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Abstract: Approximate Message Passing (AMP) and Generalized AMP (GAMP) algorithms usually
suffer from serious convergence issues when the elements of the sensing matrix do not exactly match
the zero-mean Gaussian assumption. To stabilize AMP/GAMP in these contexts, we have proposed
a new sparse reconstruction algorithm, termed the Random regularized Matching pursuit GAMP
(RrMpGAMP). It utilizes a random splitting support operation and some dropout/replacement
support operations to make the matching pursuit steps regularized and uses a new GAMP-like
algorithm to estimate the non-zero elements in a sparse vector. Moreover, our proposed algorithm
can save much memory, be equipped with a comparable computational complexity as GAMP and
support parallel computing in some steps. We have analyzed the convergence of this GAMP-like
algorithm by the replica method and provided the convergence conditions of it. The analysis also
gives an explanation about the broader variance range of the elements of the sensing matrix for this
GAMP-like algorithm. Experiments using simulation data and real-world synthetic aperture radar
tomography (TomoSAR) data show that our method provides the expected performance for scenarios
where AMP/GAMP diverges.

Keywords: compressed sensing; random regularization; matching pursuit; generalized approximate
message passing; replica method

1. Introduction

Compressed Sensing (CS) has been a research focus in recent years. The idea of sparse
estimation and compressed sensing has also been applied in adaptive filtering [1–4] and nonlinear
dynamics systems [5,6]. Define the support of an unknown K-sparse (K � N) vector x ∈ CN as:
S = {j : j ∈ {1, . . . , N}, xj 6= 0}. We consider an under-determined noisy linear system:

y = Ax + ε (1)

where y ∈ CM is the measurement vector, ε ∈ CM is the additive Gaussian noise vector and A ∈ CM×N

(M < N) is the projection matrix, also termed the sensing matrix. The aim of CS is to reconstruct x
from y and A.

On the one hand, it is well known that the CS problem can be rephrased into a probabilistic
inference problem on the bipart factor graph shown in Figure 1a. Donoho et al. proposed the
Approximate Message Passing (AMP) algorithm [7,8] to solve it. Rangan et al. generalized AMP to
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adapt to an arbitrary sparse prior and arbitrary measurement noise; their work is called the Generalized
Approximate Message Passing (GAMP) algorithm [9]. Since the derivation of AMP/GAMP is based
on a zero-mean Gaussian projection matrix hypothesis, they cannot work well if the projection matrix
does not satisfy the hypothesis, as shown in Section 4. This phenomenon motivates us to improve
the AMP/GAMP algorithm for a more general projection matrix. On the other hand, although `0

methods, such as Orthogonal Matching Pursuit (OMP) [10] and Compressive Sampling Matching
Pursuit (CoSaMP) [11], are simple and effective, they use Least Squares (LS) to calculate the amplitude
of non-zero elements. Therefore, these methods have to face the matrix inversion problem. When the
scale of the projection matrix is small, this problem is not serious. However, when the scale becomes
larger, the multipliers grow cubically as a function of sparsity K. This drawback stimulates us to
find some approach to replace the LS step in `0 methods and to overcome the disadvantages of OMP
and CoSaMP.

...

...

(a)

...

...

(b)

Figure 1. The factor graph description of a linear system. (a) Bipart factor graph; (b) Restricted
factor graph.

In this paper, we propose a new sparse estimation algorithm, termed Random regularized
Matching pursuit Generalized Approximate Message Passing (RrMpGAMP), to solve the CS problem.
Our method can be regarded as a kind of `0 optimization algorithm, termed Random regularized
Matching Pursuit (RrMP), but the mean and variance estimation of x are the output of a restricted
GAMP algorithm, termed the Fixed support GAMP (FsGAMP). In this way, it allows a more general
projection matrix and does not calculate the inverse matrix directly. The computational complexity of
RrMpGAMP is comparable to GAMP, and the memory occupation of RrMpGAMP is much less than
GAMP and other LS-based algorithms.

The rest of this paper is organized as follows. We describe the RrMpGAMP algorithm in Section 2,
then analyze the convergence of FsGAMP by the replica method in Section 3 and then perform
experiments in Section 4. We draw a conclusion in the last Section 5. The derivation of the FsGAMP
algorithm is provided in the Appendix.

2. Random Regularized Matching Pursuit Generalized Approximate Message Passing

As mentioned in the Introduction, the RrMpGAMP algorithm includes two parts: the RrMP
algorithm and the FsGAMP algorithm, which is embedded in RrMP. The former is a new `0

optimization algorithm; the latter is a tiny revised GAMP algorithm.
At the beginning, we assume the support S has been known, which means the probability of

every zero element in x is one. Therefore, we just need to consider the probability of other non-zero
elements in x. We suppose that the Probability Distribution Function (PDF) of x and the likelihood
function of z = Ax are separable, i.e.,

px (x) = 1× pxS(xS) = ∏K
j=1 pxSj

(xSj) (2)

py |z (y|z) = ∏M
m=1 pym |zm(ym|zm) (3)
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Therefore, the probabilistic form of Equation (1) can be written as:

px |y (x|y) = 1× pxS |y (xS|y) ∝ py |xS
(y|xS)pxS(xS)

= ∏M
m=1 pym |zm

(
ym
∣∣amSk xSk + ∑K

j 6=k amSj xSj

)
∏K

j=1 pxSj
(xSj) (4)

Actually we do not know S in the first place; a straightforward idea is to find it by some matching
pursuit-based method.

2.1. Random Regularized Matching Pursuit Algorithm

A traditional matching pursuit algorithm (MP or OMP) finds an index of the non-zero element
of x at each iteration. It does not rollback even if an incorrect index has been chosen. Our proposed
algorithm sequentially pursues multiple indexes at each iteration and has the ability to undo, like the
well-known Regularized OMP (ROMP) algorithm and the CoSaMP algorithm.

We use the subscript l to denote left, r to denote right and |U| to designate the cardinality of
temporary support U. Define three functions appearing in the algorithm: FixSuppGAMP(y, A, U)

calculates the mean and variance estimation of x; R2s\s(v) finds the indexes of the 2s < K absolutely
largest entries of v, where s is the probe length, and then shuffles these indexes and bisects them; the
outputs are the left and right indexes’ subset and the amplitudes supported on them, respectively;
support updating function H(u, c, Λ, S) generates a new indexes’ set by a group of rules; we will
explain it soon.

The steps of RrMP are listed in Algorithm 1.

Algorithm 1 Random Regularized Matching Pursuit.

Input: y, A, K, s
Output: xn+1

1: S0 ← ∅, x0 ← 0
2: (Λl , cl , Λr, cr)← R2s\s(AT(y−Axn))
3: Ul ← Sn ∪Λl , Ur ← Sn ∪Λr
4: ul ← FixSuppGAMP(y, A, Ul)
5: ur ← FixSuppGAMP(y, A, Ur)
6: θ = arg min{l,r} {‖y−Aul‖2, ‖y−Aur‖2}
7: Λn+1 ← Λθ , cn+1 ← cθ , un+1 ← uθ , Un+1 ← Uθ

8: Sn+1 ← H(un+1, cn+1, Λn+1, Sn)
9: xn+1 ← FixSuppGAMP(y, A, Sn+1)

They are separated into two stages: the first stage is Lines 2–5, and the second stage is Lines 6–9.
At the first stage, Line 2 obtains two index candidates, Λl and Λr, and the correlation coefficients
between the residual and columns of A, cl and cr. It is a key step, since the shuffle and bisecting
operations are equivalent to a random search in N dimensional {0, 1} space. Line 3 merges the previous
support set Sn with two current candidates, respectively. Lines 4 and 5 roughly estimate x by the
FsGAMP algorithm. At this stage, the candidate indexes are not replaced/dropped. Therefore, the
number of possible incorrect indexes is typically greater than that at the second stage. This is the
meaning of “roughly”. At the second stage, Lines 6 and 7 choose the minimal residual branch as a
new candidate. This prune operation can be regarded as a regularization since the algorithm chooses a
small residual branch and discards a big residual branch. In another words, the algorithm discards
half of the candidate indexes pursued by Line 2. Line 8 updates the support set. Line 9 estimates x
again. Note that Lines 3–5 can be calculated by parallel computing.

We define the precision τ as the ratio of the residual norm over the measurement norm, and set
the error bound to 0.01, which means 99.99% of the measurement energy has been recovered. When
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|P| equals sparsity K, if the precision does not reach the error bound, set Sn+1 = P, keep running RrMP
at most 2s times and then stop the algorithm.

The idea of the support updating function comes from two observations: (i) not all indexes in the
candidate set are correct, so the algorithm should drop or replace a part of the indexes, as shown in
Equations (7) and (8); the dropout/replacement operations can be regarded as a regularization; (ii) the
candidate indexes corresponding to correlations cn+1 and to amplitudes un+1 are not overlapping
entirely; some correct indexes belong to the former, and some belong to the latter. It is necessary to
merge them, as shown in Equation (9).

Now, we define the support updating function H(un+1, cn+1, Λn+1, Sn) as follows. Firstly, define
two threshold functions corresponding to the sparse representation coefficients u, which are evolved
with iterations:

a , min
i∈Sn
{|(un+1)|i} (5)

b , max
j∈Λn+1

{|(un+1)|j} (6)

Secondly, define the indexes’ updating procedure just for u:

P ,


Sn ∪ {j : arg maxj∈Λn+1{|(un+1)j|}}, a

2 > b
Sn ∪ {j : j ∈ Λn+1, |(un+1)j| ≥ a

2}, a > b ≥ a
2

Sn ∪ {j : j ∈ Λn+1, |(un+1)j| ≥ b
2}, b > a ≥ b

2{
i : i ∈ Sn, |(un+1)i| ≥ b

2

}
∪
{

j ∈ Λn+1, |(un+1)j| ≥ b
2

}
, b

2 ≥ a

(7)

Thirdly, define the the indexes’ updating procedure just for the correlation coefficients c:

Q , {j : j ∈ Λn+1, |(cn+1)j| ≥ 0.5‖cn+1‖∞} (8)

Lastly, we merge the two index sets to obtain the output of:

Sn+1 = P ∪Q (9)

These update rules are inspired by the regularized OMP algorithm [12,13]. It seems a bit complex,
but the basic rationale is simple. We segment the absolute amplitudes on the pursued support at
each iteration to ladders; the height of each ladder is dominated by the minimum of the absolute
amplitudes, which is supported on the previous pursued support set Sn, and by the maximum of
absolute amplitudes, which is supported on the current candidate support set Λn+1. Since the square
of the amplitude is energy, the absolute amplitudes in the same ladder step can be explained to obey a
similar energy level. For Equation (7),

• If a
2 > b, this means that the absolute amplitudes of the current candidate indexes are much smaller

than the absolute amplitudes of the previous pursued indexes, so the algorithm chooses only one
current candidate index. This situation corresponds to a sharp ladder step.

• If a > b ≥ a
2 , this means the absolute amplitudes of the current candidate indexes are just a little

smaller than the absolute amplitudes of the previous pursued indexes, so the algorithm chooses
those indexes whose absolute amplitudes are greater than a/2. This situation corresponds to a
flattened ladder step.

• If b > a ≥ b
2 , this means the absolute amplitudes of the current candidate indexes are greater than

the absolute amplitudes of the previous pursued indexes, but the minimum absolute amplitude of
the previous pursued indexes is not a very small value, so the algorithm chooses those indexes
whose absolute amplitudes are greater than b/2. This situation also corresponds to a flattened
ladder step.
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• If b
2 > a, that means the minimum absolute amplitude of the previous pursued indexes is very

small, so the algorithm drops a part of the previous pursued indexes and adds a part of the current
candidate indexes. This situation corresponds to a sharp ladder step.

However, it is not enough to choose indexes just by absolute amplitudes. Some correlations about
the residual and the columns of A are significant. The algorithm finds these indexes by Line 2 in
Algorithm 1. Maybe, the absolute amplitudes supporting them are not significant, such that they are
excluded by Equation (7). We can imagine these indexes as free electrons that are escaping to other
energy levels. Therefore, the algorithm should retrieve them. This is the meaning of Equation (8). The
rules are heuristic, the explanations are analogies to physics.

2.2. Fixed Support GAMP Algorithm

The concept of message passing on a factor graph can be found in [14]. In contrast to AMP/GAMP,
the FsGAMP algorithm does not reform Equation (1) to a bipart graph. It restricts the edges to a part
of variable nodes, which correspond to the temporary support U, as shown in Figure 1b. Based on this
factor graph and the posterior probability Equation (4), firstly, we define the messages from the factor
node to the variable node. For the Max-Sum rule, they are:

∆fm→xUk
(t, xUk ) , max

xU

[
log pym |zm

(
ym
∣∣amUk xUk + ∑|U|

j 6=k amUj xUj

)
+ ∑|U|

j 6=k ∆fm←xUj
(t, xUj)

]
+ c (10)

where c means constant ; for the Sum-Product rule, they are:

∆fm→xUk
(t, xUk ) , log

[ ∫
{xUj

}j 6=k

pym |zm

(
ym
∣∣amUk xUk + ∑|U|

j 6=k amUj xUj

)
×∏|U|

j 6=k exp
(
∆fm←xUj

(t, xUj)
)]

+ c (11)

Secondly, we define the messages from the variable node to the factor node. The form of the
Max-Sum rule is the same as the form of the Sum-Product rule:

∆fm←xUk
(t + 1, xUk ) , log pxUk

(xUk ) + ∑M
i 6=m ∆fi→xUk

(t, xUk ) + c (12)

The derivation of FsGAMP is very similar with GAMP [9]. Due to space limitations, we only
emphasize the difference in the main body and left the details to the Appendix. Since |U| non-zero
elements of x have been pursued, we set other elements of x to zero directly, such that the ∑N

j 6=k amjxj

and ∑N
j 6=k|amj|2xj terms in GAMP reduce to ∑

|U|
j 6=k amUj xUj and ∑

|U|
j 6=k|amUj |2xUj . Other derivation steps

are the same as GAMP. It is worth noting that the derivation of GAMP is primarily based on the
Central-Limit Theorem (CLT), but in FsGAMP, this condition is canceled, because we have known
the index set of zero elements (though maybe incorrect), such that the mean and variance estimation
of these elements are also zeros. This simplification eliminates uncertainty and brings stability to
FsGAMP to adapt more types of projection matrices.

Rangan et al. [9,15] investigated the influence of damping in GAMP. They found that damping
can induce convergence. Similar steps are used in the FsGAMP algorithm:

νp(t) = δνp(t) + (1− δ)νp(t− 1) (13)

ŝ(t) = δŝ(t) + (1− δ)ŝ(t− 1) (14)

νs(t) = δνs(t) + (1− δ)νs(t− 1) (15)

x̂(t) = δx̂(t) + (1− δ)x̂(t− 1) (16)
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The steps of FsGAMP are listed in Algorithm 2. Notation t indicates the iteration number; x̂
and νx denote the mean and variance of x; the element-wise product and division are denoted � and
�. Function gout(·) and gin(·) calculate the Bayesian estimation of z and x, respectively. Please refer
to [9] (Table 1) and the Appendix to find their specific forms. The prior px(xSj) can take a Gaussian,
Laplacian or spike-and-slab distribution.

Algorithm 2 Fix Support GAMP.

Input: y; A; U
Output: x̂; νx

1: x̂← 0N×1; νx ← 0N×1; ŝ(t = 0)← 0M×1

2: x̂U(t = 1)← 0|U|×1; νxU (t = 1)← 0|U|×1

3: while stop = false do

4: νp(t)← |A:,U |2νxU (t)
5: ẑ(t)← A:,U x̂U(t)
6: p̂(t)← ẑ(t)− ŝ(t− 1)� νp(t)
7: [ẑ0(t), νz0(t)]← gout(p̂(t), νp(t))
8: ŝ(t)← (1� νp(t))� (ẑ0(t)− p̂(t))
9: νs(t)← (1� νp(t))� (1− νz0(t) � νp(t))

10: νrU (t)← 1� ((|A:,U |2)Tνs(t))
11: r̂U(t)← x̂U(t) + νrU (t)� (AT

:,U ŝ(t))
12: [x̂U(t + 1), νxU (t + 1)]← gin(r̂U(t), νrU (t))
13: {damping steps}
14: if ‖x̂U(t + 1)− x̂U(t)‖2/‖x̂U(t)‖2 ≤ δ then

15: x̂(U)← x̂U(t + 1), νx(U)← νxU (t + 1)
16: stop← TRUE
17: end if
18: end while

GAMP calculates all elements of x in the loop, while FsGAMP estimates at most |U| non-zero
elements of x in the loop. Since |U| increases gradually and |U| ≤ K, the memory footprint rate of
FsGAMP is not more than K/N. Because K � N, the memory saving is remarkable.

2.3. Computational Complexity Discussion

The computational complexity of the GAMP algorithm is dominated by four matrix-vector
multipliers per iteration [9]. The multipliers of FsGAMP coincide with GAMP: Lines 4, 6, 10 and 11.
At each multiplication, the FsGAMP algorithm only computes M× |S|multipliers, while the GAMP
algorithm needs M× N multipliers.

RrMpGAMP has two nested loops; the outer loop is RrMP; the inner loops are three FsGAMPs.
Because the replacement/dropout operations in the RrMP algorithm are random, we cannot exactly
calculate how many new indexes are chosen per iteration. However, if we roughly estimate the number
of winners in these candidates to s/2 per iteration (usually, this number is greater than s/2 with the
step in observation), the outer loop has J = dK/(s/2)e+ 2s iterations. Furthermore, 2s can be removed,
since it is a small quantity compared to dK/(s/2)e. Because the number of iterations of GAMP (as
well as FsGAMP) is also uncertain, we simply use the maximal iteration number B as the worst setting.
Firstly, taking no account of M and B, we have:

(2s +
s
2
) + (2(

s
2
+ s) +

s
2
) + (2(

2s
2
+ s) +

3s
2
) + · · ·+ (2(

(J − 1)s
2

+ s) +
Js
2
)

= 2[s +
s
2
+ s +

2s
2
+ s + · · ·+ (J − 1)s

2
+ s] + (

s
2
+

2s
2
+

3s
2
+ · · ·+ Js

2
) (17)



Entropy 2016, 18, 207 7 of 25

where the first square brackets correspond to Lines 4–5 in Algorithm 1, and the second square brackets
correspond to Line 9 in Algorithm 1. After summation and simplification, we have:

Equation (17) =
Js(3J + 7)

4
(18)

Secondly, considering M, B, four matrix-vector multiplies per iteration, and expanding J, we have:

Equation (18)⇒ O(4MBJ2s) = O(16MKB) (19)

For GAMP, the computational complexity can be estimated as O(4MNB), If 4K < N,
the computational complexity of RrMpGAMP is less than GAMP.

Using the matching pursuit-based methods to solve a M-row n-column linear system,
the computing time mainly depends on the least squares step, especially when the number of equations
M is large and the number of variables n is not small. For example, the Householder-LS method needs
O(2n2(M− n/3)) flops ([16], Algorithm 5.3.2). Because OMP finds one column index at a time and n
increases from one to K, the computational complexity of OMP using Householder-LS is:

K

∑
n=1

O(2n2(M− n/3)) = O
( K

∑
n=1

2Mn2 −
K

∑
n=1

2
3

n3
)

= O
(

2M
K(K + 1)(2K + 1)

6
− 2

3
(

K(K + 1)
2

)2
)

= O(MK3) (20)

since K � M. We compare two computational complexity results. For RrMpGAMP, it is O(16MBK);
for OMP using Householder-LS, it is O(MK3). If 16B < K2, the computational complexity of
RrMpGAMP is less than Householder-LS OMP.

3. Convergence Discussion

We use the replica method [17,18] to asymptotically describe the evaluation of the logarithm of
the partition function of the posterior distribution Equation (4). We concentrate on the Sum-Product
FsGAMP algorithm in this discussion. The main advantage is that replica computations give a
statistical physical meaning to the linear system. The replica method was used for compressed sensing
in recent years [19–22]; we follow the research of [23].

We use the zero-mean Gaussian matrix assumption in the derivation of FsGAMP and replica
analysis, because FsGAMP just works on the RrMP pursued support set, and the cardinality of it is
much smaller than the cardinality of a sparse vector, i.e., |S| � N. We know that the brief propagation
on the factor graph tends to diverge if there are many cycles on it [14]. When the number of cycles
decreases, the brief propagation tends to converge. The factor graph form of compressed sensing is
a bipart graph, and there are too many cycles on it. However, if we restrict the connections to the
pursued variable nodes and sequentially construct the connections by some kind of pursuit strategy,
such as RrMP pursuit, the number of cycles increases from zero to a relatively small integer, compared
to the huge number of bipart connection cycles. These relatively small cycles and sequential pursuit
method can be seen as a regularization to the non-zero-mean reality. This is our intuition.

3.1. The Replica Method Analysis of FsGAMP

The zero-mean Gaussian measurement noise is assumed an equivalent variance ∆ for every entry
of ε, and generally, ∆ 6= ∆0, where ∆0 is the true noise variance. This assumption means that the noise
variance (inside νz0(t) term), which is estimated by the FsGAMP algorithm, usually does not equal
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the true noise variance. The influence of their difference is shown in Equation (74). We rewrite the
definition of the CS problem as follows:

yµ =
N

∑
i=1

Aµisi + εµ µ = 1, . . . , M (21)

where s is the original signal, and we use the notation s to replace notation x in Equation (1) to
avoid ambiguity in the following derivation and use µ to replace m in accordance with the replica
computations’ convention. We denote α = M/N with the number of measurements per variable.
In the asymptotic analysis, we are interested in the case of large system limitation N → ∞, while
keeping signal density px0(x0) and measurement rate α of order one, where we let x0 = s. It is also
necessary to assume that the components of signal s and measurement y are also order one, such that
we can consider the elements of sensing matrix A to be zero-mean. It is worth noting that the variance
of the order of A’s elements is O(1/K), not O(1/N), because we have pursued the indexes of non-zero
elements. This makes it not necessary for the FsGAMP algorithm to summarize N entries in one row
of A. In this way, the variance range of A’s elements enlarges.

Before the start of the computation, we briefly review the link between a Hamiltonian and
linear system estimation problems (we know the form of compressed sensing is a linear system).
The posterior distribution of a linear system in the Boltzmann form is:

p(x|y, θ) =
1

Z(θ)
e−E(x|y,θ)

⇒ E(x|y, θ) = − log(p(x|θ))− log(p(y|x, θ)) (22)

where p(x|θ) is the prior, θ are the model parameters, such as:

p(x|θ) =
N

∏
i=1

[
(1− ρ)δ(xi) + ρN (xi|θ̃)

]
(23)

Additionally, p(y|x, θ) is likelihood:

p(y|x, θ) =
M

∏
µ=1
N (yµ|(Ax)µ, θ) (24)

Then, we get the Hamiltonian:

E(x|y, θ) = −
N

∑
i=1

log(pi(xi)) +
1
∆

M

∑
µ=1

(yµ − (Ax)µ)
2 +

M
2

log(2π∆) (25)

Now, we derive the potential of Equation (21) under the pursued |S| column indexes’ condition,
as shown in Equation (4). The meaning of “potential” in inference theory equals the meaning of “Bethe
free entropy” in statistical physics. For the simplification of notation, we ignore the uppercase letter S
and just use the subscript, such as i, to indicate Si in Equation (4). The aim is to sample a vector x from
the probability measure:

px |y (x|y)

=
1
Z

K

∏
i=1

pxi (xi)
M

∏
µ=1

1√
2π∆

e−
[yµ−∑K

i=1 Aµi xi ]
2

2∆

=
1
Z

K

∏
i=1

pxi (x)
M

∏
µ=1

1√
2π∆

e−
[∑K

i=1 Aµi(xi−si)+εµ ]2

2∆ (26)
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Equation (26) can be seen as the Boltzmann measure on a disordered system with Hamiltonian:

H(x) = −
K

∑
i=1

log[pxi (xi)] +
[∑K

i=1 Aµi(xi − si) + εµ]2

2∆
(27)

where the partition function Z is the normalization constant of the full posterior distribution
Equation (26) and x is the configuration of the Hamiltonian. The thermodynamic properties of
the disordered system are characterized by the average free entropy EA,s,ε(log Z), where:

Z(A, s, ε) =
∫ [ K

∏
i=1

dxi

K

∏
i=1

pxi (xi)
] M

∏
µ=1

1√
2π∆

e−
[∑K

i=1 Aµi(xi−si)+εµ ]2

2∆ (28)

Because the expectation of the logarithm function is a hard problem, the average free entropy
(also called the Bethe free entropy) can be evaluated via the replica trick as:

Φ ≡ lim
K→∞

1
K
EA,s,ε{log Z} = lim

K→∞

1
K

lim
n→0

EA,s,ε{Zn} − 1
n

(29)

where n independent replicas are introduced to reform the original disordered system to a new
system (i.e., the name of the method) and EA,s,ε is the average over all of the sources of disorder in
Equation (21). Each configuration of the new system is indexed by an n-tuple i = (i1, . . . , in), where
each ia, a = 1, . . . , n has a continuous non-zero state value because ia corresponds to a non-zero element
in x, which has been found by the matching pursuit process of the RrMP algorithm.

Now, the problem of computing the free energy is converted into computing the n-th moment of
the partition function Z.

[Z(A, s, ε)]n =
1

(2π∆)
Mn
2

∫ [
∏
i,a

dxa
i ∏

i,a
pxa

i
(xa

i )
]
∏

µ

e−
∑n

a=1 [∑
K
i=1 Aµi si+εµ−∑K

i=1 Aµi xa
i ]

2

2∆ (30)

The average replicated partition function can be rearranged as:

EA,s,ε{Zn} = 1

(2π∆)
Mn
2

∫ [
∏
i,a

dxa
i ∏

i,a
pxa

i
(xa

i )
]
∏

µ

EA,s,ε

{
e−

∑n
a=1 [∑

K
i=1 Aµi si+εµ−∑K

i=1 Aµi xa
i ]

2

2∆

}
(31)

where a, b, . . . , n denote the replica indexes. Define:

Xµ = EA,ε

{
e−

∑n
a=1 [∑

K
i=1 Aµi si+εµ−∑K

i=1 Aµi xa
i ]

2

2∆

}
(32)

Equation (31) can be rewritten to:

EA,s,ε{Zn} = 1

(2π∆)
Mn
2
Es

{ ∫ [
∏
i,a

dxa
i ∏

i,a
pxa

i
(xa

i )
] M

∏
µ=1

Xµ

}
(33)

In order to compute Xµ, firstly, we should define a variable:

va
µ =

K

∑
i=1

Aµi(x0
i − xa

i ) + εµ, a = 1, . . . , n (34)

where x0
i , si, to help the following derivation. By applying the central limit theorem to va

µ, since it is a
sum of i.i.d. Gaussian terms of the sensing matrix A at a fixed signal s and configuration x, we conclude
that va

µ obeys a joint Gaussian distribution. When the matrix A has i.i.d. elements with zero-mean and
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variance 1/K, we introduce the order parameters to summarize an amount of microscopic states of the
replicas to four macroscopic states as follows:

u =
1
K

K

∑
i=1

(si)
2 (35)

ma =
1
K

K

∑
i=1

xa
i si, a = 1, . . . , n (36)

Qa =
1
K

K

∑
i=1

(xa
i )

2, a = 1, . . . , n (37)

qab =
1
K

K

∑
i=1

xa
i xb

i , a < b, b = 2, . . . , n (38)

These parameters constitute a matrix, called the overlap matrix:

Q =



u m1 m2 · · · mn

m1 Q1 q12 · · · q1n

m2 q12 Q2 . . . q2n

...
...

. . . . . . q(n−1)n

mn q1n · · · q(n−1)n Qn


(39)

Furthermore, according to the fact that both A and ε are zero-mean, we conclude the first two
moments of the joint Gaussian distribution:

EA,ε{va
µ} = 0 (40)

EA,ε{(va
µ)

2} = EA,ε

{
∑

i
A2

µi(x0
i − xa

i )
2
}
+ ∆0

=
1
K ∑

i
(x0

i − xa
i )

2 + ∆0

= Qa − 2ma+ < s2 > +∆0 (41)

EA,ε{va
µvb

µ} = EA,ε

{
∑

i
A2

µi(x0
i − xa

i )(x0
i − xb

i )
}
+ ∆0

= qab − (ma + mb)+ < s2 > +∆0 (42)

where < s >2=
∫

s2 ps(s)ds. The dependence on the measurement index µ of vµ and Xµ is canceled
due to the averaging; therefore, we note vµ = v and Xµ = X for simplicity. In order to further calculate
the expectation in Equation (33), we apply the replica symmetric ansatz:

ma = m, ∀a, Qa = Q, ∀a, qab = q, ∀(a, b : a 6= b) (43)

which is valid for the inference problem on a locally tree-like or highly dense factor graph under
the prior matching condition. Fortunately, by the matching pursuit process in RrMP, we found the
positions of non-zero elements in the signal, such that the condition has been satisfied. Based on this
ansatz, Equation (39) equals:

Q =



u m m · · · m
m Q q · · · q

m q Q
. . . q

...
...

. . . . . . q
m q · · · q Q


(44)
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We want to compute:

X = Ev

{
e−(1/2∆)∑n

a=1(v
a)2
}

(45)

with a probability distribution:

p(v) =
1√

(2π)ndet(G)
e−(1/2)∑a,b va(G−1)abvb

(46)

where the covariance matrix G of {va} under the replica symmetric ansatz is given by:

Gaa = Ev{vava} = Q− 2m+ < s2 > +∆0 (47)

Gab = Ev{vavb} = q− 2m+ < s2 > +∆0 (48)

such that:
G = (< s2 > −2m + q + ∆0)1n + (Q− q)In (49)

where 1n is a n× n matrix with elements all equivalent to one and In is an unitary diagonal matrix.
Then, Equation (45) equals:

X =
1√

(2π)ndet(G)

∫
(dv)e−

1
2 vT(G−1+In/∆)v

=
1√

det(In + G/∆)
(50)

The eigenvectors of G can be divided into two categories: one eigenvector of the form (1, 1, . . . , 1)
with associated eigenvalue Q − q + n(q − 2m+ < s2 > +∆0), and n − 1 eigenvectors of the form
(0, . . . , 0,−1, 1, 0, . . . , 0) with eigenvalues Q − q, where the couple (−1, 1) shifts one by one. Now,
we have:

det
(

In +
G
∆

)
=

1 + 1
∆ (Q− q + n(< s2 > −2m + q + ∆0))

(1 + Q−q
∆ )1−n

(51)

such that:

lim
n→0

X = e−
n
2 [

<s2>−2m+q+∆0
Q−q+∆ +log( Q−q+∆

∆ )] (52)

Now, back to Equation (33), we need to guarantee that the order parameters m, q, Q coincide with
their definition Equation (35), and this guarantee can be obtained by Dirac functions:

δ(
K

∑
i=1

xa
i si − Kma), a = 1, . . . , n (53)

δ(
K

∑
i=1

(xa
i )

2 − KQa), a = 1, . . . , n (54)

δ(
K

∑
i=1

xa
i xb

i − Kqab), a < b, b = 2, . . . , n (55)
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Since Dirac functions in the frequency field are the Fourier transform of const 1/2π in the time
field, we have:

δ(
K

∑
i=1

xa
i si − Kma) =

∫
dm̃a 1

2π
ejm̃a [Kma−∑K

i=1 xa
i si ] (56)

δ(
K

∑
i=1

(xa
i )

2 − KQa) =
∫

dQ̃a 1
2π

ejQ̃a [KQa−∑K
i=1(xi)

2] (57)

δ(
K

∑
i=1

xa
i xb

i − Kqab) =
∫

dq̃ab 1
2π

ejq̃ab [Kqab−∑K
i=1 xa

i xb
i ] (58)

where j =
√
−1. It is worth noting that m̃a,Q̃a and q̃ab also satisfy the replica symmetric ansatz.

Rewriting const one in the time field as the inverse Fourier transform of Dirac function 2πδ(·) in the
frequency field and substituting the right-hand side of Equations (56)–(58), we obtain:

1 =
∫

dma
[ ∫

dm̃ae−m̃a [Kma−∑K
i=1 xa

i si ]
]

(59)

1 =
∫

dQa
[ ∫

dQ̃ae−Q̃a [ K
2 Qa− K

2 ∑K
i=1(xa

i )
2]
]

(60)

1 =
∫

dqab
[ ∫

dq̃abe−q̃a [Kqab−∑K
i=1 xa

i xb
i ]
]

(61)

and consider n replicas:

1 =
∫ [ n

∏
a

dQ̃adQadm̃adma
][ ∫ n,(n−1)/2

∏
b,a<b

dq̃abdqab
]

× exp
{ n

∑
a

m̃a(Kma −
K

∑
i

xa
i x0) +

n

∑
a

Q̃a
(K

2
Qa − 1

2

K

∑
i
(xa

i )
2
)
−

n,(n−1)

∑
b,a 6=b

q̃ab
(

Kqab −
K

∑
i

xa
i xb

i

)}
(62)

Plugging Equation (62) into Equation (33), we obtain:

EA,s,ε{Zn}

=
1

(2π∆)
Mn
2

∫ [ n

∏
a

dQ̃adQadm̃adma
]

[ ∫ n,(n−1)/2

∏
b,a<b

dq̃abdqabe
K
[

1
2 ∑

a
Q̃aQa− 1

2

n,(n−1)
∑

b,a 6=b
q̃abqab−∑

a
m̃ama

]
M

∏
µ

X
]

×
{ ∫

dx0 px0(x0)
n

∏
a

dxa pxa(xa)e−
1
2 ∑n

a Q̃a(xa)2+ 1
2 ∑

n,(n−1)
b,a 6=b q̃abxaxb+∑n

a m̃axax0
}K

(63)

We denote Γ as the integration in the {·}K. The exponential part of Γ has many cross terms
of n replicas, such that we should decouple them by linearizing the exponent. According to the
Hubbard–Stratonovich transform:

e
y
2 =

1√
2π

∫
R

e±z
√

y− z2
2 dz ,

∫
R

e±z
√

yDz (64)

with the Gaussian measure:
Dz =

1√
2π

e−
z2
2 dz (65)
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and the square completion: ( n

∑
a=1

xa)2
= 2

n

∑
b=a+1

xaxb +
n

∑
a=1

(xa)2 (66)

we have:

e
q̃ ∑

n,(n−1)
b,a 6=b xa xb

2 =
∫

ez
√

q̃(∑n
a xa)− q̃

2 ∑n
a (xa)2Dz

=
∫

ez
√

q̃(∑n
a xa)e−

q̃
2 ∑n

a (xa)2Dz (67)

Using the replica symmetric ansatz again, we obtain:

Γ =
∫

dx0 px0(x0)
∫
Dz
( ∫

dxpx(x)e−
1
2 (Q̃+q̃)x2+m̃x(x0)+z

√
q̃x
)n

(68)

Define f (z, x0) ,
∫

dxpx(x)e−
1
2 (Q̃+q̃)x2+m̃x(x0)+z

√
q̃x; since limn→0( f (z, x0))n = 1 + n log f (z, x0),

we have:

lim
n→0

∫
( f (z, x0))nDz =

∫
lim
n→0

( f (z, x0))nDz

= 1 + n
∫

log f (z, x0)Dz

≈ en
∫

log f (z,x0)Dz (69)

such that:

lim
n→0

Γ ≈
∫

dx0 px0(x0)
[
1 + n

∫
log f (z, x0)Dz

]
=
∫

px0(x0)dx0 +
∫

dx0 px0(x0)
[
n
∫

log f (z, x0)Dz
]

= 1 + n
∫ [

dx0Dz
]
px0(x0) log f (z, x0)

≈ en
∫
[dx0Dz]p

x0 (x0) log f (z,x0) (70)

Now, we combine Equations (52) and (70) with Equation (63) and use the replica symmetric
ansatz again:

lim
n→0

EA,s,ε{Zn} ≈
∫

dQ̃dQdm̃dmdq̃dqenKΦ(Q̃,Q,m̃,m,q̃,q) (71)

where:

Φ(Q̃, Q, m̃, m, q̃, q)

=
1
2
(Q̃Q− 2m̃m + q̃q)

− 1
2

M
K

(< s2 > −2m + q + ∆0

Q− q + ∆
+ log(Q− q + ∆)− log ∆

)
+
∫
[dx0Dz]px0(x0) log

∫
dxpx(x)e−

1
2 (Q̃+q̃)x2+m̃x(x0)+z

√
q̃x (72)

The integration Equation (71) is intractable, otherwise. We use the saddle point method to
estimate this integration by taking the optimum of Φ(Q̃, Q, m̃, m, q̃, q). It is worth noting that the replica
trick needs limn→0 limK→∞(·), but the saddle point estimation needs limK→∞ limn→0(·); furthermore,
Equation (71) is obtained under the condition limn→0(·). Therefore, we assume that the limits can be
exchanged, and the saddle point estimation of the integration Equation (71) should be done before we
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really let limn→0(·). These assumptions are not rigorous, but verified in the inference problem. Using
the saddle point method and making derivatives for m, Q, q, respectively, we get:

∂Φ
∂m

= 0⇒ m̃ =
M
K

1
Q− q + ∆

(73)

∂Φ
∂Q

= 0⇒ Q̃ =
M
K
− < s2 > +2m− 2q + Q + ∆− ∆0

(Q− q + ∆)2 (74)

∂Φ
∂q

= 0⇒ q̃ =
M
K

< s2 > −2m + q + ∆0

(Q− q + ∆)2 (75)

and:
m̃ = Q̃ + q̃ (76)

Using the saddle point method and making derivatives for m̃,Q̃, q̃, respectively, and substituting
Equation (76) for the derivatives, we get:

∂Φ
∂m̃

= 0⇒ m =
∫

dx0
[

x0 px0(x0)
∫

gmean(x0 + z
√

q̃
m̃

,
1
m̃
)Dz

]
(77)

∂Φ
∂q̃

= 0⇒ q =
∫

dx0
[

px0(x0)
∫ (

gmean(x0 + z
√

q̃
m̃

,
1
m̃
)
)2
Dz
]

(78)

∂Φ
∂Q̃

= 0⇒ Q =
{ ∫

dx0
[

px0(x0)
∫

gvar(x0 + z
√

q̃
m̃

,
1
m̃
)Dz

]}
+ q (79)

where the input end probability distribution is defined as:

px|r(x|r̂, νr) ,
px(x)N (x; r̂, νr)∫
px(x)N (x; r̂, νr)dx

(80)

Then, the mean function is given by:

gmean(r̂, νr) =
∫

xpx|r(x|r̂, νr)dx (81)

and the variance function is given by:

gvar(r̂, νr) =
[ ∫

x2 px|r(x|r̂, νr)dx
]
−
(

gmean(r̂, νr)
)2 (82)

In fact, Equations (81) and (82) correspond to the results of the gin(·) function in Algorithm 2.

3.2. The Prior Matching Conditions and Nishimori Conditions

The replica symmetric ansatz means that all of the replicas belong to the same state configuration,
such that every replica has the same statistical properties. This state configuration is given by the
macroscopic order parameters m, Q and q. Based on the replica symmetric ansatz, m is a correlation
between the original sparse signal s and its estimation x about all of the replicas; then, we have:

m = Ey{siEx|y{xi}} (83)

Similarly, Q is a self-correlation of these replicas; then, we have:

Q = Ey{Ex|y{x2
i }} = Es{s2

i } (84)

Another parameter q is the correlation between these replicas. As soon as the measurement
and the original signal satisfy the correct reconstruction condition, such as the Restricted Isometry
Property (RIP), the differences between these replicas are reflected in the measurement noise. Therefore,
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averaging the correlations with an infinitely large number of the replicas will eliminate fluctuations
caused by the noise and retain the energy of the signals; then, we have:

q = Ey{Ex|y{xi}Ex|y{xi}} = Ey{siEx|y{xi}} = m (85)

Now, we consider the average variance V(t) and the mean-squared error E(t):

V(t) ,
1
K

K

∑
i

gvar(r̂(t), νr(t)) (86)

E(t) ,
1
K

K

∑
i

(
gmean(r̂(t), νr(t))− si

)2 (87)

According to the derivation of belief propagation and Equation (86), the probability distribution
of xi at the (t + 1)-th iteration is:

p(xi, t + 1) ≈ 1
Z

pxi (xi)e
−M

K
xi−si−z

√
E(t)+ M

K ∆0
2(V(t)+∆) (88)

where Z is a normalization const. Then, the average variance V(t + 1) and the mean-squared error
E(t + 1) are:

V(t + 1) =
∫

dsDz ps(s)gvar

(
s + z

√
E(t) + ∆0

M/K
,

V(t) + ∆
M/K

)
(89)

E(t + 1) =
∫

dsDz ps(s)
[

gmean

(
s + z

√
E(t) + ∆0

M/K
,

V(t) + ∆
M/K

)
− s
]2

(90)

Combining Equations (73), (75), (79), (89) and (90), and noticing that s = x0, we get:

V(t + 1) = Q− q (91)

E(t + 1) =< s2 > −2m + q (92)

Furthermore, as soon as we assume:

Q =< s2 >, (93)

and remember:
q = m, (94)

and if the two conditions are satisfied at the fix point, then we have:

V(t + 1) = E(t + 1), (95)

which means the average variance and the mean-squared error are equivalent. We call Equations (94)
and (93) the prior matching conditions and Equations (95), (83), (84) and (85) the Nishimori conditions.
When these conditions are satisfied, the convergence of the FsGAMP algorithm can be guaranteed.

4. Experiments

We compare multiple probe length RrMpGAMP, e.g., RrMpGAMP-L4, with five well-known
algorithms: OMP, CoSaMP, basis pursuit (BP) with the interior point method to solve linear
programming, AMP and GAMP, where the notation s in Section 2 is replaced with L to avoid confusion.
We use MATLAB (Version R2014b)’s pinv function to implement the LS calculation in OMP and CoSaMP
and modify CoSaMP by adding a new LS step before the prune step to improve the estimation accuracy.
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Notice that pinv is the matrix Moore–Penrose pseudoinverse based on an SVD decomposition. It is
suitable for the case that the matrix has more rows than columns and is not of full rank; then, the
overdetermined least squares problem does not have a unique solution. The implementation of OMP
and CoSaMP comes from Needell’s work [24]; BP comes from the software package `1-MAGIC [25];
AMP comes from Kamilov’s work [26]; and GAMP comes from gamplab [27].

We do Q = 60 trials in each experiment and use the relative mean square error (RMSE):
ξ = 1/Q×∑Q

l=1 ‖x̂
l − xl‖2/‖xl‖2 as the performance metric. Set M = 128, N = 256 in these

experiments, except the last experiment. Define the sparsity-measurement ratio ρ , K/M and choose
K locations at random as the support of x. The amplitude of non-zero entry xi is independently drawn
from N(x; 0, 1). The signal-to-noise ratios (SNR) are calculated by SNR = 10 log10(‖Ax‖2/(Mν)).

4.1. Zero-Mean Gaussian Projection Matrix Cases

In the first two experiments, the elements of A are independently drawn from N(a; 0, 1/N),
and the columns are normalized. The first experiment, termed the ν test, investigates the
reconstruction performance versus noise power ν. Fixing K = 20, the range of ν is [10−6, 10−5, 10−4,
5× 10−4, 10−3, 5× 10−3, 10−2]. Figure 2a shows that four types (L = 2/4/6/8) of RrMpGAMP
perform the same as GAMP, better than OMP and CoSaMP and much better than BP and AMP.
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Figure 2. Reconstruction performance comparison using the zero-mean Gaussian projection matrix.
(a) Noise power test; (b) Sparsity range test.

The second experiment, termed the sparsity test, investigates the reconstruction performance
versus sparsity K. Fixing SNR = 40 dB, the range of K is [20, 25, 30, 35, 40, 45, 50]. Figure 2b shows
that four types (L = 2/4/6/8) of RrMpGAMP all perform the same as GAMP when K ≤ 45 or equally
ρ ≤ 0.35. Notice that CoSaMP degrades obviously when K ≥ 40, and RrMpGAMP-L4 is the best one
in the (M = 128, N = 256) setting, so we choose RrMpGAMP-L4 for the next three experiments.

4.2. More General Projection Matrix Cases

The third experiment investigates the reconstruction performance of various sparse projection
matrices. Define the sparsity ratio of matrix A as η; set the range of η to [0.1, 0.2, . . . , 0.9]; and
fix K = 20, SNR = 20 dB. Figure 3a shows that RrMpGAMP-L4 performs the same as GAMP when
η > 0.2 and evidently better than the other four competitors.

For AMP and GAMP, although good performance can be achieved by zero-mean i.i.d. matrix A, it
tends to drastically decline even for a small positive bias. The fourth experiment, termed the γ test,
shows this phenomenon. The elements of A are independently drawn from a Gaussian distribution
N(a; γ/N, 1/N), where the mean is controlled by a positive parameter γ. Set the range of γ to
[1, 1.6, 1.8, 2, 2.2, 2.4, 3.4, 3.6, 3.8, 4, 5, 10, 20, 40, 60, 80, 100], and fix K = 20, SNR = 20 dB,
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Figure 3b shows that GAMP violently diverges at γ = 2; AMP diverges at γ = 4; but RrMpGAMP-L4
maintains good performance until γ = 40. Although OMP, CoSaMP and BP also work well,
RrMpGAMP-L4 performs a little better than OMP and CoSaMP when γ < 40 and obviously better
than BP.
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Figure 3. Reconstruction performance comparison using three general form projection matrices.
(a) Sparse matrix test; (b) Non-zero-mean matrix test; (c) Strong correlated matrix test.

The fifth experiment, termed the α test, considers an even more troublesome setup for strong
correlated A, and the elements of A are neither normal nor i.i.d. distributed. Fixing K = 12,
SNR = 30 dB, the projection matrix is constructed by A = (1/N)PQ. The elements of P and Q
i.i.d. obey Gaussian distributions pmr ∼ N(p; 0, 1) and qrn ∼ N(q; 0, 1), where P ∈ RM×R, Q ∈ RR×N

and R , bαNc. The variation of α changes the size of P and Q and changes the rank of matrix A. This
means A is low rank for α < M/N. Set the range of α to [0.2, 0.3, . . . , 1.0]. Since GAMP totally diverges
(ξ ≈ 106) at every α, it is not visible in Figure 3c. This figure shows that RrMpGAMP-L4 keeps stable
even in low rank scenario α ≈ 0.3, obviously better than AMP.

4.3. TomoSAR Imaging Application

The last experiment shows four TomoSAR imaging results. TomoSAR imaging is a spatial scatterer
distribution reconstruction problem [28]. SAR imaging algorithms can be categorized into two classes:
finding a dense solution and finding a sparse solution. The former is based on Nyquist sampling
theory and discrete Fourier transform, e.g., the Polar Format Algorithm (PFA) [29,30]; the latter is
based on compressed sampling theory and a sparse-induced algorithm, such as OMP. Tomography
in the SAR imaging is especially used in inferring forest structure from several acquisitions taken at
different view angles. The images are not sparse in that case. However, there are some reasons to
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motivate a compressed sensing TomoSAR radar, e.g., a target in a wild dry lake bed or the scatters of a
target are very sparse. We simply describe the TomoSAR imaging model. The two-dimensional spatial
spectrum of the TomoSAR echo is given by:

Y( f , θ) =
∫

x

∫
y

g(x, y) exp{−2j f (x cos θ + y sin θ)} (96)

where f = 2π/λ is the spatial frequency, (x, y) is the position of a scatterer in the target coordinate, θ is
the rotation angle between the radar coordinate and the target coordinate and g(x, y) is the scattering
coefficient. Using summation to replace integration, the discrete variables are: spatial frequency
f ∈ CP, where P is frequency sampling number; rotation angle θ ∈ CQ, where Q is the angle sampling
number; scattering coefficient vector x ∈ CN , which is composed of g(x, y); where N ≥ P × Q is
the pixel number of a TomoSAR image; received echo signal y ∈ CM; and complex Gaussian noise
ε ∈ CM, where M = P × Q. The linear system form of Equation (96) is the same as Equation (1).
Define F(p, q, n) , exp{−2j fp(xn cos θq + yn sin θq)}, and then:

A =



F(1, 1, 1) F(1, 1, 2) · · · F(1, 1, N)

· · · · · · · · · · · ·
F(P, 1, 1) F(P, 1, 2) · · · F(P, 1, N)

· · · · · · · · · · · ·
F(1, Q, 1) F(1, Q, 2) · · · F(1, Q, N)

· · · · · · · · · · · ·
F(P, Q, 1) F(P, Q, 2) · · · F(P, Q, N)


Because the scatterers are very sparse, it is feasible to randomly draw some rows from A to

decrease P and Q, and to transform the TomoSAR imaging into a CS problem.
In this experiment, the TomoSAR echo data comes from a real-world crawler crane. P = 101

frequency samples are spaced drawn from the 1(GHz) bandwidth centered at carrier frequency
fc = 9(GHz); Q = 101 angle samples are spaced drawn from 87.5◦ ∼ 92.5◦ centered at 90◦ azimuth.
The total pixels number is N = P × Q. We draw M = b0.5Nc rows from A randomly. Since
the measurements number M is usually chosen to be O(K log N), K can be estimated roughly as
τM/ log N; we set K = 50. Note that the elements of A and y are complex, so the prior of non-zero
elements in x should be complex, as well.
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Figure 4. TomoSAR imaging results comparison using four Compressed Sensing (CS) algorithms
and Polar Format Algorithm (PFA) algorithm as a reference. (a) PFA reconstructed image; (b) CS
reconstructed images.

Use the PFA imaging result in Figure 4a as the reference, and compare OMP, CoSaMP and GAMP
to RrMpGAMP-L6. Figure 4b shows that CoSaMP and GAMP cannot recover the TomoSAR image;
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OMP and RrMpGAMP-L6 work well, but RrMpGAMP-L6 performs a little better than OMP; see the
reconstructed bottom margin. RrMpGAMP-L6 recovers a more continuous segment than OMP.

5. Conclusions

While the AMP/GAMP algorithm has been shown to be a very good approach for sparse signal
recovery, it is also sensitive to problems that deviate from its assumption. In this paper, we propose
the stable RrMpGAMP algorithm, which matches GAMP’s accuracy, performs better than AMP and
GAMP, and remains robust to various projection matrices, with a small memory footprint. We use the
replica method to analyze the FsGAMP algorithm, which is embedded in the RrMpGAMP algorithm,
and find that enlarging the variance range of the elements of the sensing matrix does not break the
convergence property of FsGAMP. We also obtain the convergence conditions of FsGAMP. Experiments
confirm that our proposed algorithm performs very well in simulation and practical problems for
which AMP and GAMP cannot be applied. In all cases, RrMpGAMP provides better performance as
compared to BP, OMP and CoSaMP. Exact analysis of the RrMP algorithm remains an open problem
for future work.
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Appendix

We derive Sum-Product FsGAMP briefly. The message from the factor node to the variable node
has been defined as Equation (11), and the message from the variable node to the factor node has been
defined as Equation (12). For the simplicity of description, we rewrite the symbols as follows:

∆m→k(t, xk) , log
[ ∫
{xj}j 6=k

pym |zm

(
ym
∣∣amkxk + ∑|U|

j 6=k amjxj
)
×∏|U|

j 6=k exp
(
∆m←j(t, xj)

)]
+ c (A1)

∆m←k(t + 1, xk) , log pxk (xk) + ∑M
i 6=m ∆i→k(t, xk) + c (A2)

where m := fm, k := xUk , xk := xUk , xj := xUj , amk := amUk , amj := amUj , j := xUj , pxk := pxUk
, i := fi,

T := |U|. Furthermore, we omit the superscripts |U| and M in the follow up of the derivation.

Appendix A1. Message from the Factor Node to the Variable Node

Define:
zm , amkxk + ∑j 6=k amjxj (A3)

For the GAMP algorithm, the Central-Limit Theorem (CLT) makes zm conditionally Gaussian for
large N, i.e.,

zm|xk ∼ N (zm; amkxk + p̂mk(t), ν
p
mk(t)) (A4)
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where:

p̂mk(t) , ∑
j 6=k

amj x̂mj(t) (A5)

ν
p
mk(t) , ∑

j 6=k
|amj|2νx

mj(t) (A6)

In contrast to GAMP, FsGAMP not only works for a large N, but also works for a small N, because
we embed FsGAMP into the RrMP algorithm, and the RrMP’s pursuit is sequential. Although CLT is
not be satisfied, the RrMP’s pursuit means that all of the amplitudes that are supported on the pursued
indexes are non-zero. As long as we assume that these amplitudes obey a Gaussian distribution
independently, the linear weighted sum of these amplitudes also obeys a Gaussian distribution.
Therefore, Equations (A4)–(A6) are still available. Now, we have:

∆m→k(t, xk) ≈ log
[ ∫

zm
pym |zm(ym|zm)N

(
zm; amkxk + p̂mk(t), ν

p
mk(t)

)]
+ c (A7)

and we define:

H(amkxk + p̂mk(t), ym, ν
p
mk(t)) , log

[ ∫
zm

pym |zm(ym|zm)N
(
zm; amkxk + p̂mk(t), ν

p
mk(t)

)]
(A8)

In order to eliminate the dependence on the subscript m of the H(·, ·, ·) function, define:

p̂m(t) , ∑
j

amj x̂mj(t) (A9)

ν
p
m(t) , ∑

j
|amj|2νx

mj(t) (A10)

and then plug them into Equation (A7):

∆m→k(t, xk) ≈ H(amk(xk − x̂mk(t)) + p̂m(t), ym, ν
p
mk(t)) + c (A11)

= H(amk(xk − x̂k(t)) + p̂m(t) + O(1/T), ym, ν
p
m(t) + O(1/T)) + c (A12)

where we assume xk is O(1), amk is O(1/
√

T) and i.i.d. drawn from a zero-mean distribution, such that
zm is O(1). Based on these assumptions, other scales are defined for the sequential derivation. We list
all the scales in Table A1.

Table A1. FsGAMP variable scales.

Variable Order Variable Order Variable Order

x̂mk(t) O(1) νx
mk(t) O(1) x̂mk(t)− x̂k(t) O(1/

√
T)

x̂k(t) O(1) νx
k (t) O(1) νr

mk(t)− νr
k(t) O(1/T)

r̂mk(t) O(1) νr
mk(t) O(1) p̂mk(t)− p̂m(t) O(1/

√
T)

r̂k(t) O(1) νr
k(t) O(1) ν

p
mk(t)− ν

p
m(t) O(1/T)

ẑm(t) O(1) νz
m(t) O(1) amk

(
x̂k(t)− x̂mk(t)

)
O(1/T)

p̂m(t) O(1) ν
p
m(t) O(1)

ŝm(t) O(1) νs
m(t) O(1)

It is worth noting that the assumption of xk and amk can be adjusted to other orders, leading to
other derivation forms.
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Applying the second order Taylor-series expansion to Equation (A12), dropping higher order
terms and dropping O(1/T) perturbations of the H′(·, ·, ·) and H′′(·, ·, ·), since p̂m(t) and ν

p
m(t) are

O(1), we get:

∆m→k(t, xk) ≈ H( p̂m, ym, ν
p
m(t))

+ amk(xk − x̂k(t))H′( p̂m(t), ym, ν
p
m(t))

+
1
2
|amk|2(xk − x̂k(t))2H′′( p̂m(t), ym, ν

p
m(t)) + c (A13)

where H′(·, ·, ·) and H′′(·, ·, ·) are the first derivative and second derivative of function H(·, ·, ·) with
respect to the first argument.

Define:

ŝm(t) , H′( p̂m(t), ym, ν
p
m(t)) (A14)

νs
m(t) , H′′( p̂m(t), ym, ν

p
m(t)) (A15)

and notice that H( p̂m(t), ym, ν
p
m(t)) is a constant w.r.t. variable xk, such that it can be dropped; then,

Equation (A13) can be rewritten to:

∆m→k(t, xk) ≈
[
ŝm(t)amk + νs

m(t)|amk|2 x̂k(t)
]
xk −

1
2

νs
m(t)|amk|2x2

k + c (A16)

It can be seen that Equation (A16) is a quadratic form, which means the PDF function
1
Z exp(∆m→k(t, xk)) can be approximated as a Gaussian distribution.

Now, simplify Equations (A14) and (A15) further. Denote:

H( p̂, y, νp) , log
[ ∫

z
py|z(y|z)N

(
z; p̂, νp)] (A17)

and then:

H′( p̂, y, νp) =
∂

∂ p̂
log

∫
z

py|z(y|z)
1√

2πνp
e−

(z− p̂)2

2νp

=
∂

∂ p̂

{
− p̂2

2νp + log
∫

z
e(log py|z(y|z))− z2

2νp +
p̂z
νp
}

= − p̂
νp +

∫
z

z
νp

e(log py|z(y|z))− z2
2νp +

p̂z
νp

Z( p̂)
1
νp

= − p̂
νp +

1
νp

∫
z

z
py|z(y|z)N (z; p̂, νp)∫

u py|z(y|u)N (u; p̂, νp)
(A18)

=
1
νp
(
E{z|y, p̂, νp} − p̂

)
(A19)

where the
py|z(y|z)N (z;p̂,νp)∫

u py|z(y|u)N (u;p̂,νp)
term in Equation (A18) is a probability density function.

In the similar way, and using the property of variance var{u} = E{u2} − (E{u})2, we obtain:

H′′( p̂, y, νp) = − 1
νp

(
1− var{z|y, p̂, νp}

νp

)
(A20)
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Recover the time index (t) and subscript m; we denote the first two moments of intermediate
random variable zm as:

ẑm(t) , E{zm|ym, p̂m(t), ν
p
m(t)} (A21)

νz
m(t) , var{zm|ym, p̂m(t), ν

p
m(t)} (A22)

They are the output function gout(·, ·) in Line 7 of Algorithm 2.

Appendix A2. Message from the Variable Node to the Factor Node

Plug Equation (A16) into Equation (A2); we have:

∆m←k(t + 1, xk) = log pxk (xk) + ∑
i 6=m

∆i→k(t, xk) + c

≈ log pxk (xk) + ∑
i 6=m

[
ŝi(t)aik + νs

i (t)|aik|2 x̂k(t)
]
xk −

1
2

νs
i (t)|aik|2x2

k + c

= log pxk (xk)−
1

2νr
mk(t)

(xk − r̂mk(t))2 + c (A23)

where:

νr
mk(t) ,

1
∑i 6=m|aik|2νs

i (t)
(A24)

r̂mk(t) , x̂k(t) + νr
mk(t) ∑

i 6=m
aik ŝi(t) (A25)

they are O(1) quantities. Observe the form of Equation (A23); it implies a PDF function
px(x)N (x;r̂mk(t),νr

mk(t))∫
u px(u)N (u;r̂mk(t),νr

mk(t))
. We can write the first moment of this PDF function:

x̂mk(t + 1) , E{xk|r̂mk(t), νr
mk(t)} ≈

∫
x

x
px(x)N (x; r̂mk(t), νr

mk(t))∫
u px(u)N (u; r̂mk(t), νr

mk(t))
(A26)

This form is very similar to the integration in Equation (A18). Therefore, if we define
another function:

G(r̂, νr) , log
∫

x
px(x)N (x; r̂, νr) (A27)

it is very similar to Equation (A8), and we can obtain:

G′(r̂, νr) =
1
νr

(
E{x|r̂, νr} − r̂

)
(A28)

G′′(r̂, νr) =
1
νr

(var{x|r̂, νr}
νr − 1

)
(A29)

from the same derivation as Appendix A1.
Denote the form of Equation (A26) as:

gin(r̂, νr) ,
∫

x
x

px(x)N (x; r̂, νr)∫
u px(u)N (u; r̂, νr)

(A30)

then, from Equation (A28), we have:

gin(r̂, νr) = r̂ + νrG′(r̂, νr) (A31)
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For Equation (A31), differentiate w.r.t. r̂ and plug in Equation (A29); we have:

g′in(r̂, νr) = 1 + νrG′′(r̂, νr) =
1
νr var{x|r̂, νr} (A32)

Now, we get:
var{x|r̂, νr} = νrg′in(r̂, νr) (A33)

Recover the time index (t) and subscript mk, and rewrite Equation (A26) and (A33) as:

E{xk|r̂mk(t), νr
mk(t)} = x̂mk(t + 1) ≈ gin(r̂mk(t), νr

mk(t)) (A34)

var{xk|r̂mk(t), νr
mk(t)} = νx

mk(t + 1) ≈ νr
mk(t)g′in(r̂mk(t), νr

mk(t)) (A35)

In order to eliminate the dependence on the subscript m of Equation (A34), we define:

νr
k(t) ,

1
∑i|aik|2νs

i (t)
(A36)

r̂k(t) , x̂k(t) + νr
k(t)∑

i
aik ŝi(t) (A37)

and assume νr
mk(t) ≈ νr

k(t); using the first order Taylor-series expansion, we have:

x̂mk(t + 1) ≈ gin(r̂mk(t), νr
mk(t))

≈ gin(r̂k(t)− amk ŝm(t)νr
k(t), νr

k(t))

≈ gin(r̂k(t), νr
k(t))− amk ŝm(t)νr

k(t)g′in(r̂k(t), νr
k(t)) (A38)

For simplicity, define:

x̂k(t + 1) , gin(r̂k(t), νr
k(t)) (A39)

νx
k (t + 1) , νr

k(t)g′in(r̂k(t), νr
k(t)) (A40)

then, Equation (A26) is x̂mk(t + 1) ≈ x̂k(t + 1)− amk ŝm(t)νx
k (t + 1).

Finally, p̂m(t) in Equation (A9) and ν
p
m(t) in Equation (A10) can be rewritten as:

p̂m(t + 1) = ∑
j

amj x̂mj(t + 1) ≈∑
j

amj x̂j(t + 1)− ŝm(t)∑
j
|amj|2νx

j (t + 1) (A41)

and define ν
p
j (t + 1) ∼= ∑j|amj|2νx

j (t + 1). We close the loop.
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