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Abstract: The difference between quantum isoenergetic process and quantum isothermal process
comes from the violation of the law of equipartition of energy in the quantum regime. To reveal
an important physical meaning of this fact, here we study a special type of quantum heat engine
consisting of three processes: isoenergetic, isothermal and adiabatic processes. Therefore, this engine
works between the energy and heat baths. Combining two engines of this kind, it is possible to realize
the quantum Carnot engine. Furthermore, considering finite velocity of change of the potential shape,
here an infinite square well with moving walls, the power output of the engine is discussed. It is
found that the efficiency and power output are both closely dependent on the initial and final states
of the quantum isothermal process. The performance of the engine cycle is shown to be optimized by
control of the occupation probability of the ground state, which is determined by the temperature
and the potential width. The relation between the efficiency and power output is also discussed.
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1. Introduction

Quantum thermodynamics introduces the interdisciplinary field that combined classical
thermodynamics and quantum mechanics since the concept of quantum heat engine appeared in
the 1960s [1,2]. Inspired by the properties of the classical thermodynamic processes and cycles, the
quantum analogs of the processes and cycles have been developed and discussed in more and more
different quantum systems [3–24]. Recently, some micro sized heat engines with single Brownian
particle induced by optical laser trap [25,26] and single ion held within a modified linear Paul trap [27]
have been experimentally realized, which presents significant insight into the energy conversion
on a microscopic level and would be expected to shed light on the experimental investigation in
quantum thermodynamic characteristics of small systems. Therefore, it is of great interest to adopt a
single-particle quantum system as the working substance to investigate the properties of quantum
thermodynamic processes and quantum engine cycles [5,11,12,15,16,20,21,24]. A central concern of
quantum thermodynamics is to understand the basic relationships between classical thermodynamics
and quantum mechanics [5,13–15]. The quantum analog of the classical engine cycles can be set
up by employing a single-particle quantum system with two energy levels [12,14,15,20] because of
its simplicity.

According to the first law of thermodynamics, the quantum analog of mechanical work and
heat transfer can be defined in a natural way [5,12,14]. Thus, the basic thermodynamic processes,
such as adiabatic, isochoric, isobaric ones, can be well depicted in a quantum two-state system.
Nevertheless, the quantum properties of the two-state system determine the inherent difference of
the thermodynamic processes. In classical thermostatistics, the law of equipartition of energy is
crucial for the link between the energy and temperature [28]. However, it is violated in the quantum
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regime even for non-interacting particles confined in a box. In a two-state quantum system, the
expectation value of the Hamiltonian depends not only on the temperature, but also on the quantum
state of the system [13–15]. Therefore, the quantum isothermal process (to fix the temperature) and the
quantum isoenergetic process (to fix the expectation value of the Hamiltonian) are totally different
from each other. During the quantum isoenergetic process, the mechanical expansion/compression
and the quantum state engineering are controlled simultaneously by environmental system, which is
considered as energy bath [12,17,20,24]. It is worth noting that such kind of energy bath ensures the
validation of the second law of thermodynamics in quantum regime [12,19,20]. Therefore, by coupling
the quantum two-state system with a heat bath and an energy bath, it is possible to construct an engine
cycle, which is helpful to understand the influence of quantum properties on energy conversion for a
small system.

2. Two-State Quantum System Coupled to a Heat and an Energy Bath

The model we consider here is a single particle confined in an one-dimensional infinite square
well potential with movable walls, which is a simplification of a piston. The corresponding stationary
Schrödinger equation is given by H |uny “ εn |uny pn “ 1, 2, 3, ...q, where |uny and εn represent the
n-th eigenstate and corresponding energy eigenvalue, respectively. Since we are interested in genuine
quantum effects, here we assume that the temperature is low and the system size is small. In this
approximation, the ground pn “ 1q and first excited pn “ 2q states are dominantly relevant [14,20,21].
Therefore, the occupation probabilities of the ground state and excited state can be written as p and
1´ p. The expectation value of the Hamiltonian can be written as E “ pε1 ` p1´ pqε2. If the system
is in thermal equilibrium with the heat bath at temperature T, the probability of finding the system
in a state with the energy ε is given by the Boltzmann factor p9expp´ε{kTq [3,13–15], where k is
the Boltzmann constant. The energy eigenvalues of the ground and first excited states are given by
ε1 “ π

2h̄2
{2mL2 and ε2 “ 2π2h̄2

{mL2, respectively, where m is the mass of the particle and L is the
width of the square well potential. Thus, the expectation value of the Hamiltonian is

E “
π2h̄2

p4´ 3pq
2mL2 (1)

For convenience, we set π2h̄2
{m “ 1 below. The ratio between the probabilities of the ground

state and the first excited state can be written as

p
1´ p

“
expp´1{2kTL2q

expp´2{kTL2q
(2)

From Equation (2) the probability that the system is in the ground state can be expressed as

ppT, Lq “
1

1` e
´3

2kTL2
(3)

On the other hand, the potential width L can be considered as the volume of this kind of
one-dimensional system. Therefore, the force (i.e., pressure in 1 dimension) on the potential wall
is [13,29],

f “ ´
„

p
dε1

dL
` p1´ pq

dε2

dL



“
4´ 3p

L3 (4)

Form Equation (4), one can see that the force varies with the potential width L so it is possible
to adopt a curve on the f–L plane to describe a thermal-like quantum process. It is in fact a one
dimensional analog of the pressure–volume plane of classical thermodynamics.
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If the two-state system is coupled to a thermal bath at temperature T, Equation (3) can be
substituted into Equation (4) and yields

f “
1` 4e

´3
2kTL2

L3p1` e
´3

2kTL2 q

(5)

According to Equation (5), the slope of an isothermal quantum process curve on f–L plane can be
obtained as

ˇ

ˇ

ˇ

ˇ

ˆ

B f
BL

˙

T

ˇ

ˇ

ˇ

ˇ

“
3p4´ 3pq ´ 6pp1´ pqlnrp{p1´ pqs

L4 (6)

If the two-state system is coupled to an energy bath to fix the expectation of Hamiltonian. From
Equations (1) and (4) one can obtain

ˇ

ˇ

ˇ

ˇ

ˆ

B f
BL

˙

E

ˇ

ˇ

ˇ

ˇ

“
p4´ 3pq

L4 (7)

Obviously, the isothermal curve on the f–L plane is different from the isoenergetic one originating
from the quantum properties.

3. Quantum Engine Cycle Based on Two-State System

As mentioned above, the difference between quantum isoenergetic process and quantum
isothermal process can be illustrated by their curves on the f–L plane. According to the quantum
adiabatic theorem [5,30–32], which should not be confused with the thermodynamic adiabaticity,
if the time scale of the change of the Hamiltonian or the potential width is much larger than the
typical dynamical one, h̄{E, then the stationary Schrödinger equation for the energy eigenstate holds
instantaneously [17].

The slope of the curve of the adiabatic process, during which the state remains unchanged (i.e.,
p is fixed) can be directly derived from Equation (4) as follows:

ˇ

ˇ

ˇ

ˇ

ˇ

ˆ

B f
BL

˙

p

ˇ

ˇ

ˇ

ˇ

ˇ

“
3p4´ 3pq

L4 (8)

It is worth noting that for the positive temperature, T ą 0, Equation (3) indicate that 1{2 ă p ă 1.
In this case, the slopes of quantum isothermal process, isoenergetic process and adiabatic process can
be compared at the same potential width L and yields [29],

ˇ

ˇ

ˇ

ˇ

ˇ

ˆ

B f
BL

˙

p

ˇ

ˇ

ˇ

ˇ

ˇ

ą

ˇ

ˇ

ˇ

ˇ

ˆ

B f
BL

˙

T

ˇ

ˇ

ˇ

ˇ

ą

ˇ

ˇ

ˇ

ˇ

ˆ

B f
BL

˙

E

ˇ

ˇ

ˇ

ˇ

, p1{2 ă p ă 1q (9)

According to Equation (9), if the positive temperature area is concerned, we can construct the
possible three-process cycles on the f–L plane as it is shown in Figure 1.

1 Ñ 2 is an isothermal quantum process, the system is coupled to a heat bath with temperature
TH . During the expansion of the potential width, one wall of the potential acts as a piston to perform
work [17] and the energy is transferred from the heat bath to the system. 2 Ñ 3 is an isoenergetic
quantum process, which means that the two-state system exchanges energy with an energy bath to
keep its expectation value of the Hamiltonian constant. 3 Ñ 1 is an adiabatic quantum process to
connect the first two processes so that a closed cycle on the f–L plane can be realized.
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Figure 1. The diagram of the constructed quantum cycle on the f–L plane, where ie, ad and it 
represent the isoenergetic, adiabatic and isothermal quantum processes, respectively. 
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During the isothermal process 1 2 , the heat absorbed from the heat bath is, 
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1
ln ln(1 ) ( 1, 2)i

i i i
i

p
S k p p i

p

 
    

 
 (11) 

where ip  is the occupation probability of the ground state when the system is at point “i” of the  
f–L plane. Substitution of Equation (3) into Equation (11) yields 

2

3(1 )
ln ( 1,2)

2
i

i i
i i

p
S k p i

T L


    (12) 

Since points 1 and 2 are connected by an isothermal process with temperature HT  in the f–L 
plane, one has 1 2 HT T T   in Equation (12). Therefore, Equation (10) can be rewritten as, 

2 1 2
2 1 2 2

12 1

1 13( ) ln
2in H H

p p p
Q T S S kT

pL L

  
     

 
 (13) 

During the isoenergetic compression process 2 3 , the expectation of Hamiltonian is fixed. 
From the first law of thermodynamic [5,32], the heat released from the system to the surroundings 
is compensated by the work, i.e., 

3
32

23 23 2
222

4 3
ln 0out

Lp
Q W f dL

LL


     (14) 

On the other hand, during the adiabatic process 3 1 , the quantum state is fixed (i.e., no 
transitions between the states); that is, ' 0d Q  . Therefore, the work performed during one full 
cycle is tot in outW Q Q   and accordingly the efficiency of the cycle can be obtained as 

2 2
2

32

2 1

4 3 ln
1

( )
tot

in H

p L

W LL

Q T S S
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Figure 1. The diagram of the constructed quantum cycle on the f–L plane, where ie, ad and it represent
the isoenergetic, adiabatic and isothermal quantum processes, respectively.

4. Performance of the Quantum Engine Cycle

During the isothermal process 1 Ñ 2 , the heat absorbed from the heat bath is,

Qin “ TH∆S “ THpS2 ´ S1q (10)

where S is the entropy of the two-state system and it is given by,

Si “ k
„

piln
1´ pi

pi
´ lnp1´ piq



pi “ 1, 2q (11)

where pi is the occupation probability of the ground state when the system is at point “i” of the f–L
plane. Substitution of Equation (3) into Equation (11) yields

Si “
3p1´ piq

2TiL2
i
´ klnpi pi “ 1, 2q (12)

Since points 1 and 2 are connected by an isothermal process with temperature TH in the f–L plane,
one has T1 “ T2 “ TH in Equation (12). Therefore, Equation (10) can be rewritten as,

Qin “ THpS2 ´ S1q “
3
2

«

1´ p2

L2
2

´
1´ p1

L2
1

ff

´ kTHln
p2

p1
(13)

During the isoenergetic compression process 2 Ñ 3 , the expectation of Hamiltonian is fixed.
From the first law of thermodynamic [5,32], the heat released from the system to the surroundings is
compensated by the work, i.e.,

Qout “ W23 “

3
ż

2

f23dL “
4´ 3p2

L2
2

ln
L3

L2
ă 0 (14)

On the other hand, during the adiabatic process 3 Ñ 1 , the quantum state is fixed (i.e., no
transitions between the states); that is, d1Q “ 0. Therefore, the work performed during one full cycle is
Wtot “ Qin `Qout and accordingly the efficiency of the cycle can be obtained as

η “
Wtot

Qin
“ 1´

4´3p2
L2

2
ln L2

L3

THpS2 ´ S1q
(15)

From Equation (3), one can also obtain

TiL2
i “

3
2kln pi

1´pi

pi “ 1, 2, 3q (16)
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During the isoenergetic process 2 Ñ 3 , one has E “ p4´ 3p2q{2L2
2 “ p4´ 3p3q{2L2

3 to yield

L2
2

L2
3
“

4´ 3p2

4´ 3p3
(17)

Substituting Equation (17) into Equation (15), and considering that the quantum state is fixed
during the adiabatic process 3 Ñ 1 (i.e., p3 “ p1), one can have,

η “ 1´
kp4´ 3p2qln

p2
1´p2

ln 4´3p2
4´3p1

3pS2 ´ S1q
(18)

From Equation (18), one can see that the efficiency of such three-process quantum engine cycle
depends on p1 and p2. It means that the properties of quantum state are crucial for performance of the
quantum engine of this kind. In the classical point of view, the efficiency of engine cycle is described in
terms of the thermodynamic variables, such as pressure, temperature, volume, etc., whereas the concept
of quantum states is also relevant in the quantum regime. In fact, the probabilities of ground states, pi,
are functions of temperature Ti and volume Li, as indicated in Equation (3). By this relationship, we
can also analyze the behavior of Carnot efficiency in a similar way.

From Equation (16), one can have

T “
3

2kL2ln 4´2EL2

2EL2´1

(19)

and, consequently, obtain the variation of temperature with respect of potential width during the
isoenergetic process [29],

ˆ

BT
BL

˙

E
“

3
kL3

¨

˝

1

ln 4´2EL2

2EL2´1

˛

‚

2
ˆ

6EL2

p4´ 2EL2qp2EL2 ´ 1q
´ ln

4´ 2EL2

2EL2 ´ 1

˙

ą 0 (20)

During the isoenergetic compression process, from Equation (20) one can easily find that the
temperature decreases with the compression of the potential width. On the other hand, during the
adiabatic compression process 3 Ñ 1 , the probability distribution of each energy level is fixed. From
Equation (3), one can obtain TL2 “ const, which means that the temperature increases with the
decreasing of potential width. Therefore, the lowest temperature TC is at point 3 on the f–L plane
and the highest temperature TH is at the isothermal process 1 Ñ 2 . Suppose that there is a quantum
Carnot cycle composed by two quantum isothermal processes and two quantum adiabatic processes,
working between TH and TC. The efficiency of it coincides with the classical Carnot cycle [15], say,

ηC “ 1´
TC
TH

(21)

By using Equations (16) and (17), the quantum Carnot efficiency can be rewritten as,

ηC “ 1´
p4´ 3p2qln

p2
1´p2

p4´ 3p1qln
p1

1´p1

(22)

Equations (18) and (22) are both the functions of p1 and p2. Therefore, we can compare η with ηC
by varying p1 and p2. It is worth noting that from Equation (3) one can obtain,

ˆ

Bp
BL

˙

T
“

2
L

pp1´ pqln
1´ p

p
(23)
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Equation (23) shows that pBp{BLqT ă 0 when the positive temperature is considered, i.e., 1{2 ă
p ă 1. It means that the probability of find the system in the ground state of the two-state system
decreases during the isothermal expansion, which indicates p1 ą p2. Therefore, the 3D plot of η and
ηC varying with p1 and p2 can be shown in Figure 2.
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where p1 and p2 are ground state probabilities of the two-state system at points 1 and 2 in f–L plane,
respectively: (a) η varies with p1 and p2 ; (b) ηC varies with with p1 and p2 ; and (c) the combination of
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From Figure 2, one can see that for every possible pair of p1 and p2, η is always smaller than ηC,
as expected. It is worth noting that in our previous work [29], another three-process quantum engine
cycle was constructed by following sequence: “isoenergetic processÑ adiabatic processÑ isothermal
process”. There exist a non-monotonic relationship between efficiency and ∆T ” pTH ´ TCq when
TH is larger than the characteristic value of temperature TH,CpEq. However, in the cycle described by
Figure 1, the non-monotonic relationship disappears. In fact, the cycle in Figure 1 and the one in [29]
are two separate parts of a quantum Carnot cycle [15], as shown in Figure 3. According to Equation (1),
the expectation value of the Hamiltonian depends on potential width L and ground state probability p.
It is possible to find a set of pp2, L2, p3, L3q that satisfies

p4´ 3p2q

2L2
2

“
p4´ 3p3q

2L2
3

(24)

which means that the expectation value of the Hamiltonian at point 2 equals to that of point 3. Therefore,
points 2 and 3 can be connected by an isoenergetic quantum process on the f–L plane.
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'

Figure 3. A quantum Carnot cycle is composed of two isothermal processes ( 1 Ñ 2 and 11 Ñ 3 )
and two quantum adiabatic processes ( 2 Ñ 11 and 3 Ñ 1 ). It is a quantum isoenergetic process that
connects points 2 and 3. “ 1 Ñ 2 Ñ 3 Ñ 1 ” cycle is identical to Figure 1 and “ 3 Ñ 2 Ñ 11 Ñ 3 ” is
another kind of three-process cycle discussed in [29].
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The efficiency of cycle “3 Ñ 2 Ñ 11 Ñ 3” in Figure 3 is given in [29],

η1 “ 1´
3pS2 ´ S3q

kp4´ 3p3qln
p3

1´p3
ln 4´3p2

4´3p3

(25)

Since from point 3 to point 1 is a quantum adiabatic compression process, the quantum state of
the two-state system does not change. Therefore, one can have p3 “ p1 as well as S3 “ S1 and then
Equation (25) can be rewritten as,

η1 “ 1´
3pS2 ´ S1q

kp4´ 3p1qln
p1

1´p1
ln 4´3p2

4´3p1

(26)

From Equations (18), (22) and (26), one can verify the following relationship,

ηC “ η` p1´ ηqη1 (27)

Equation (27) shows clearly that Carnot efficiency can be precisely reproduced by ideal coupling
of the two three-process cycles indicated in Figure 3. We stress that, in the classical Carnot cycle, it
is not possible to connect point 2 and 3 by a thermodynamic process because of the absence of the
isoenergetic process. It shows again that the three-process quantum cycle discussed above has no
counterpart in classical thermodynamics.

Inspired by the finite-time thermodynamics [17], we can discuss the power output of the above
mentioned three-process quantum engine cycle. As indicated in Figure 1, the potential wall moves from
point 1 to point 2 and then moves back after one full cycle and the total movement of it can be expressed
as 2pL2 ´ L1q. Assuming that this velocity is small in order to avoid transition to higher excited states,
but still with finite average speed v. The total cycle time can be expressed as τ “ 2 pL2 ´ L1q {v.
Therefore, the power output is given by,

P “
Qin `Qout

τ
“

"

3
2

„

1´p2
L2

2
´

1´p1
L2

1



´ kTHln p2
p1
`

4´3p2
L2

2
ln L3

L2

*

v

2pL2 ´ L1q
(28)

Substituting Equations (16), (17) and (24) into Equation (28) yields,

P “
3
”

p1´ p2q ln p2
1´p2

´ p1´ p1q ln p1
1´p1

ı

´ 3ln p2
p1
` p4´ 3p2q ln p2

1´p2
ln 4´3p1

4´3p2

4 L3
1

v ln p1
1´p1

˜

ˆ

ln p1
1´p1

ln p2
1´p2

˙1{2

´ 1

¸ (29)

Equation (29) indicates that the power output is a function of p1 and p2 if the initial potential
width L1 and average speed v are given. For the sake of convenience, we discuss the behavior
of dimensionless power output, P˚ “ PL3

1{v, below. With the positive temperature condition,
1{2 ă p2 ă p1 ă 1, the variation of P˚ with p1 and p2 can be shown in Figure 4.

From Figure 4, one can find that there exist a global maximum value for P˚. More precisely, P˚max
can be obtained by solving the following coupled equations,

$

’

&

’

%

BP˚
Bp1

“ 0

BP˚
Bp2

“ 0
(30)
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Figure 4. Dimensionless power output P˚ with respect of p1 and p2 .

The numerical result shows that P˚max “ 0.052 when p1 “ 0.86 and p2 “ 0.62. Thus, the power
output can be optimized by adjusting the probabilities of ground states at point 1 and 2 on the f–L
plane. From Figure 4, it can also be seen that for any given value of p1, the curve of P˚ vs. p2 is always
concave to give the global maximum. From Equation (16) we can see that a given p1 indicates a given
temperature TH if the potential width at the initial point is set. During the expansion process 1 Ñ 2 ,
the system is coupled to a heat bath with temperature TH , i.e.,

TH “
3

2kL1ln p1
1´p1

“
3

2kL2ln p2
1´p2

(31)

Equation (31) shows that L2 will tend to infinity if p2 is close to 1{2, which indicates that a full
cycle time will be very large and yields zero power output. On the other hand, if p2 is very close to
p1, the area of cycle 1 Ñ 2 Ñ 3 Ñ 1 on the f–L plane tends to zero. Vanishing work also means zero
power output. Therefore, the power output can be optimized in the region 1{2 ă p2 ă p1.

Furthermore, Equations (18) and (29) show that the efficiency and power output are both functions
of p1 and p2. Therefore, we can generate the curves of power output with respect to the efficiency by
varying p1 and p2 under the condition p2 ă p1. Figure 5 shows the P˚ vs. η relationship for some
values of p1.
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From Figure 5, one can find that all the P˚ vs. η curves are concave. Thus, there exists an efficiency
η˚pp1q that corresponding to the maximum power output P˚maxpp1q for each value of p1. The physical
meaning of each η˚pp1q is nontrivial. When 0 ă η ă η˚, the power output increases with the increasing
of efficiency. It means that the cycle is not working in optimal regions. Both efficiency and power
output can be optimized towards positive direction. When η˚ ă η ă 1, the power output is decreasing
with the increasing of η. It means that in order to improve the engine’s efficiency, the cost is to decrease
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the engine’s power output, and vice versa. Therefore, this kind of trade-off between the efficiency and
power output should be concerned when the engine is working at this region, and η˚ is the lower
bound of the region.

5. Conclusions

With the analysis of a two-state quantum particle trapped in an infinite square well, a
three-process quantum cycle was proposed by coupling the system to a heat bath and an energy
bath, respectively. Based on the difference between isothermal process and isoenergetic process in
quantum thermodynamics, the heat transferred into quantum cycle and total work performed during
one cycle were obtained to yield the efficiency η. Comparison between η and Carnot efficiency ηC
showed that the quantum Carnot cycle can be constructed by the combination of two symmetrical
three-process quantum cycles, in spite of the fact that the isoenergetic quantum process has no
counterpart in classical thermodynamics. Furthermore, by considering the average speed of square
potential wall, the power output of this kind of three-process cycle was shown. It was found that the
probability distributions at the starting and ending points of the isothermal expansion process are
crucial to optimize the cycle performances. It was also shown that there exists a region of preferable
performance, where the efficiency is still high and the power output is not low. These features of the
present engine may suggest experiments of a new kind.
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