behavior of optimum weight.

Figure 5 shows the learning curves of weight w4,k and w5,k (only two weights are chosen due to the
page limitation). At around 5000 samples, both reach their optima completely, and then they undergo
the impulsive noise like that in Figure 4. In Figure 5, it is observed that MEE and LMS have the same
steady state weight values and each weight trace of MEE in the steady state shows no fluctuations
remaining undisturbed under the strong impulses. This is obviously in contrast to the case of the LMS
algorithm where traces of w4,k and w5,k have sharp perturbations at impulse occurrences and remain
perturbed for a long time though gradually dying.
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We can notice that the optimum weight of MEE has averaging operations and MCIE in (23) has
some differences when the weight update Equation (8) is compared. Since the average operations
can easily be defeated even by just one strong impulse, we can figure out that the dominant role of
robustness against impulsive noise is the MCIE.

Secondly, the effectiveness of the proposed NMEE algorithm (25) designed with the MCIE is
investigated through the learning performance comparison with the original MEE algorithm in (19)
under the same impulsive noise with σ2

IN = 50 and ε = 0.03 as in the work [5] in which the impulsive
noise is used in all time. The MSE learning results are shown in Figure 6.
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Figure 6. The Comparison of MSE learning curves under impulsive noise (square: LMS with
µLMS = 0.001, circle: MEE with µMEE = 0.01, triangle: MEE with µMEE = 0.02, thick line: NMEE
with β = 0.9 and µ = 6µMEE).

The LMS algorithm converges very slow and stays at about ´8 dB of MSE in the steady state.
This result can be explained from the expression of Wopt

LMS in (8) having no measures to protect it from
fluctuations from impulsive noise as discussed in Section 3. On the other hand, the MEE algorithm
rigged with the magnitude controller for IE converges in about 1000 samples even under the strong
impulsive noise. This result supports the analysis that the MCIE XMCIE

j,k keeps the algorithm (19) and
its steady state weight undisturbed by large error values that may be induced from excessive noise
such as impulses.

As for the performance comparison between MEE and NMEE in Figure 6, NMEE shows lower
minimum MSE and faster convergence speed simultaneously. The difference of convergence speed is
about 500 samples and that of minimum MSE is around 1 dB. When compared to the condition of the
same convergence speed, the difference in minimum MSE is shown to be about 3 dB. This amount of
performance gap indicates that the proposed method of tracking the power of MCIE recursively and
using it in normalization of the step size is significantly effective in the aspect of performance as well
as computational complexity.

In Figure 7, the MCIE power becomes large as the MEE algorithm converges, and after
convergence, the trace shows large variations, mostly above 6. The condition Ppkq ą 6 in this
simulation implies that when NMEE is employed, the value µ according to (32) must be greater than
6µMEE for better performance. The fact that this is exactly in accordance with the choice µ “ 6µMEE
described in Figure 6 justifies the effectiveness of the proposed method by simulation.
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Figure 7. The trace of MCIE power P(k) of the MEE algorithm under the same simulation conditions
used for Figure 6.

In the same simulation environment, the MSE learning curves for two input power normalization
approaches, NMEE and NMEE2 are compared in Figure 8.
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Figure 8. Learning curves of NMEE and NMEE2 algorithms for comparison of the two methods of
input power normalization.

As observed in Figure 8, the input power normalization approach for variable step size selection
for the MEE algorithm shows different MSE performances according to which signal power is
normalized. When NMEE is employed where the magnitude controls input entropy, MCIE is used
for power normalization, the MSE learning performance yields better steady state MSE of above 2 dB
and faster convergence speed by about 1000 samples than when NMEE2 is adopted, in which the
squared norm of the unprocessed input ||Xk||

2 is used for normalization. As discussed in Section 4,
under strong impulsive noise, the power of MCIE can be the right choice for step size normalization
for better performance.

In system identification applications of adaptive filtering as appeared in the work [8], the desired
signal is derived by passing the white Gaussian input through the unknown system. The unknown
system in this simulation is of length 9. The impulse response of the unknown system is chosen to
follow a triangular wave form that is symmetric with respect to the central tap point [9,13]. The TDL
filter has 9 tap weights. The input signal is a white Gaussian process with zero mean and unit variance.
The same impulsive noise used in Figure 6, uncorrelated with the input, is added to the output of the
unknown system. MSE learning curves are depicted in Figure 9.
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Figure 9. Learning curves of MEE and NMEE for system identification.

One can observe from Figure 8 that the proposed NMEE achieves lower steady-state MSE than
the conventional MEE algorithm in the system identification problems as well.

6. Conclusions

The MEE algorithm is known to outperform MSE-based algorithms in most signal processing
applications in an impulsive noise environment. The conventional MEE algorithm has a fixed step
size so that it may require in practice to employ a time varying step size that appropriately controls its
learning performance.

Based on the analysis of the behavior of optimum weight and the role of MCIE in mitigation
of influence from large error, it was found in this paper that the NMEE employing the step size
normalized with the power of the current MCIE element can yield lower minimum MSE and faster
convergence speed simultaneously. On the condition of the same convergence speed, the performance
enhancement of 3 dB in the equalization simulation leads us to conclude that the proposed method of
recursive estimation of the MCIE power for normalization of the step size is significantly effective in
both aspects of performance and computational complexity.
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