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Abstract: Fisher matrices play an important role in experimental design and in data analysis. Their
primary role is to make predictions for the inference of model parameters—both their errors and
covariances. In this short review, I outline a number of extensions to the simple Fisher matrix
formalism, covering a number of recent developments in the field. These are: (a) situations
where the data (in the form of (x,y) pairs) have errors in both x and y; (b) modifications to
parameter inference in the presence of systematic errors, or through fixing the values of some model
parameters; (c) Derivative Approximation for Llkelihoods (DALI) - higher-order expansions of the
likelihood surface, going beyond the Gaussian shape approximation; (d) extensions of the Fisher-like
formalism, to treat model selection problems with Bayesian evidence.
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1. Introduction

Fisher information matrices are widely used for making predictions for the errors and
covariances of parameter estimates. They characterise the expected shape of the likelihood surface
in parameter space, subject to an assumption that the likelihood surface is a multivariate Gaussian
when viewed as a function of the model parameters. Diagonal terms are the inverse variances
of the parameters, conditional on all others being known, and non-zero off-diagonal terms indicate
correlations between inferred parameters. Diagonal terms of the inverse Fisher matrix yield the
variances of parameters when all others are marginalised over. The Cramér-Rao inequality shows
that the variances deduced from the Fisher matrix are lower bounds.

Fisher matrices have been extensively used in cosmology, where future experiments have been
designed in order to deduce as precisely as possible the parameters of the standard cosmological
model, so-called ACDM (Cold Dark Matter, with a cosmological constant A), and are routinely used
to give “figures-of-merit” [1] for the power of each experiment. Normally, these studies are standard
applications of Fisher matrix theory, often simplified by an approximation (which is very good for
observations of the Early Universe) that the data are Gaussian-distributed.

In this article, I review a number of generalisations of the Fisher matrix approach. In Section 2
the derivation of the Fisher matrix for Gaussian data is sketched out; in Section 3 we consider Fisher
matrices for data pairs that have errors in both x and y; in Section 4 we show how Fisher matrices
may be used to estimate biases when some parameters are fixed at incorrect values; in Section 5 we
explore better approximations for the likelihood surface (“DALI”), from expansions to higher order in
derivatives, and in Section 6 we generalise the use of Gaussian likelihood surfaces to model selection
and Bayesian evidence.

Entropy 2016, 18, 236; d0i:10.3390/e18060236 www.mdpi.com/journal/entropy


http://www.mdpi.com/journal/entropy
http://www.mdpi.com
http://www.mdpi.com/journal/entropy

Entropy 2016, 18, 236 20f8

2. Gaussian Fields

In cosmology, one is very often dealing with Gaussian random fields, which are characterised
statistically entirely by their mean and covariance. A pedagogical derivation for the Fisher matrix
when the data i are Gaussian appears in [2]. The negative log-likelihood £ = —In L is

-,

2£(6) = Indet27C + (§ — i) TC1 (i — ji), (1)

where in general both the mean vector ji and the covariance matrix C = ((i/ — ji) (i — #i)T) depend on
the model parameters 6. If i/ represents 1-point statistics, such as Fourier coefficients, then typically
ji = 0, and all the parameter dependence is in C. If i represents 2-point statistics, then for Gaussian
fields they have only approximately a Gaussian distribution, and the analysis is only approximately
correct. In this case, the covariance matrix has some parameter dependence through the 4-point
function, which for Gaussian fields can be written as products of the 2-point function.

The Gaussian assumption is widely applicable in cosmology, since the quantum fluctuations
that are thought to give rise to the density and radiation fields should ensure this, and limits on
departures from gaussianity are very tight [3]. Defining the data matrix D = (i — i) (i — )" and
using the matrix identity for positive definite square matrices Indet C = TrIn C, where Tr indicates
trace, we can re-write Equation (1) as

2L =Tr [ln C+ c—lo} : )

Using standard comma notation for partial derivatives, Z, = 0Z/df,, and using the matrix
identities (C™!),,= —C!C,C ! and (InC),, = C~!C,, we find after taking two derivatives and
then the expectation value,

| o - R
Fap = (Liap) = 5Te[CTCaCT Cp+ C7 (o flyg +ilp o ), ©)

The great advantage of the Fisher matrix approach is seen in this example: no data
(real or simulated) are required to compute the expected log-likelihood surface, only the statistical
properties of the data. This can be a big advantage if simulation is computationally expensive.

3. Fisher Matrix with Errors in x as Well as y

The previous section gives the standard analysis where only the covariance of the y values is
considered. Let us now consider the fairly general case where the data consists of data pairs (X, Y),
where we have errors in both X and Y. We can compute the Fisher matrix via the application of
a Bayesian hierarchical model, provided that the errors in X are small (this will be defined later).
The full analysis is given in [4].

We assume X and Y are length m and n vectors (for data pairs, m = 1, but in fact the analysis is
more general), and have Gaussian errors, around true values ¥, i/, with a covariance matrix C, which
also allows correlations between X and Y. ¥ and ¥ are not observed, being latent variables, and are
essentially nuisance parameters. In fact the j are not independent nuisance parameters as they are
assumed to be related precisely to ¥ through a deterministic theoretical model i = ji(X) (however,
a stochastic element could easily be included). Given the observed data, X,Y, we seek the posterior
p(6|1X,Y). With a uniform prior for 6, this is proportional to the likelihood L = p(X, Y|§). We write
this as the marginalised distribution over ¥ and i/ as

L = /p(X,Y,f,ywé)dfdg:/p(X,ﬂfﬁ,@)p(jmé’)dmg @)
= [ PR YIZ5,0)p(1%,8)p(219) dZ 7.
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A deterministic 7(¥) relation gives a delta function, p(7|%,6) = §(§ — fi(¥)), and assuming a
uniform prior for X (a more general prior is considered in [4]), integration over i/ gives

L« /p(f(,ﬂf,ﬁ(f),é) d%. ®)

We now assume that the errors in X are small, for which we require that we can truncate at the
linear term of the Taylor expansion of ji:

(@) = g(X) + T(X) (¥ - X), (6)
where
_ Wi
Tij = ax; s @)

T is diagonal for data consisting of X, Y pairs.
We assume a multivariate Gaussian for p(X, Y|, 7) (independent of §), and write the covariance
matrix of the data in block form as

X (Cxx C
C=5o (2 X ®)
Y \ Gy Cyy
Note that Cxy = (X — X )Y — ?)T> is not symmetrical, nor invertible or even square in general;
although Cxx and Cyy are. The covariance matrix may include a number of elements, such as intrinsic
scatter and measurement noise, with individual covariance matrices adding to give the final C. We

also assume that the function ji(X) is linear across the width of the Gaussian error distribution of X,
in which case the likelihood may be integrated analytically, as follows. We write

1 Q\ -
Loc/ detCeXp (2) ax )

where Q = (Z —Z)TC"1(Z — %), and Z and Z are m + n-dimensional vectors: z; = x; and Z; = X;
fori <m,Z,j=Yjand z,,,; = ‘u]'()_i) + [T(X) (% — X)]] The inverse of C in block form is

G —H
-1
_ 1
¢ (—HT E> (10)
where

G = Cyp+ CxCxyECkyCrx

H = C)Bl(CX\(E

E = (Cyy — ChyCorCxy) (11)

Defining ¥ = X — %, and Y=Y- ji(X), we find that Q has the quadratic form

Q=%"A¥-BT¥x— 3B+ Q, (12)
where

A = G+T'ET—HT-TTHT

B = (H-TTE)Y=PY

QO = YTEY. (13)
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With the definition of Q in Equation (12), the Gaussian integral of Equation (9) can be
performed, using

Lar s T:) 5 (2m)n/2 (1 Ta—1 )
exp| —=X"AX+B'X|dx = exp| =B"A7"B |, 14
/ p< 2 Vdet A P2 (14)

and noting that Q' is independent of %. The likelihood then simplifies to

=

exp (—;{/TR_ll:/) , (15)

1
X
vdetR

where the inverse of the marginal covariance matrix of l:f is R"1 = E— PTA-1P. This is obtained
using the Woodbury formula [5] (K + UWV)~! = K1 — K-1U(W~! + VK=1U)"1VK~!, giving

R=Cyy — ClyTT — TCxy + TCxxT7, (16)

This is a key result. We see that this looks just like a standard Gaussian (in terms of data)
likelihood, but with the covariance matrix C (Cyy in our current notation) replaced by R. Hence to
compute the Fisher matrix, we can use the standard formula found in Equation (3) and Equation (15)
of [2], and simply replace C by R:

1 - - Ao T o
Fap = 5Tt [RTRWR ™R g + R (il + i1 | (17)

Note that R depends not only on the standard covariance, but also on the covariance in the
independent variable, Cxx, the meta-covariance, Cxy, and the first partial derivatives of the model
function ji. In the case of uncorrelated data pairs, the result reduces to that found in [6]. For the simple
case of no correlations between X and Y values R = Cyy + TTCxxT, and with diagonal covariance
matrices Cyy and Cxx we recover the propagation of error result that the variance of f = Y — pu(X)
for each data point is effectively

0F =g+ (X)) ox, (18)

where y/ = 9u/dx and C can be replaced in the standard Fisher expression, Equation (3),
by a diagonal n x n matrix with these enhanced entries.

Generalising Still Further

The analysis above is applicable not just to the simple case of data with errors in x as well as y,
but to any system where the “data” i depend (in a locally linear way) on any parameters ¥ that have
some error associated with them.

4. Systematic Errors, or Errors from Simplified Nested Models

The Fisher matrix can also be useful to determine the errors in parameter inference that arise
if one parameter is fixed at an erroneous value. This could arise in a number of contexts, such as a
nuisance parameter (e.g., a calibration setting) being fixed at an incorrect value, or when considering
nested models. An example of the latter would be cosmological models where the Universe is
assumed to be flat. This is an example of a nested model, being a subset of a more general model, but
with the curvature parameter (usually given the symbol () ) set to zero. In these cases, the maximum
likelihood values of all the other parameters are, in general, shifted from their maximum likelihood
values in the more general model. See Figure 1 for an illustration of this in two dimensions. With the
usual Fisher assumption that the likelihood surface is a Gaussian function of the parameters, these
shifts can be computed using the Fisher matrix.
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Figure 1. Illustration of the shift in the maximum likelihood value of a parameter, if another parameter
is set at a specific value (e.g., a calibration parameter, or a nested model which does not allow a
parameter to vary from some fixed value. The Fisher matrix may be used to determine the shift.
Reproduced from Figure 1 of “On model selection forecasting, Dark Energy and modified gravity” published
in Mon. Not. Roy. Astron. Soc. [7].

We consider two models, M, which has more (1’ + p) parameters than a simpler nested model
M’, which has n’. The extra parameters are designated ¢, and these are fixed in M’ at values that are
0 from their maximum likelihood values in M. In this case, the maximum likelihood values of all
other parameters of M’, 6, are systematically shifted by [7,8]

600 = —(F 7 1)apGpedypy  a,p=1...n,0=1...p (19)

where .
Gug = 5T [CTIC4CT1Cr + CV (i + g} (20)
which we recognise as a subset of the Fisher matrix.

5. Beyond the Gaussian Approximation—DALI

The Fisher matrix approach assumes that the likelihood surface is a multivariate Gaussian, which
will be asymptotically true near the peak, but may not be a good approximation over the range of
parameter values of interest. A generalisation of the Fisher matrix is DALI, Derivative Approximation
for Llkelihoods [9], which expands the likelihood surface to include higher-order derivatives than
the second. This is a rather elegant expansion, in derivatives rather than parameters, that ensures
that the approximate distribution is a genuine probability distribution—i.e., it is non-negative and
normalisable, non-divergent and asymptotically approaches the true likelihood.

The starting point is a Taylor expansion of the likelihood:

1 1
—L=InL=InLy+ EFMS AGNAGﬁ + gsam AQ,XAQ/gAQ,Y o
1
+ aQa‘Bfﬂs AG,XAQIgAerAQ(s +...,

where Ly is a normalization constant and Fyg = £ 45, Sugy = L gy and Qupgys = L apys-
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If the expansion is arranged in order of derivatives, the expressions are normalisable and
positive-definite. For example, to second order in the ji derivatives, and assuming C is independent
of 6, we have

Lotz Lor —1a
L=Lpexp | — E‘uﬂC 1 g0, A0 — (2]4,“/5C A0, AOgAD,
1 (22)
ST ~—1-
+ gP‘,«wC yrﬁaAGaAGﬁAGWA%) + 0(3)}

This is apparently true at every order (see [9] for the third-order expansion, and [10] for the case
where the parameter dependence is in C). Figure 2 shows the improvement in the expected likelihood
surfaces for a supernova cosmology experiment.
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Figure 2. The extended Fisher likelihood of DALI as applied to a sample of supernovae, as a function
of the matter density parameter of the Universe, (), and the equation of state parameter wy = p/p of
dark energy. From left-to-right this shows the Fisher approximation, the “doublet-DALI” expansion,
and the “triplet-DALI” expansion, all compared with the likelihood evaluated on a grid. Reproduced
from Figure 1 of “Breaking the Spell of Gaussianity: Forecasting with Higher Order Fisher Matrices”
published in Mon. Not. Roy. Astron. Soc. [9].

6. The Expected Bayesian Evidence—Generalising Fisher Matrices to Model Selection

At the root of the Fisher matrix formalism is the Laplace approximation, i.e., the assumption that
the likelihood surface is a multivariate Gaussian when viewed as a function of the model parameters.
We can generalise this to the higher-level question of model selection, where we compute the posterior
probabilities of different models, given the data collected, but regardless of the model parameters 6.
The ratio of these probabilities is the ratio of the prior model probabilities, multiplied by the “Bayes
factor”, which is the ratio of the marginal likelihoods (or Bayesian evidence) of the models, where the
evidence for a model M is

p@IM) = [ p(716, M)p(@] M) b @)

With the Laplace approximation for the first, likelihood term, and a uniform prior (which can be
generalised to a Gaussian prior), we can compute the expected evidence (conditional on some fiducial
set of parameters) by performing Gaussian integrals. For nested models (with n’ and n = n' +p
parameters respectively), the considerations of Section 4 on the locations of the peak likelihood is
relevant, and the result depends on the shifts of the fiducial parameters away from the values that are
fixed in the lower-dimensional model, §¢;. If we further approximate that the expected Bayes factor
is the ratio of the expected evidences, then the expected Bayes factor is (see [7] for details)

_,2 VdetF 1 P
(B) = (2n) P/Zmexp (—259aFaﬁ59,3> [ 1264, (24)
v 9=1
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where Af, are the prior ranges of the additional p parameters in the extended model, and the offsets
6, are given by Equation (19). Note that F is an n x n matrix, F' is n’ x n’, and G is an n’ x p block
of the full n x n Fisher matrix F, given by Equation (20). The expression we find is a specific example
of the Savage-Dickey density ratio [11]; here we explicitly use the Laplace approximation to compute
the offsets in the parameter estimates which accompany the wrong choice of model.

Figure 3 shows the ratio of expected evidences, assuming the Laplace approximation (as the
Fisher matrix does), for nested cosmological models. Details are in the caption, but essentially one
parameter is fixed in the simpler model, but allowed to vary in the more complex model. If the more
complex model applies, then the data will favour the simpler model if the parameter is close to the
fixed value. This is shown in the figure by the cusp in the graph. In B is positive to the left of the cusp,
and negative to the right.
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Figure 3. The ratio of expected evidences B for two cosmological models. One is based on Einstein
Gravity; the other is a more general model where the growth rate of perturbations is allowed to be
a free parameter, rather than fixed. The graph shows the ratio as a function of the true shift of the
growth rate away from the General Relativity value, for weak lensing data expected from ESA’s Euclid
satellite. If the growth rate is close to Einstein’s (left of the figure; InB > 0), Bayesian evidence
is expected to favour Einstein gravity, whereas if the deviation is large enough (right of the cusp;
In B < 0), it favours the more complex model. Adapted from Figure 2 of “On model selection forecasting,
Dark Energy and modified gravity” published in Mon. Not. Roy. Astron. Soc. [7].

7. Discussion

This article reviews some recent developments in Fisher matrix theory, which have been
motivated by cosmology. The Fisher matrix for data consisting of pairs that have errors in both x
and y is derived, as a specific example of a general result where the data can depend on arbitrary
variables x that may be measured with some error. The Fisher matrix is shown to be able to
determine biases in some parameters when others are set to fixed values (such as in nested models
where the simpler model does not allow some parameters to vary). DALI, which goes beyond the
Laplace approximation by using higher-order derivatives, is found to allow much more accurate
predictions for the expected shape of the likelihood surface. Finally, the concept of expected
probabilities in the Laplace approximation is generalised to model selection, by computing the
expected Bayesian evidence.
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