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Abstract: Selforganization is a process by which the interaction between the parts of a complex system
gives rise to the spontaneous emergence of patterns, structures or functions. In this interaction the
system elements exchange matter, energy and information. We focus our attention on the relations
between selforganization and information in general and the way they are linked to cognitive
processes in particular. We do so from the analytical and mathematical perspective of the “second
foundation of synergetics” and its “synergetic computer” and with reference to several forms of
information: Shannon’s information that deals with the quantity of a message irrespective of its
meaning, semantic and pragmatic forms of information that deal with the meaning conveyed by
messages and information adaptation that refers to the interplay between Shannon’s information and
semantic or pragmatic information. We first elucidate the relations between selforganization and
information theoretically and mathematically and then by means of specific case studies.

Keywords: synergetics; Shannon information; pragmatic and semantic information; order
parameter; slaving principle; pattern formation/recognition; synergetic computer; quasiattractors;
ambivalent/hybrid images; saccadic eye movements; consciousness; urban dynamics;
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1. Introduction

1.1. Goal

In this paper we want to elucidate the relation between self-organization and information. By the
term information we refer to Shannon information (SHI), pragmatic information (PI), semantic information
(SI) and the relations between these three information forms that we recently [1] described as
information adaptation (IA). We intend to search for universal principles in the inanimate and animate
(conscious) world—an intention, which is in line with previous approaches by Norbert Wiener’s
cybernetics [2], Heinz von Foerster’s cybernetics of the second order [3], Ludwig von Bertalanffy’s
general systems theory [4] and Synergetics—Hermann Haken’s theory of Selforganization [5–7]. In what
follows we elaborate on Synergetics’ treatment of information theory and self-organization in a way
that may help understand neuronal self-organization and its perceptual correlates. We start with
a didactic introduction to the basic notions of self-organization and information theory, developing
some of the deeper principles of synergetics in a heuristic way. We then develop the mathematical
formalisms that substantiate the ideas to highlight emergent properties that may have special relevance
for understanding perceptual synthesis in the brain. The paper concludes by looking at the remarkable
consilience between the formal results and the dynamics implicit in neuronal responses and perception;
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for example, bi-stable perception and the way that we deploy saccadic eye movements to sample
our sensorium.

1.2. Conceptualization

1.2.1. Selforganization

Selforganization (SO) is a property of open and complex systems, composed of parts, elements,
components and units, whose network of interactions serves for the exchange of matter, energy and
information among their parts and with their surroundings (cf. Figure 1). A case in point is the flower
in Figure 2 that, as a complex system, interacts with its surrounding environment by exchanging light,
water, minerals, O2 and CO2. This exchange is rather unspecific, i.e., it does not act like a “sculptor”
who shapes, say a statue; rather such a system organizes its structure and function spontaneously by
itself ; hence the notion of selforganization.
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Another important property of such systems is emergence: By means of self-organization new
properties that do not exist in the parts emerge with the implication that “the whole is greater than the
sum of its parts”—a statement attributed to Aristotle [8]. This is also the basic meaning of the notion
“Synergy” the definition of which in Wikipedia (April 2015) starts with the sentence: “Synergy is the
creation of a whole that is greater than the simple sum of its parts”.

While the notion of selforganization has been ventilated in philosophy since antiquity [9], it was
introduced into science by Ashby [10] in 1947. Ashby treats the nervous system, particularly the cerebral
cortex, as purely physical dynamical system. He shows that such a system makes a transition from
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one “equilibrium state” to a different one, when an otherwise constant parameter is changed. As it
will transpire below, his paper is quite of relevance to our article. Prigogine [11] conceived pattern
formation of physical and chemical systems under nonequilibrium conditions, (cf. Figure 3 below)
as processes of selforganization and developed, in the realm of thermodynamics the “excess entropy
production principle”. Nicolis, in the past Prigogine’s student, carried the field further by applying
kinetic equations to chemical reaction models (the “Brusselator”) [11]. For further details of Nicolis’
work see his contribution to this special issue. Haken’s contribution to the theory of selforganization
cf. [12,13], inspired as it is by his laser theory [14], is outlined below.
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In particular Synergetics [7,12,13] has developed universal principles that apply to both the
inanimate and animate (conscious) worlds. The link between the two worlds was made by analogy
between pattern formation in the inanimate domain and pattern recognition in the animate domain.
A case in point is the Bénard [15] convection of a liquid in a circular vessel heated from below and
cooled from above (Figure 3): At a small temperature difference between the bottom and the top of
the liquid ∆ “ T2 ´ T1 heat is transported by conduction (Figure 3a) where no macroscopic structure
appears. If ∆ exceeds a critical value, a macroscopic pattern in the form of up-and down-welling
(convection) rolls appears (Figure 3b), whereas in a circular vessel hexagonal cells appear (Figure 3c cf.
for instance [7]).

According to Synergetics, the temperature difference of our example (Figure 3) acts as
control parameter. If T2 ´ T1 ą ∆critical, that is, if the control parameter (i.e., temperature difference)
crosses a critical threshold, we observe instability out of which a new structure appears. As is shown
by a detailed mathematical approach in Synergetics [7], close to such instability points new collective
variables appear; they are called order parameters (OPs) and once they emerge, they “enslave” all the
elements and parts of the system to their specific dynamics. The OPs thus emerge bottom-up out
of the interaction between the parts of the system, however, once they emerge, the system is being
top-down governed by one or a few order parameters (as illustrated in Figure 4). We call this mutual
relationship between bottom-up and top-down causation “circular causality”. For example, in the
case of Figure 3b, the OP parameter determines the movement of the many parts (molecules) of
which the system “liquid” is composed. In the parlance of Synergetics this phenomenon is called the
slaving principle. In mathematical terms (cf. also below): If the OPs are denoted by ξ jptq, j “ 1, . . . , M, t:
time, and the variables of the elements, by qlptq, l “ 1, . . . , N, then qlptq “ flpξ1, . . . , ξMq. The crucial
insight is that M << N.

This process implies an enormous complexity reduction concerning information channels. While
in the original network with N parts and long-range interactions there are up to (about) N2 information
channels (N parts exchange information with the other N ´ 1 parts, i.e., N pN ´ 1q « N2 channels
altogether). Now we have to deal with 2NM channels among order parameters and parts and M2

channels among OPs, i.e., 2NM + M2 << N2 channels altogether. Thus the high dimensional dynamics
is reduced to a low-dimensional dynamics.
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The synergetic approach to mind/brain pattern recognition is analogous to the above process
of pattern formation in matter (Figure 5): Now the parts are the features of a pattern. These features,
e.g., the grey values of the pixels of an image (“pattern”), are projected through the visual system
of a human to feature-specific neurons that interact by the exchange of information leading to the
formation of OPs that compete with other OPs (governing other feature-configurations). Eventually, the
OP with the strongest support will win and will force the system to exhibit the complete set of features
belonging to that OP. The offered (incomplete) pattern is recognized. The result is full correspondence
between the complementation process during pattern formation and the associative memory during
pattern recognition. What we just described can be, and has been, cast into an algorithm that defines
the synergetic computers (SC).
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Figure 5. Analogy between pattern formation (left) and pattern recognition (right). In pattern formation
the subsystems are enslaved by the order parameters (OPs); in the case of pattern recognition it is the
features that are enslaved by OPs. Based on [5] (p. 37), Figure 5.2. The unfilled squares symbolize parts
that are not yet in the ordered state but will be pulled into it (“enslaved”).

1.2.2. Information

Information as employed here is a basic property and process of open and complex systems—a
means by which the system and its parts extract, or produce meaning and/or action from signals.
These processes of information production, extraction and exchange evolve spontaneously, i.e.,
by selforganization.

Shannon Information

A seminal step in the study of information was Shannon’s [16] “Mathematical theory of
communication” which demonstrated that information could be quantified regardless of the specific
meaning the signals/message convey; we refer to it below as Shannon’s or Shannonian information (SHI)
(cf. Equation (1) below). Shannon Information theory has since become central to the development
of computer technology and science, communication and information sciences, cognitive sciences, to
name but a few of the more dominant domains.
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Forms of Information

The publication of Shannon’s seminal paper was followed by attempts at formal definitions of
information with meaning, that is, SI that refers to meaning per-se (for reviews see [17,18]), and PI
that refers to action (see review in [19]). In our recent monograph [6] we show, firstly, that SHI and SI
interact as two aspects of a process of information adaptation (IA) in which SHI triggers SI, while the later
participates in the determination of SHI. Secondly, that in cognition, IA is implemented by means of
information inflation or deflation the function of which is to adapt the quantity of information entering
the mind/brain/body (MBB) to its information processes capabilities and to the SI/PI generated
by the MBB. Our empirical basis was Hubel and Wiesel seminal findings [20–22] and subsequent
studies [23–25], who showed that visual perception evolves as follows (Figure 6): data from the world
is first analyzed (“deconstructed” in Kandel’s [25] words) by the mind/brain, in a bottom-up manner,
into local information of lines, corners, etc. This local information triggers a top-down process of
synthesis (“reconstruction” in Kandel’s [25] language) that gives rise to global information, that is, to
seeing and recognition. (For more details see [6]).
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Another example [6] of IA that nicely illustrates the dynamic interplay between SHI, SI and IA,
is the approaching lady scenario (Figure 7): Imagine you stand in an open area (say, on the sea shore)
and you observe at the horizon an object moving towards you. At this stage there is little data and the
object can be anything and thus the SHI (uncertainty) is high. As the object gets closer, more data are
added and you realize that it is a person, that is, your MBB adapts to the incoming data by deflating the
SHI (uncertainty) and by pattern recognizing the moving object as a the SI category “person”. As this
person gets still closer . . . , you realize that it is the SI category “woman”— . . . Finally, as this woman
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options. The saltatory dynamics in Figure 7 are remarkably similar to empirical results that show 
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An interesting implication of IA is that both SI and PI refer to bodily action: PI to externally 
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perception, which due to technological advance can be observed (at least partially) by fMRI, EEG 
and the like. Such links between action, SI and PI, shed new light on notions associated with 
embodied cognition (EC). EC [27] is often interpreted in terms of complexity, suggesting that 
organisms’ body, mind and environment form a complex, adaptive, interactive system. In this 
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First answer: the system’s elements exchange SHI. Applied to EC we define SHI as a measure of the 
number of actions an object or environment affords to a specific organism with specific body and 
mental properties. (As we show in some details in Appendix F below, there is a close relation with 
the concept of “empowerment” of Klyubin et al [28]). Consider the example of a frog. According to 
Maturana et al. [29], its reflective action is determined by specific cues: Small, fast moving object 
implies prey and the action attack (Figure 8a); while large, slowly moving object implies predator 
and the action flight. Since in both cases the frog has no choice, its SHI = 0. We term this as reflexive 
action. On the other hand, the cat in Figure 8b has a choice between two optional actions: flight or 
climb. Its SHI is, thus 1 bit of information. Here we are dealing with perceptive action—the “classical” 
case of EC. 
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Second answer: the system’s elements exchange meaning in the form of SI or PI. Following Haken [1], 
we define information with meaning (SI or PI) as a message that has specific effect on a receiver, when 
the receiver is modeled as a dynamical system that has a number of attractor states. The messages 
(signals) carrying meaning are considered different if they cause the dynamical system to reach 
different attractor states (see also [30,31]). These attractor states might be SI attractors as in Figure 9, 
where the figure at the center might be a bull, mountain goat, buffalo or a gnou; or PI as in Figure 8b, 
where the cat has a choice between two actions. 

Figure 7. Schematic (non-mathematical) description of the approaching lady (abscissa = amount of
data vs. ordinate = recognized category/pattern). The broken line indicates the other dismissed
options. The saltatory dynamics in Figure 7 are remarkably similar to empirical results that show
similar (stepping) dynamics during evidence accumulations in the parietal cortex [26].
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1.2.3. Information and Embodied Cognition

An interesting implication of IA is that both SI and PI refer to bodily action: PI to externally observed
action which is commonly termed behavior, while SI to internally observed action such as perception,
which due to technological advance can be observed (at least partially) by fMRI, EEG and the like.
Such links between action, SI and PI, shed new light on notions associated with embodied cognition
(EC). EC [27] is often interpreted in terms of complexity, suggesting that organisms’ body, mind and
environment form a complex, adaptive, interactive system. In this interaction, the system’s elements
exchange matter, energy and information. However, what does it mean that the system’s elements
exchange information? We answer this question by reference to three forms of information—SHI, SI or
PI, and the process of IA introduced above.

First answer: the system’s elements exchange SHI. Applied to EC we define SHI as a measure of
the number of actions an object or environment affords to a specific organism with specific body and
mental properties. (As we show in some details in Appendix F below, there is a close relation with
the concept of “empowerment” of Klyubin et al [28]). Consider the example of a frog. According
to Maturana et al. [29], its reflective action is determined by specific cues: Small, fast moving object
implies prey and the action attack (Figure 8a); while large, slowly moving object implies predator and
the action flight. Since in both cases the frog has no choice, its SHI = 0. We term this as reflexive action.
On the other hand, the cat in Figure 8b has a choice between two optional actions: flight or climb. Its
SHI is, thus 1 bit of information. Here we are dealing with perceptive action—the “classical” case of EC.
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Second answer: the system’s elements exchange meaning in the form of SI or PI. Following Haken [1], we
define information with meaning (SI or PI) as a message that has specific effect on a receiver, when the
receiver is modeled as a dynamical system that has a number of attractor states. The messages (signals)
carrying meaning are considered different if they cause the dynamical system to reach different
attractor states (see also [30,31]). These attractor states might be SI attractors as in Figure 9, where the
figure at the center might be a bull, mountain goat, buffalo or a gnou; or PI as in Figure 8b, where the
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Third answer: the system’s elements perform an interplay between SHI and SI/PI. As noted above, IA
refers to a process in which SHI generates SI/PI, while the latter control SHI. The above examples
of vision (Figure 6) and the approaching lady (Figure 7) nicely illustrate the play between SHI and
SI (for further discussion cf. Section 4.2 below). A third example, specifically related to PI, is the
finger movement experiment and paradigm [32].

A typical such experiment starts with the following PI behavioral task (Figure 10): A test person
is asked to move his/her index fingers in parallel at the speed of the metronome, which begins in a low
speed. Then with increasing speed of the metronome, at a critical value, the finger movements of the
test person undergo involuntarily a switch to a symmetric coordination. Note that if on the initial stage
the test-person is not instructed to move the index fingers in parallel, he or she has a choice between
two options, that is, between the two stable states (parallel/symmetric) allowing voluntary behavior.
In such a situation the person has the freedom to choose between states 1 and 2 of a single OP (the
relative phase between the index fingers). Here the PI determined Shannon information i = 1. This form
of behavior applies up to a certain threshold of finger movement speed. Once this threshold is crossed,
there is an involuntary transition behavior in which only one specific OP value that can be realized and
dominates the system. Here, the PI determined Shannon information i = 0. This description is a rough
approximation, however; a refined mathematical approximation is developed below in Section 9,
together with additional examples.
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1.3. The Second Foundation of Synergetics

Since in the case of humans the various forms of information are brought about by the human
mind/brain, some relevant aspects must be considered here. Starting from the notion that the (human)
brain is a highly complex system, and from our search for “general principles”, we have to choose
a suitable basic approach. Such an approach was suggested by Haken [1] (pp. 33–36) as The Second
Foundation of Synergetics. This approach is dictated by the fact that in the case of complex systems only
a limited amount of data is known. This entails the need of making unbiased guesses on the state (or
function) of the total system consistent with the known data. The appropriate mathematical tool to
fulfill this need is Jaynes’ [33,34] maximum entropy principle (MEP) and its extension to his maximum
calibre principle.

This principle has been successfully applied to an elegant derivation of the laws of
thermodynamics, i.e., to physical systems in thermal equilibrium. Its extension to processes of
selforganization, i.e., to the spontaneous formation of spatial, temporal or functional structures has
required an important new step that concerns the role of constraints that are now quite different from
the “thermodynamic constraints” (see below). On the other hand, the explicit entropy expression

S “ ´c
ÿ

j

pjlnpj (1)

where c is a constant, j an index denoting events and pj the probability (or relative frequency) of
their occurrence, provides us with an appropriate basis for the establishment of an analogy between
selforganization and Shannon information which is defined by Equation (1) with c “ pln2q´1. Boltzmann’s
expression for thermodynamic entropy coincides formally with Equation (1), but with c “ kB:
Boltzmann constant. As we will see, self-organization of physical systems (including the human
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brain!) requires states away from thermal equilibrium, where systems exchange matter, energy, and
information with their surroundings. These phenomena are surely inexhaustible. Therefore, to cope
with our goal aiming at universal principles, we adopt the research strategy of Synergetics: We study
those situations where the macroscopic state of a system changes qualitatively. (As it will transpire below,
the distinction between macro and micro depends on the special cases under consideration). In brief,
its main concepts are as follows:

(1) a system composed of interacting parts is controlled by external or internal control parameters;
(2) when one (or several) control parameter(s) pass(es) a critical value, the system becomes unstable;
(3) close to critical points, new variables, the OPs, occur which describe the macroscopic state and;
(4) enslave the individual parts;
(5) selforganizing systems are governed by circular causality. The OPs are brought into existence by

the parts which in turn are enslaved by the order parameters.

Our goal will thus be to bring out the essentials of our approach so that we omit mathematical
details and extensions. The reminder of our paper is organized as follows: In Section 2 we introduce
the view of Synergetics and its concepts such as order parameter and the slaving principle. In Section 3
we elaborate the maximum entropy principle (MEP) in relation to thermodynamics and beyond.
The next two sections discuss the meaning of the OP potential (Section 4) and the determination of
prototype patterns (Section 5), while Section 6 considers the invariance problem. The subsequent three
sections deal with specific case studies: Section 7 develops the notion of Quasiattractors illustrating it
by reference to the interpretation of ambiguous patterns, hybrid images and complex scenes. Section 8
studies in some details saccadic eye movements as a case of embodied cognition, while Section 9
elaborates a mathematical treatment of finger movement (verbally introduced in Section 1.2.3 above)
and pedestrian walking speed. Section 10 closes the paper by touching on consciousness.

2. Systems: The View of Synergetics

We consider the ideal case in which we have full knowledge about the parts of a system and their
interactions. We distinguish the parts by an index, j, j “ 1, . . . , N, where N is the total number of
parts. Each part j is characterized by a set of time-dependent (real) variables

qjl , l “ 1, . . . , Mj (2)

In order not to overload our presentation and to capture the essentials, we treat Mj “ 1 and
drop the index l (Actually, by a relabeling of variables our treatment covers also the general case).
The variables qj ptq are assumed to obey differential equations (where q “ pq1, . . . , qNq).

dqj

dt
“ Nj pλ, qq ` Fj ptq (3)

λ represents a set of fixed control parameters. Nj fixes the deterministic evolution of qj, whereas the
“fluctuating forces” Fj ptq represent the impact of chance events on qj. While the study of Equation (3)
with Fj ” 0 is the subject of the discipline of dynamic systems theory (e.g., [35]) with its subdisciplines
such as bifurcation theory and chaos theory, these forces Fj must be taken into account close to
instability points. In all cases we are concerned with functions Nj of which at least one is nonlinear
with respect to q (Nevertheless, we call (3) Langevin equations because of their decomposition into
Nj and Fj). Now, we study situations where the system’s behaviour changes qualitatively. To get
an insight into what happens at such a “critical” point we first ignore Fj and assume that Equation (3)
for a fixed value of λ possesses a solution q “ q0. In our paper we assume that q0 is time-independent
(though time-dependent cases have also been treated (e.g., [7]). We check the stability of q0 by (in
general) linear stability analysis by putting qj “ q0

j `wj ptq , wj small. This yields equations of the form
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dwj

dt
“
ÿ

k

Ljk

´

λ, q0
¯

wk, where Ljk “ BNj{Bwk

For their solution we write wj as linear combination

wj ptq “
ÿ

jk

ajkξk ptq

where the coefficients ajk the eigenvectors of the Jacobean are chosen such that the matrix
´

Ljk

¯

becomes diagonal with eigenvalues Λk so that eventually

ξk ptq9exp pΛktq

(Here we don’t discuss the case in which Ljk is of the general Jordan’s normal form, also, note that the
eigenvalues Λk are a special case of Lyapunov exponents.) When λ is changed to λ “ λc, the real part
of some eigenvalues Λk may become positive which indicates an instability and the corresponding
ξk ptq grow exponentially.

These variables define the OPs. As is witnessed by large classes of physical and chemical systems
undergoing “nonequilibrium phase-transitions” higher order terms of Nj lead to a stabilization
connected with a set of new states q which may be time-independent or time-dependent (e.g.,
a Hopf-bifurcation or deterministic chaos). Again an important insight gained by synergetics research
is the fact that in large classes of practical interest, the number of OPs is much smaller than the number
of parts. Now we come to the first central result: close to instability points, the behavior of the parts is
determined by the OPs or as formula

qj ptq “ f j pξ1 ptq , . . . , ξk ptq , . . . ; tq (4)

For their derivation, including fluctuations we refer the reader to the literature [7], where
the explicit form of f j is presented. Note that the explicit time-dependence of f j stems solely
from the fluctuating forces. While the impact of fluctuations Fj is small and can be—at least
in general—neglected away from the instability, there they become decisive. To deal with them
properly we have to transform the Langevin-type Equation (3) into a Fokker–Planck equation for the
time-dependent distribution function P pq; tq:

dP
dt
“ ´∇q

ˆ

´NP`
1
2

Q∇qP
˙

(5)

where
N “ pN1, . . . , NNq (6)

and
Q “

`

Qij
˘

(7)

For the derivation of Equation (5) it is assumed that the statistical average over the random
process yields

@

Fj ptq
D

“ 0 (8)

and
@

Fj ptq Fk
`

t1
˘D

“ Qjkδ
`

t´ t1
˘

(9)

δ: Dirac’s δ-function: Though the details become involved, the central result that holds close to
instability points can be formulated as

P pq; tq “ Ps pq|ξq Pop pξ, tq (10)



Entropy 2016, 18, 197 10 of 57

where Pop is the distribution function of the OPs and Ps the conditional probability for q given ξ.
Poppξ, tq represents the OP dynamics. A typical example concerning a nonequilibrium phase transition
is the stationary distribution function [36] of laser light amplitude ξ acting as OP.

Poppξq “ Z´1exppαξ2 ´ βξ4q, β ą 0. (11)

close to laser threshold (instability point) (Z´1: normalization as everywhere in our paper. α and β

correspond to kinetic rate constants, where α is the control parameter). Below threshold, α ă 0, above
it α ą 0.

This leads to a non-vanishing, stable amplitude ξ “ pα{βq
1
2 .

Phase transitions of physical systems are well known (freezing of water to ice, ferromagnetism,
superconductivity) and occur in situations of (or close to) thermal equilibrium. Though the laser is
a system far away from equilibrium, a remarkable formal analogy exists between Equation (11) and
results of the Landau theory of phase transitions [37,38]. There the same expression appears with

Poppξq “ Z´1expp´Fpξq{kBTq. (12)

where, e.g., F pξq “ aξ2 ´ bξ4 is the free energy, kB Boltzmann’s constant and Tabsolute temperature.
Landau introduced the notation order parameter phenomenologically. The essential difference between
Equation (11) and (12) rests on the fact, that F pξq depends on thermodynamic quantities whereas
Equation (11) contains constants α, β depending on rates (time-dependent processes). In our approach
the definition of OPs and their equations derives from a microscopic theory. While in the laser and
some other physical systems (e.g., fluid dynamics, plasmas, nonequilibrium semiconductors) the
fundamental Equations (3) are explicitely known, this is definitely not the case with respect to truly
complex systems, in particular the human brain. It is here where our “second foundation of synergetics”
comes into play.

3. MEP (Maximum Entropy Principle) in Thermodynamics and Beyond

As noted in Section 1.3 above, since in the case of complex systems only a limited amount of data
is known, there is a need to make unbiased guesses, consistent with the known data, on the state or
function of the total system. To make such unbiased guesses, following Jaynes [33,34], we maximize
(1) under constraints representing these data. The constraints under which entropy is maximized are
fundamental in shaping the behavior and information theoretic properties of a system. As we will see
later, one constraint could be a conservation of energy that can be expressed as an expectation given
the probabilistic description (see below). We will denote constraints in an abstract and general way
using fk. For simplicity we put c = 1. We distinguish the data representing “events” by an index j. pj is
the probability (or relative frequency) of the occurrence of event j.

S “ ´
ÿ

j

pjlnpj “ max! (13)

normalization
ÿ

j

pj “ 1 (14)

constraints
f k “ x f k

j y ”
ÿ

j

f k
j pj. k “ 1, . . . , K (15)

By use of Lagrange multipliers λ, λk the solution to this problem reads

pj “ exp

˜

λ`
ÿ

k

λk f k
j

¸

(16)
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Inserting Equation (16) in Equation (14), Equation (15) leads us to K ` 1 equations for λ, λk,
k “ 1, . . . , K.

Jaynes [33,34] applied MEP to derive the general relations of thermodynamics by using
thermodynamic constraints. A simple example may illustrate the situation. Consider a system of
non-interacting particles with energy levels Ej, j “ 1, . . ., of which the mean energy E “

@

Ej
D

is known.
Clearly,

k “ 1, f 1 “ E, f 1
j “ Ej and f 1

j “ exp λ ¨ exp
`

λ1Ej
˘

(17)

This relation is the famous Boltzmann distribution function of statistical mechanics, where

exp p´λq “
ÿ

j

exp
`

λ1Ej
˘

(18)

serves for normalization Equation (14), and λ1 “ ´1{ pkBTq, kB: Boltzmann constant, T : absolute
temperature. This relation becomes particularly clear, when we treat a gas of particles moving with
different velocities v “

`

vx, vy, vz
˘

and (kinetic) energy m
2 v2 so that instead of pj we have to write

p pvq “ expλexp
ˆ

´
1

kT
m
2

v2
˙

(19)

This simple example may provide the reader with a feeling how efficiently MEP works. However,
there is a price to pay. It concerns the proper choice of the constraints. While in the case of thermodynamics
their choice is largely agreed upon by the “community” (leaving aside few delicate details already
discussed by Jaynes) the study of numerous nonequilibrium phase transitions has led us to the insight
that in physical systems out of equilibrium and in nonphysical systems close to instability points quite
other constraints apply.

To formulate them we assume that the system can be described by a set of variables ql ,
l “ 1, . . . , L, which we represent by the vector q “ pq1, ¨ ¨ ¨, qLq. Accordingly, we replace the index j in
Equation (13) by q and pj by P pqq (assuming an appropriate discretization of ql , l “ 1, . . . , L). Thus
Equation (13) becomes

S “ ´
ÿ

q
P pqqlnP pqq (20)

where
ÿ

q
P pqq “ 1 (21)

and q stands for pq1, ¨ ¨ ¨, qLq.
For the treatment of (second order) nonequilibrium phase transitions leading to pattern formation,

e.g., in fluids as well as to pattern recognition it has turned out that the following constraints (in addition
to Equation (21)) apply

fij “
@

qiqj
D

, f p2qij “ qiqj (22a)

fijkl “
@

qiqjqkql
D

, f p4qijkl “ qiqjqkql (22b)

Furthermore, it is assumed that
ÿ

j

qj “ 0 (23)

Maximizing Equation (20) under the constraints Equations (21)–(23) and using Lagrange multipliers

λ, λij, λijkl (24)
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leads us to
P pqq “ exp W pλ, qq (25)

where λ stands for Equation (24). To be able to establish a connection with the microscopic theory (cf.
Section 2), we put

q “ q0 `w, q0 “ 0

and find by replacing q in Equation (25) by w,

W pλ, wq “ λ`
ÿ

ij

λijwiwj `
ÿ

ijkl

λijklwiwjwkwl (26)

We may choose
λij “ λji (27)

so that the matrixs
Λ “

`

λji
˘

(28)

becomes symmetric. For its diagonalization we put

wi “
ÿ

k

aikξk (29)

Thus Equation (26) is transformed into

Ŵ
`

λ̂, ξ
˘

“ λ̂`
ÿ

k

λ̂kξ2
k `

ÿ

kλµv

λ̂kλµvξkξλξµξv (30)

where
λ̂ “ λ (31)

We distinguish between positive and negative eigenvalues λK,

λK ě 0, K Ñ u total number Nu (32)

λK ă 0, K Ñ s total number Ns (33)

By a comparison with the result of the microscopic theory we may adopt the parlance of
nonequilibrium phase transitions. Thus the index u means unstable and we denote ξu as OPs. The index
s refers to the enslaved mode amplitude ξs.

Accordingly, we decompose

Ŵ
`

λ̂, ξ
˘

“ λ̂` Ŵu
`

λ̂u, ξu
˘

` Ŵs
`

λ̂u, λ̂s; ξs, ξu
˘

(34)

where
Ŵu “

ÿ

u
λ̂uξ2

u `
ÿ

uu1u2 u3

λ̂uu1u2 u3 ξuξu1 ξu2 ξu3 (35)

Ŵs “
ř

s

`

´
ˇ

ˇλs
ˇ

ˇξ2
s
˘

`
ř

su1u2 u3

4λ̂su1u2 u3 ξsξu1 ξu2 ξu3 and sums over

ξsξs1 ξu2 ξu3 , ξsξs1 ξs2 ξu3 , ξsξs1 ξs2 ξs3 (36)

The integral
ż

expŴs pξs, ξuq dNs ξs “ g pξuq ą 0 (37)
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defines a function of ξu. We put
g pξuq “ exp p´h pξuqq (38)

and introduce a new function Ws via

h pξuq ` Ŵs “ Ws pξs|ξuq (39)

This definition guarantees that

P pξs|ξuq “ exp Ws pξs|ξuq (40)

is normalized over the space of ξs for any ξu. In order that Equation (39) remains unchanged by the
introduction of h we introduce the new function Wu via

λ̂` Ŵ
`

λ̂u, ξu
˘

´ h pξuq “ Wu pξuq (41)

In conclusion we may rewrite Equation (34) in the form

Ŵ
`

λ̂, ξ
˘

“ Wu pξuq `Ws pξs|ξuq (42)

This allows us to write
exp

`

Ŵ
˘

“ P pξs|ξuq P pξuq (43)

P pξuq “ exp Wu (44)

and P pξs|ξuq defined by Equation (40).
Clearly, P pξs|ξuq is a conditional probability whereas P pξuq is the distribution function of the

order parameter alone.

4. The Meaning of the Order Parameter Potential

In the preceding section “we” have made unbiased guesses on the behaviour of a complex system
based on correlation functions as constraints. Inspired by the slaving principle of synergetics we
have shown that the resulting probability distribution function is crucially determined by the order
parameter potential Vop pξq ” ´Wu pξq (cf. Equations (41) and (43)). (We drop the index u of the set
ξu “ pξu1, . . . , ξuKq so that ξu Ñ ξ “ pξ1, . . . , ξk, . . . ξKq .)

In the following we conceive our approach as the first step of a model of the function of a human
brain (which, at this level of approach can be realized by a computer, e.g., the synergetic computer).
Here the brain collects sensory inputs, which lead to neuronal activities ql of neurons labeled by
l, l “ 1, ¨¨, L. Measuring sensory inputs time and again the “brain” can identify prominent activity
patterns governed by a set of OPs ξk. Each ξk can be interpreted as representing a specific percept—an
“idea” such as an explanation for sensory data. The key notion here is that percepts are necessarily
distributed representations—this is because the macroscopic OPs are distributed over the parts
(neurons). On the other hand, S as Shannon information leads to specific activity patterns ql in
the physical system brain/computer. In this process, the network architecture of these systems serves
as “filter” using the correlations. At any rate the brain/computer has learned a set of prototype
patterns—based on the frequency of their occurrence. (As a side-remark: this approach lies at the
bottom of some “big data algorithms”). Both V pqq and Vop pξq can be visualized as representing
landscapes where the size of V represents the height of surface at position q or, more concisely, at
position ξ. Note, however, that the set of OP spans a high-dimensional space so that our “picture”
holds only in 1 and 2 dimensions ξ1,ξ2. However, it may help our intuition in the general case.
Such a potential landscape possesses maxima and minima where because of

Pop pξq “ Z´1exp
`

´Vop pξq
˘

(45)
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the valleys lie at those positions ξk,m where Pop is max., i.e., these percepts are most probable.
The establishment of V pqq or Vop pξq characterizes the learning period (including purification to

be discussed below). The other period concerns recognition. In this case a pattern q is offered which is
distorted or incomplete as compared with one of the prototype patterns vk (Section 5). This means that
the offered q (or corresponding ξ) lies close to the bottom of the valley associated with that specific
prototype pattern vk. Pattern recognition is now realized by the “system brain” by pulling ξo f f ered
(where ξo f f ered is a multidimensional vector) into ξk which requires a dynamics. How can we derive
such a dynamics from Vop pξq? The answer is suggested by an analogy with mechanics: a “ball” sliding
down the slope of a grassy hill. If there is only one OP ξ, this overdamped motion is described by

γ
dξ

dt
“ ´

BV pξq
Bξ

(46)

where γ is a constant. In the general case of several order parameters we have

γ
dξk
dt
“ ´

BV pξq
Bξk

, or in short γ
dξ

dt
“ ´∇ξ V pξq (47)

i.e., a gradient dynamics. Calling
ˇ

ˇ

ˇ
ξo f f ered ´ ξk

ˇ

ˇ

ˇ
error, the solution of Equation (47), means ”error

correction“. (cf., e.g., Friston’s [39] comprehensive work). The formulation of Equation (47) is based
on “hand waving” arguments. Can we derive it more systematically? The answer comes from
a comparison between Equation (45) and the steady state solution of a Fokker–Planck equation with
its drift and diffusion terms,

dP
dt
“ ∇ξ p´K pξq Pq
looooooomooooooon

dri f t

`
1
2

ÿ

j,k

B

Bξ j
Qjk

B

Bξ k
P

loooooooooomoooooooooon

di f f usion

(48)

We have written K pξq instead of N pqq in Equation (5) to indicate that K is now a different function.
Let us discuss the diffusion terms (cf. Equations (5) and (7))

B

Bξ j
Qjk

B

Bξk
P (49)

first, where Qjk stems from the correlation function Equation (9). In view of our ignorance and in
the spirit of making an unbiased guess we assume that the fluctuations are uncorrelated, i.e., Qjk9δjk
(Kronecker symbol). The next assumption is made that no ξ j is favoured against another ξk what
fluctuations are concerned. This requires Qjk “ Qδjk. Thus we guess a Fokker–Planck equation of the
form Equation (5). To make contact with Equation (45) we consider the time-independent case

dP
dt
“ 0, i.e., ∇ξ

ˆ

´K pξq P`
Q
2
∇ξ P

˙

“ 0 (50)

and try the guessed Pg Equation (45) as solution to Equation (50). We readily obtain

∇ξ Pg

"

´K`
Q
2

´

´∇ξ Vguessed

¯

*

“ 0 (51)

which is fulfilled by choosing the (vector) force K as a gradient of a potential function,

K “ ´∇ξ V pξq (52)
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By simple comparison

Vguessed “
2
Q

V (53)

Note that this choice is made by a simplistic argument, i.e., by putting t ¨¨ u “ 0. Thus we miss
a whole class of processes for which

´ rK`∇ξV ` G “ 0 (54)

and
∇ξ G “ 0 (55)

When G does not equal zero, the solution in Equation (55) requires that the flow associated with
G is divergent-free (i.e., non-dissipative). This can be thought of as flow that does not change the
potential and circulates on iso-potential contours. Indeed, it is often referred to as solenoidal flow. The
decomposition of the flow into dissipative and non-dissipative (divergence-free) parts in Equation (54)
is also known as the Helmholtz decomposition. To make the splitting of rK into ∇ξ V and G unique we
require that the flow caused by G is perpendicular to that of ∇ξ V.

The positions of the valleys characterize objects which are most probable, or in other words salient
and may represent in the spirit of Gibson’s [40] affordances. We will return to the latter issue when
discussing perception-action. In this way meaning is attributed to the valleys.

The Fokker–Planck equation is attached to a Langevin equation for the time-dependent variables
ξ “ pξ1, ξ2, . . .q. Provided the force K pξq derives from a potential Equation (52), then our above
postulated Equation (47) follows directly from the Langevin Equation without noise and determines
the overdamped motion of a particle in that potential. In the presence of noise the most probable path
(when G = 0) is determined by Equation (47).

4.1. Sparse Potential Network for the OP “Purification”

For our discussion it suffices to put Q “ 1 and W “ ´V. Using W Equation (41), the equations of
motion of our fictitious particle with coordinates ξu, u “ 1, . . . , M, reads

dξu

dt
“
BW
Bξu

“ 2λ̂uξu ` ξu
ÿ

u1u2

2
Auu1u2 ξu1 ξu2 ` ξ2

u

ÿ

u1

Duu1 ξu1 ` ξ3
uCu, u “ 1, . . . , L (56)

where the coefficients A, D, C are linear combinations of λ̂u,u1,u2 ,u3 in Equation (41). The primes’ at
Σ indicate u1 ‰ u and u1 ‰ u, u2 ‰ u, respectively. The extrema of W (or V), i.e., maxima, minima,
saddles are given by

BW
Bξu

“ 0 (57)

As an inspection of Equations (56) and (57) reveals, extrema lie at

ξv ‰ 0, all other ξu “ 0, u ‰ v (58)

where v “ 1, ¨ ¨ ¨, M, and provided Cv ă 0, λ̂u ą 0 (cf. Equation (32)), we obtain

ξu “
`

2λ̂u{
ˇ

ˇCu
ˇ

ˇ

˘

1
2 (59)

If an extremum lies at some ξ, then also at ´ξ.
From the mathematical point of view the appearance of the numerous coefficients A and D makes

a discussion of the kind of extrema clumsy. Here it helps to look at neuroscience by interpreting
the coefficients as synaptic strengths connecting neurons with activities ξ. Then we may invoke the
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principle that nature prefers sparse networks, i.e., the “brain” will cut down superfluous connections.
This is achieved by putting all

Duu1 “ 0 for all u, u1 (60)

and all
Auu1u2 “ 0 for all u1 ‰ u2 and u1 “ u2 “ u (61)

Thus we arrive at

dξu

dt
“ 2λ̂uξu ` ξu

ÿ

u1‰u

Auu1 ξ2
u1 ´ ξ3

u|Cu|, Auu1 ” Auu1u1 (62)

We study the properties of Au,u1 so that stable minima of V (or maxima of W) result.
We have

W “
ÿ

u

˜

λ̂uξ2
u ´

1
4
|Cu|ξ

4
u ` ξ2

u
1
2

ÿ

u1‰u

Auu1 ξ2
u1

¸

(63)

Consider the neighbourhood of ξv ‰ 0, ξu1 “ 0, u1 ‰ v.
If ξu1 increases, W must decrease, i.e.,

Auu1 ă 0, u ‰ u1 (64)

Because the sole “task” of Auu1 is to stabilize the maximum of W (minimum of V), its detailed
dependence on the indices u, u’ is irrelevant so that we may put quite generally

Auu1 “ ´A, A ą 0, u ‰ u1 (65)

On the other hand, the position of the extremum is determined by both λu and Cu according to
Equation (59). As we will see below, ξu enters into the corresponding prototype pattern vector vu.

Furthermore, the relative depths of the local minima of V may serve as measure of the relative
frequency of the respective ξus. The depths are given by

Vmin “ ´λ̂2
u{
ˇ

ˇ

ˇ
Cu

ˇ

ˇ

ˇ
(66)

The relative frequencies will play an important role in Section 6. As a consequence, at least what
pattern learning is concerned we must retain these pairs (λ̂u, |Cu|).

Contact can be made to the model of the synergetic computer [5] if we put

λ̂u “ λ,
ˇ

ˇCu
ˇ

ˇ“ C ą 0 (67)

for all u, where A ą C ą 0.
In this way, the Synergetic Computer (SC) model is derived here for the first time from first

principles and elucidates an underlying assumption on the SC, namely all prototype patterns are
(on average) equally often offered and their OPs are of equal size. (For more details of the learning
procedure cf. [5]). An open question remains: are OPs mental constructs or are they material (“grand
mother cells”?).

4.2. The OP in Relation to Semantic and Pragmatic Information

So far, our approach has been based on Shannon information. However, as shown in our previous
studies [1,6] meaning enters in disguise into the definition of SHI. But where in our present formulation
of SHI information with meaning, semantic or pragmatic, comes in? In a first step, the system (computer
or neural net) has learned an attractor landscape. In a second step, an offered, incomplete pattern is
pulled into a specific attractor.
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PI and SI result because this attractor itself requires meaning by initiating now, or (in the case
of memory alone) later, a chain of associations leading to actions and memory. Note that this is
quite in line with contemporary consciousness research that we discuss below in Section 10 (though
we must not ignore the role of unconscious effects where no associative chain is “ignited”). This
requires, of course, that, related to each person/object, previous experiences have been laid down
internally in the observer or externally in the world—as modeled, for instance, by our notion of
SIRN (synergetic inter-representation network). Commencing from the synergetic computer, SIRN
describes the dynamics of such a chain of associations as a sequential interaction between internal
representations constructed in the mind/brain and external representations constructed in the world
(cf. [41,42] and Chapter 7 in [31]). Since internal as well as external representations can in fact be
represented by order parameters, the corresponding associative chains can be formalized by a set of
“feed forward” order parameter equations whose explicit discussion would go considerably beyond
the scope of our contribution.

Both SI and PI refer to the meaning of information, as noted. On the face of it, the distinction
between the two and between them and SHI, is clear: Given a message, SHI measures the quantity of
information conveyed by this message, SI deals with the meaning conveyed by that message, while
PI with the action it conveys; very much in line with the relations between syntax, semantics and
pragmatics in semiotics—the study of signs [43]. Applied to synergetics, the pattern recognition
paradigm generally corresponds to SI, while that of the finger movement paradigm to PI. Thus, in the
case of the approaching lady (above “Forms of Information” in Section 1.2.2, Figure 7) we have a play
between SHI and SI, while in the case of the dog chasing the cat (above Section 1.2.3, Figure 8), a play
between SHI and PI.

While in a first approximation this distinction between SI and PI seems to be rather obvious,
an in-depth analysis reveals that PI and SI are intimately connected, and our interpretation is
context-sensitive [43]. Two examples may elucidate this: First, pattern recognition (associated with
SI) is associated with the external action of saccadic eye movement i.e., PI (see Section 10 below) and
second, action (PI) requires pre knowledge (SI) of possible choices beyond pure reflexes.

An important question is whether PI and/or SI can be quantified. Based on the explicit example of
the multi-mode laser, Atmanspacher and Scheingraber [44] equate pragmatic information to efficiency
(of the laser output as defined by Haken [7]) as the change of an order parameter versus change of
a control parameter. These authors interpret also pragmatic information in terms of nonequilibrium
thermodynamics (entropy production) and consider pragmatic information as a measure of meaning.
For a detailed discussion including recent results by Atmanspacher and coworkers we refer the
reader to the forthcoming contributions by him to this special Entropy issue on “Information and
Selforganization”. As indicated above, we relate, at least in cognitive science, PI/SI to an associative
process. In fact, based on an index Hc that Atmanspacher and Scheingraber labeled “pragmatic
information”, Walter Freeman [45] was able in his EEG experiments on perception, to identify specific
epochs of neural activity. In our interpretation, each epoch is related to an order parameter that governs
a specific spatio-temporal activity patterns with high coherence, stability and intensity (reminiscent of
laser light!). Dealing with such microscopic processes is, however, beyond our article (cf. [46]).

One prominent example of human cognition is the capability of categorization and abstraction.
Take a simple example of a specific sea—say, the Mediterranean: from a SI point of view it is the abstract
entity—sea or more specifically the Mediterranean, to be distinguish from the Atlantic ocean or the
Black sea, etc.—all SI abstract entities. From the perspective of PI, the Med is an object that affords/or
not (in the Gibsonian sense) the actions swimming, diving, sailing, fishing and so on. Humans’ usage
of SI or PI is context and task dependent. In some cases we use SI (i.e., the approaching lady), in
others PI (e.g., finger movements) and this usage affects the derived SHI and as a consequence the
process of IA. As it seems, algorithms capturing categorization and in particular abstraction are still in
their infancy.
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4.3. Another Probability—Based Approach

Our approach offers an alternative to other probability-based approaches in theoretical biology
including neuroscience, where the predominant method exploits Bayes’ Theorem (“Bayesian
Inference”) which connects prior beliefs (hypotheses) with posterior beliefs.A prominent example is
Karl Friston’s [39] comprehensive work with his general free energy principle.

The application of both concepts to concrete processes requires specific “generative”
(mathematical) models. Our starting point is Jaynes’ maximum entropy principle [33] with our
specific constraints which capture directly the data acquisition process and allow their interpretation.
A detailed comparison between these approaches must be left to a later publication. As long as we
use time-independent correlation functions (Equations (22) and (23)), we arrive at a time independent
probability distribution defining a potential landscape. Up to here, there is a formal analogy with
Friston’s free energy (leaving aside the question of generative models).

As we will demonstrate below, a number of important processes cannot be dealt with by these
approaches alone. Examples we will treat below are saturation of attention, saccades of eye movements,
scene analysis and rhythmic motions. Our approaches use the concept of quasi-attractors (see below,
Sections 7 and 8) as well as time-dependent correlation functions as constraints [1]. The quasi-attractor
concept deals with an escape process from an attractor state. For another recent approach cf. [47].

5. Determination of “Prototype” Patterns vu

We determine the pattern vector vu0 belonging to the OP

ξ0
u0
p all other ξu “ 0, u ‰ u0q (68)

According to Equations (29), (32) and (33)

qi “
ÿ

u
ξuaiu `

ÿ

s
ξsais (69)

and
Ps pξs|ξuq given by Equations p39q and p40q (70)

First step (in general sufficient):
We choose that ξs that maximizes Equation (70) for given ξu “ ξ0

u0
. For an explicit example cf.

Equation (80).
Thus

ξs “ fs

´

ξ0
u0

¯

(71)

We insert Equations (68) and (71) in Equation (69) and identify the resulting qi with ξ0
u0

viuo .

ξ0
u0

viuo “ ξ0
u0

aiu0 `
ÿ

s
fs

´

ξ0
u0

¯

ais (72)

which provides us with the required learned prototype pattern vu0 .
We show that vu, vu1 are nearly orthogonal.
We put

viu “ Nu

˜

aiu `
ÿ

s
ais

rfsu

¸

, rfsu “ fs pξuq ξu
´1 (73)

where Nu is a normalization factor,
´

v2
u

¯

“ pvuvuq ”
ÿ

i

viuviu “ 1,
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and form

pvuvu1q “ NuNu1

˜

ÿ

i

aiuaiu1 `
ÿ

i

ÿ

s
aiuais

rfsu `
ÿ

i

ÿ

s
aiu1 ais

rfsu1 `
ÿ

i

ÿ

s

ÿ

s1

aisais1
rfsu rfsu1

¸

(74)

We use
ÿ

i

aiuaiu1 “ δuu1

ÿ

i

aisais1 “ δss1

ÿ

i

aiuais “
ÿ

i

aiu1 ais “ 0

and obtain

xvuvu1y “ NuNu1

˜

δuu1 `
ÿ

s

rfsu rfsu1

¸

(75)

Because of the smallness of the enslaved modes, |
ř

s
| ăă 1 , the normalization constant becomes

Nu « 1 for all u, and vu, vu1 are nearly orthogonal, i.e.,

pvuvu1q “ δuu1 (76)

To get an insight into the accuracy of Equation (72) we perform a second step as follows:
Second step:
Because of the conditional probability even for fixed ξu “ ξ0

u0
, we expect a distribution of

prototype patterns around Equation (72). We determine the corresponding distribution function
P pq|u “ u0qwhich we may define by

P pq|u “ u0q “

C

Π
j

δ

˜

qj ´ ξ0
u0

aju0 ´
ÿ

s
ξsajs

¸G

Ps

(77)

where the average is taken over Equation (70), ξu0 fixed.
We use the Fourier representation of Dirac’s δ function so that

p77q “ p2πq´L Π
j

8
ż

´8

dtj exp
´

i tj

´

qj ´ ξ0
u0

aju0

¯¯

C

exp

˜

´itj
ÿ

s
ξsais

¸G

Pspξs|ξ
0
u0 q

(78)

where first we calculate
x . . . y “ F

`

tj, u0
˘

(79)

Provided we use the slaving principle in leading approximation, we may evaluate Equations (79)
and (78) exactly and explicitly. Specialized to ξu “ ξ0

u0
, Equation (70) reads

Ps

´

ξs

ˇ

ˇ

ˇ
ξ0

u0

¯

“ exp

˜

´
ÿ

s
|λs|

´

ξs ´ fs

´

ξ0
u0

¯¯2
¸

exp h
´

ξ0
u0

¯

(80)

where
fs “

1
2|λs|

´

3λ̂su0u0 ξ2
u0
` 4λ̂su0u0u0 ξ3

u0

¯

(81)



Entropy 2016, 18, 197 20 of 57

In what follows, only integrals over Gaussians are involved. We first perform the integration over
ξs to calculate F where we obtain Gaussians with respect to tj. When we integrate over tj we arrive at
the final result

p77q “ Z´1 Π
j

exp

¨

˝´
1
4

β

˜

qj ´ ξ0
u0

aju0 ´
ÿ

s
fsajs

¸2
˛

‚ (82)

where β “ p
ř

s
1{|λs|q can be regarded as a precision or inverse variance, Z´1 normalization.

Thus we obtain for the prototype pattern vu0 (up to a factor ξ0
u0

) a Gaussian centred around
Equation (72). If β large, Equation (82) reduces to a δ function so that Equation (72) becomes exact. Note
that while we choose always ξ0

u0
ą 0, the eigenvectors aiu0 , ais may acquire positive and negative values.

This is a consequence of our choice of constraints Equation (23). To make contact with patterns
presented by images with their non-negative grey value distribution we may add a uniform positive
background b so that viu0 Ñ viu0 ` b ě 0 everywhere.

Pattern Recognition: A First Step

We consider an unbiased observer who has learned the prototype patterns but has no preferred
expectations what to see. His/her task is to project the offered pattern vector q onto the order
parameter space by means of the prototype pattern vectors vu. Two properties of the prototype vectors
Equation (72) are important (cf. [5])

ÿ

i

viu0 “ 0 (83)

As can be shown, Equation (83) is a consequence of Equation (23). This relation takes care of the
effect of on/off center cells of the eye (cf. [20–22]). Equation (23) and thus Equation (83) are achieved
by substracting the average gray value of an image from each pixel gray value.

To exclude a bias, we normalize vu0 “
`

v1u0 , v2u0 , ..
˘

Ñ v̂u0 “ N vu0

so that
v̂2

u0
“ 1 (84)

In the following we will drop ˆ so that it will be understood that Equation (72) is processed
accordingly. Then we form

xqvuy “ ξu pt “ 0q (85)

which defines the initial values of the OP dynamics according to the OP-potential and described by
the Equations (62) and (65). Where again in the absence of a bias we must put λ̂u “ λ̂, Cu “ C.

In the “generic“ case the ξus lie in the basin of attraction of a definite u “ u0 so that the recognition
task is solved. (For a discussion of this landscape cf. [5]). If the OP s lie on an edge between two
attractors, several procedures may be applied. More data (features) are required that might be collected
by further glances (cf. Section 8 on Saccades below), or by manipulating data (cf. Section 7.2 dealing
with information inflation/deflation below). A further possibility to escape this “dead lock” is the
occurrence of an external or internal chance event (a fluctuation well known in physical systems).
As we see below (Section 8), the approach to an attractor state in visual recognition is the final result of
multi-step and interlaced processes each of which can be represented by an algorithm, that we will
describe later on.

6. The Invariance Problem

The concepts of symmetry and invariance play a fundamental role in physics. Here we meet them
in a new context: (A) The identity problem (in psychology)—do some patterns belong to the same
object? (B) The invariance problem—do some order parameters refer to the same object irrespective of
its: Position in space (1)? Orientation in plane of observer (2)? Orientation out of plane (3)? Scale (4)?
Deformations (5)? Mirror image (6)?
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Leaving aside our specific use of the “order parameter” concept, the invariance problem is
fundamental to machine vision as well as to neurocomputational models of brains. We refer the reader
to an excellent overview over this vast field from a unifying point of view [48] which summarizes
also a more recent approach by these authors (cf. a brief description of their important method in
Section 6.4 below). Our own approach is related to theirs though we add some further aspects and
ignore other important ones. See below.

Our suggested strategy is based on the hypothesis (learning by a baby/child):

(a) most frequently observed patterns might be related.
(b) or supervised machine learning: the instructor presents the same object with different views time

and again.

Problem (a) is more complicated than (b). We mainly address (a). We proceed in three steps.

6.1. Step 1

We determine the most frequent ξus by

Pop pξuq “ max! (86)

or because of
Pop pξuq “ exp

`

´Vop pξuq
˘

(87)

Vop pξuq “ min! (88)

In the “regular” case: ξ0
u0
‰ 0, ξu “ 0, all u ‰ u0. In this case (cf. Equation (66))

Vop

´

ξ0
u0

¯

“ ´λ2
u0
{

ˇ

ˇ

ˇ
Cu0

ˇ

ˇ

ˇ
(89)

Because of Equation (87), this allows a strong discrimination between ξus.
Clearly we must know λ2

u{Cu for all u. We call the corresponding set of ξ0
us and their attached

patterns: the ”salient set“.

6.2. Step 2

We consider the salient set. Are there transformations T that can connect some or all members of
the salient set?

Assume vu normalized for all u s considered. We require

Tuu1 “ |pvuTvu1q| « 1 ! (90)

where p . . . q means scalar product. The elements of T form a group (in the mathematical sense) of
transformations related to 1–6 (see below).

There may be some limitations to these transformations:
(1) displacements may be small for humans (due to saccades), vertical orientation/upside/down

is preferred—most frequently observed;
(2) and (3) there may be interpolations possible;
(4) only small deformations will be allowed (“morphing”).

6.3. Step 3: Construction of Transformations T

To this end we replace and approximate the indices of qi, i “ 1, . . . , L, or vik by a continuous
two-dimensional spatial variable x, y, abbreviated by x. Then q and v are replaced by q pxq and v pxq,
respectively. Tv is defined by

Tv “ v pTxq {||v pTxq||, ||v pTxq||norm, (91)
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where T acts as follows, Tx “ T

˜

x
y

¸

(1)

T1x “

˜

x` a
y` b

¸

(92)

(2)

T2x “

˜

sinα cosα

´cosα sinα

¸˜

x
y

¸

(93)

(3)

T3x “

˜

x
γy

¸

, 0 ă γ ă 1 (94)

(4)

T4x “

˜

δx
δy

¸

(95)

(5)

T5x “

˜

fx px, yq
fy py, xq

¸

«

˜

x
y

¸

`

˜

gx px, yq
gy px, yq

¸

g small

(96)

(6)

T6x “

˜

´x
y

¸

The explicit representations of T in the cases 1–4 show how T can be parametrized.
Case (5) can be realized in a variety of ways by suitable choice of gx, gy, or differently by

a superposition of typical prototypes. Note that for small enough parameters, T1´T5 can be considered
as generators of a (non Abelian) group. However, we may equally well define any desired total
transformation T as a product of T1, . . . , T6 with finite parameters and denote it by T pα, β, γ, . . . q.
Since several of the transformations T don’t commute, in practical applications their appropriate
sequence of applications to an image may be important and must be discussed in detail. To fix the
parameters we require

T2
uu1 “ pvuTvu1q

2
“ max! (97)

There are numerous optimization procedures for the solution of Equation (97) available. Again in
the context of neurocomputing we may apply the method of steepest descent.

Just a side remark:
Algorithms that perform pattern transformation by translation, rotation and magnification are

used even in smart phones and need not be discussed here. The same holds for deformations used for
“morphing” by computers.

6.4. The Transformation Parameter Space

Each set pα, β, . . . , q defines a specific transformation T pα, β, . . . ,q in a space spanned by these
parameters. A continuous change of pα, β, . . . , q defines a trajectory in this space. Can we define
a dynamics for such trajectories? Can it be based on some potential landscape or/and on some
probabilistic approach? In view of what we have suggested above, this potential will be defined by

VT
uu1 pα, β, . . . ,q “ ´ pvuT pα, β, . . . ,q vu1q

2 (98)

the starting point chosen at pα, β, . . . ,q “ 0.
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The structure of Equation (98) was determined numerically in the case of translation and that
of a somewhat generalized potential in the case of deformations [5]. In both cases no trapping in
unwanted minima occurs if the T parameters are not too large. What happens at the order parameter
level after we could identify those ξus whose vus are connected by transformations. These ξus define
an object (a category) described by a new order parameter ξp1q. Different objects are described
by different order parameters ξ

p1q
m . We denote Equation (98) by WT

uu1 ptq and consider the matrix
W “

`
ˇ

ˇWT
uu1 ptq

ˇ

ˇ

˘

for t Ñ8 (or, in practice, over a sufficiently long time interval). Then a number close
to 1 will appear at those positions where T connects one ul with another u2:

W “

˜

1 ¨ 1 ¨

¨ 1 ¨ ¨

¸

(99)

The dots mark positions where
ˇ

ˇWT
uu1

ˇ

ˇăă 1 . By a simple linear transformation we may reshuffle the
indices so that W acquires the form

W “

¨

˚

˝

r s

r s

. . .

˛

‹

‚

(100)

where each box contains only 1 at each position and indicates a specific category. In a next step
denotations can be attributed to each box by associative learning. However, we will not dwell on this
issue. In each box a single element will be sufficient to represent the whole category. In the case of
faces a single prototype pattern as member of the salient set may not be sufficient. Here we need (at
least) two prototypes: front view and side view(s). Rotation out of the plane implies a suitable linear
combination of both views. The same remark may apply to other objects.

Clearly, taking the relative probabilities of the occurrence of OPs might be too stringent. In such
a case more us may be taken into account. Once the representative vus are determined and stored by
the system, the recognition process may run the same way as the categorization process described
above. There are some invariance properties of the OP dynamics that are noteworthy. Because of the
formulation of the recognition process as an initial value problem, this process is invariant under the
joint transformation T of any image vector q and prototype vectors vu, i.e.,

q Ñ Tq, vu Ñ Tvu

provided T possesses an inverse T´1 and the Jacobean is a constant (see Appendix B.1).
On the other hand, we may subject either q or vu to some transformation T as deformation D [49].

In psychology we speak of assimilation in case of D1q and of adaptation in case of D2 vu. Both cases are
equivalent if D2 “ D´1

1 and the Jacobean is a constant (for a proof see Appendix B.1).

6.5. Information Deflation by Transformations [6]

We may distinguish different patterns by the label g p” q or vuq, where g may stand for a set of
features, i.e., the grey values of the pixels into which the pattern is decomposed. We decompose g
into J (essential) and T (unessential) features, e.g., J may characterize a face at a specific position in
space with a specific orientation, a specific size and in a standard form, i.e., without deformations, e.g.,
showing no facial expressions. A typical example is the photo in our passport! T then may represent
transformations such as translation in space, rotations, scaling or deformations. Shannon information
is given as usual by

i “ ´c
ÿ

P pgq lnP pgq (101)

where P is the probability to observe a pattern characterized by the label g.
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We want to show that by means of the decomposition of g into J and T, which is achieved by the
recognizing system, i.e., our brain or an advanced computer, Shannon information Equation (101) can
be deflated. To this end we write Ppg or vuq as

P pgq “ P pJ, Tq (102)

so that Equation (101) reads
i “ ´

ÿ

J,T

PpJ, TqlnPpJ, Tq (103)

(we have dropped the factor c that appears in Equation (101)).
According to general rules of probability theory we may decompose the joint probability PpJ, Tq

according to
PpJ, Tq “ PpJ|Tq f pTq, (104)

where the first factor represents the conditional probability and the second factor the probability to
observe the object at a specific location, etc. before the transformation T has been made. The usual
normalization conditions

ÿ

J

P pJ|Tq “ 1 (105)

and
ÿ

T

f pTq “ 1 (106)

must be observed. Inserting Equation (104) into Equation (103) and using Equation (105) allows us to
cast i into the form

i “ ´
ÿ

T

f pTq
ÿ

J

P pJ|Tq lnP pJ|Tq ´
ÿ

T

f pTq ln f pTq , (107)

where the first term is a sum over the different transformations T of the conditional information ip¨|Tq

ip¨|Tq “ ´
ÿ

I

PpI|TqlnPpI|Tq (108)

averaged over the distribution f pTq. The second term in Equation (107) represents the information of
the transformation T alone. When T is irrelevant for the recognition, we may drop this term and thus
deflate information to the first term in Equation (107). In a final step we may simplify the first sum in
Equation (107) by estimating Equation (108) taking the most probable ip¨|Tq for a T “ T0.

max
T

ip¨|Tq “ ip¨|T0q (109)

Taking into account the normalization condition (105) we then obtain an estimate for the deflated
information according to

ide f lated “
ÿ

T

f pTqi p¨|Tq ď i p¨|T0q
ÿ

T

f pTq “ i p¨|T0q (110)

Equation (102) may serve as starting point to make contact with work byT. Poggio and his
coworkers [48]. To this end we identify J (their I) with a prototype pattern

vu “ pvui, . . . , vudq (111)

subject to the conditions Equations (83) and (84), d: number of pixels. These authors consider
Equation (111) as vector in a Hilbert space H “ Rd. Applications of some T transforms vu into
another vector of H. Applications of all elements T of the considered group rG on vu generate a set
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of endpoints of the vectors that is invariant against all Tε rG and can be represented by a distribution
function Pu. According to Anselmi et al. [48], two vectors vu, vu are equivalent if

Pu “ Pu1 (112)

These authors develop an efficient way to check Equation (112) based on a finite set of templates
(ideally only one). They study very carefully the impact of accuracy (i.e., resolution) on recognition.
The important role of accuracy is clearly witnessed by hybrid images (cf. Section 7.2 below). Their Pu

can be generated also directly from our (102)

Pu Ø P “
ÿ

T

P pJ, Tq (113)

The effect of Pu can be visualized by forming an average image

v “ pvu1, . . . , vudq (114)

where
vj “

ż

´

ż

dq1 . . . dqdqjPu pqq , q P Rd

A nice example is provided by faces of some population where the transformations T are
“deformations” with respect to the average face represented by Equation (114) (Figure 11).Entropy 2016, 18, 197 27 of 61 
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Figure 11. An illustration of Equation (114). This figure was originally created by H. Daucher 1979 
and served as example of the formation of templates by statistical learning as presented by  
I. Eibl-Eibesfeld in Rentschler et al. [50]. 

For sake of completeness we quote a further method to construct invariant images. Image 
vectors such as Equation (114) are Fourier-transformed, their absolute value subjected to a 
logarithmic map in the complex plane, and the result again Fourier-transformed. The example of 
Figures 12 and 13 suffices to demonstrate how an image that is invariant against translation, scale, 
and rotation is achieved. 
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corresponds to large values of  | , |z yc k ik ; (c) the logarithmic map; (d) the absolute square of the 
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Figure 13. As in Figure 12 but with all transformations performed simultaneously. From [51]. Note 
that Figure 13 right coincides with Figure 12d. 

6.6. Invariance and Good Gestalts 

There is a close relation between the concept of “good Gestalts” [52–54] and invariance: The 
circle as “good Gestalt” is invariant against rotations and a line as “good Gestalt” invariant against 
translation. As is witnessed by the Kaniza triangle illusion (Figure 14, left) our visual system tries to 
make interrupted lines “translation invariant” or, in the case of Olympic rings (Figure 14, right), the 
patterns locally rotation invariant. This “continuation principle” holds more generally in cases of 

Figure 11. An illustration of Equation (114). This figure was originally created by H. Daucher 1979 and
served as example of the formation of templates by statistical learning as presented by I. Eibl-Eibesfeld
in Rentschler et al. [50]. Reproduced with permission from [50].

For sake of completeness we quote a further method to construct invariant images. Image vectors
such as Equation (114) are Fourier-transformed, their absolute value subjected to a logarithmic map in
the complex plane, and the result again Fourier-transformed. The example of Figures 12 and 13 suffices
to demonstrate how an image that is invariant against translation, scale, and rotation is achieved.
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Figure 12. The various transformations applied to a face. From left to right: (a) the original pattern
in the (x,y) plane; (b) the absolute value of its Fourier transform in the
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corresponds to large values of

ˇ
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`
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ˇ ; (c) the logarithmic map; (d) the absolute square of the
Fourier transform of pattern (c). From Fuchs and Haken [51].
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Figure 13. As in Figure 12 but with all transformations performed simultaneously. From [51]. Note that
Figure 13 right coincides with Figure 12d.

6.6. Invariance and Good Gestalts

There is a close relation between the concept of “good Gestalts” [52–54] and invariance: The circle
as “good Gestalt” is invariant against rotations and a line as “good Gestalt” invariant against translation.
As is witnessed by the Kaniza triangle illusion (Figure 14, left) our visual system tries to make
interrupted lines “translation invariant” or, in the case of Olympic rings (Figure 14, right), the patterns
locally rotation invariant. This “continuation principle” holds more generally in cases of partially
hidden Gestalts. Other hints that the human brain performs “mental” rotations come from rather old
psychological experiments (Section 6.7).
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6.7. Mental Imagery versus Computation

It seems worthwhile to relate the approach by Poggio and his coworkers [48] and our approach
in its more explicit computational form to the rather old debate on mental imagery between the main
representatives, Shephard [55,56] and Kosslyn [57], on the one hand and Pylyshyn [58], on the other.
Here we quote merely the experimental findings of the former. Subjects were asked whether two
geometrical forms are the same when one of them has been rotated [55]. According to Shepard and
Metzler [56], the reaction times preceding decisions grew linearly with the size of rotation angle. From
further experiments by Kosslyn et al. [59] it can be concluded that such a linear dependence holds also
between reaction time and distance over which objects had to be displaced mentally. Pylyshyn [58]
asserts that the mind computes in a literal fashion. We agree to this statement at least insofar as
the computational resolution of the invariance problem we have discussed is concerned. In fact the
experimental result lend support to our approach.

7. Quasiattractors

7.1. Ambigous Patterns

As we have seen above, an attractor leading to an OP ξu is established provided the corresponding
eigenvalue Equation (32) λu ą 0. On the other hand, the attractor vanishes if λu ď 0. This observation
paves the way to a mathematical model of the recognition of ambiguous figures, e.g., Figure 15.
Here we may first recognize a vase, but then this percept vanishes and gives way to the recognition
of two faces. This percept vanishes again and so on. Thus we recognize these objects periodically.
The Gestalt psychologist Wolfgang Köhler [52] offered an explanation: Once an object is recognized,
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our corresponding attention becomes saturated and a new object can be recognized. Having in mind
attractor landscapes this saturation effect means that in each case the attractor belonging to the just
recognized object becomes closed. This in turn is achieved by letting λu Ñ 0 or becoming small
enough. These relations lead us to a psychological interpretation of λu as attention parameter that obeys
a specific saturation dynamics.Entropy 2016, 18, 197 29 of 61 
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Figure 15. Vase or Faces?

An explicit form has been studied by Ditzinger and Haken [60,61]. Consider Figure 15.
We attribute the OP ξ1 to vase and ξ2 to faces. According to Equation (62), the OP equations read (note
that we replace 2λκ by λκ for convenience)

dξ1

dt
“ ξ1

´

λ1 ´ Aξ2
1 ´ Bξ2

2

¯

(115)

dξ2

dt
“ ξ2

´

λ2 ´ Bξ2
1 ´ Aξ2

2

¯

(116)

To fomulate a dynamics for the attention parameters λ1, λ2 we assume that they decrease when
ξ1, or ξ2 increase. Because Equations (115) and (116) are invariant against replacement of ξ1, ξ2 by
´ξ1,´ξ2 we wish to retain this property in the equation for λ1, λ2. This leads us to

dλ1

dt
“ a´ bλ1 ´ cξ2

1 (117)

dλ2

dt
“ a´ bλ2 ´ cξ2

2 (118)

where we may choose, e.g., a “ b “ c “ γ ą 0.
A stability analysis of the fixed points of Equations (115)–(118) shows that oscillations become

possible if B´ A ă 1. Figure 16 shows a numerical solution of the Equations (115)–(118). To cope
with the results of psychophysical experiments it is necessary to include the effect of a bias. In fact,
unprepared subjects may initially perceive an ambiguous pattern with differing probabilities for
each interpretation. For instance, 60% of them may first see a young woman, 40 % an old woman in
Figure 17. This effect is modelled [60,61] by an additional potential that changes the attractor landscape.
The new equations read

dξ1

dt
“ ξ1

«

λ1 ´ Aξ2
1 ´ Bξ2

2 ` 4 pB´ Aq a0 ξ2
2

˜

1´
2ξ4

2
`

ξ2
1 ` ξ2

2
˘2

¸ff

(119)

dξ2

dt
“ ξ2

«

λ2 ´ Bξ2
1 ´ Aξ2

2 ´ 4 pB´ Aq a0 ξ2
1

˜

1´
2ξ4

1
`

ξ2
1 ` ξ2

2
˘2

¸ff

(120)
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Figure 17. Old or Young woman?

The attention parameter Equations (117) and (118) remain unchanged. a0 is a bias parameter.
A numerical example may illuminate the impact of a0. If A “ 0, B “ 2 and a0 small enough,

oscillations between the percepts occur. If, however, a0 ą a0crit the oscillations stop. If the bias is
too large, only one pattern can be observed. As the analysis shows further, in the oscillatory case, a0

controls the reversion times tk, k “ 1, 2 during which pattern k is perceived, i.e.,

t1 “ t2 a0 “ 0 (121)

t1 ą t2 a0 ă 0 (122)

t1 ă t2 a0 ą 0 (123)

Here we quote the equations for more than two percepts represented by OP ξk ptq , k “ 1, ¨ ¨ ¨ , M.

dξk
dt
“ λkξk ´ 4C1ξk

M
ÿ

k1‰k

ξ2
k1 ´ 4C2ξk

M
ÿ

k1

ξ2
k1 (124)

dλk
dt

“ ´γ
´

λk ` ξ2
k ´ 1

¯

(125)

They were solved numerically for M “ 3, 4 by [61] with their Figure 10a,b.

7.2. Hybrid Images—Can They Lead to Oscillations?

Such images were introduced by Oliva and Schyns [62,63]. A typical example is shown in
Figure 18.
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Figure 18. Example of a hybrid image: Einstein/Monroe. Reproduced with permission from [63].

When we look at it from a short distance we recognize “Einstein”, while at a larger distance the
percept “Monroe” wins. Figure 18 is a superposition of a high pass spatial frequency filtered “Einstein”
image and a low pass filtered “Monroe” image, or in other words the Einstein picture is drawn in fine
lines, whereas the Monroe picture is based on smooth (grey or color) pixel variations. Increasing the
distance between observer and image causes a lowering of resolution, i.e., a blurring. As we show
in Appendix E this effect can be described and modeled as follows. By blurring we manipulate the
test pattern q from qu “ q (unblurred) to qb “ q (blurred). Let v1 and v2 be the (band pass filtered)
prototype patterns of Einstein (1) and Monroe (2) so that

qu “ av1 ` bv2 (126)

where
@

v2
1
D

“
@

v2
2
D

“ 1, xv1v2y « 0. The superposition coefficients a, b are chosen such that

|xv1qy| larger than |xv2qy| (127)

Then the “winner takes all” dynamics of Equations (62), (65) and (67) lets the OP ξ1 (“Einstein”)
win. (“Einstein” recognized). When we blur q we blur both v1 and v2, so that we have to replace vj by
their blurred counterparts v̂j in Equation (126).

So that
qb “ arv1 ` brv2 (128)

with the same constants a, b as before. However, as the detailed mathematical analysis (cf. Appendix E)
reveals, xv1rv1y is considerably decreased while xv2rv2y remains nearly unchanged. As a consequence
the relative weight of rv1 in ξ1 “ xv1qby is lowered as compared to ξ2 “ xv2qbywhich means that—for
sufficient blurring—v2(Monroe) wins the “competition”. We discuss this phenomenon also in terms
of our “information adaptation (IA)” concept [6]. To this end we define Shannon information i of
an image by

i “ ´
A

v px, yq2 lnv px, yq2
E

,
A

v px, yq2
E

“ 1, xv px, yqy “ 0 (129)

where x,y are two-dimensional continuous coordinates and x ¨¨ ydenotes integration over x,y. We found
that blurring increases i1 (Einstein) while leaving i2(Monroe) practically unchanged. In terms of IA
(information adaptation) the increase of Shannon information means increasing the uncertainty of
recognizing Einstein—a semantic effect. In view of the experimental and theoretical findings on
the oscillations of the perception of ambiguous patterns the question arises: Why are there no such
oscillations caused by hybrid images? At least so far and to the best of our knowledge no such
oscillations have been reported. To dig more deeply into this problem we recall that even in the case of
ambiguous patterns oscillations may be absent—under specific conditions. On the other hand, when
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we carefully increase blurring of a hybrid image we reach a region where the Einstein percept becomes
weak enough so that the OPs Einstein/Monroe are amplified with equal strengths which may result in
oscillations between the Einstein/Monroe percepts according to Section 7.1.

7.3. Recognition of Complex Scenes

In this brief chapter we deal with the recognition of prototype patterns within complex scenes [51].
To be most explicit, we consider test patterns such as that shown in Figure 19. The prototype patterns
to be identified are those of Figure 20. Since the patterns corresponding to the prototype patterns
are spatially shifted with respect to each other, we first make the process invariant with respect to
translation by use of the absolute values of the Fourier transforms of the prototype patterns as new
prototype patterns (subject to Equations (83) and (84)). The OP equations are Equations (62), (65) and
(67). The attention parameters depend on the index u which labels the specific prototype pattern. For
instance u “ 1 corresponds to a particular face in Figure 20, u “ 2 to a second one, and so on.
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Figure 20. The faces that are stored as the prototype patterns. The letters encode the names or identify
the figures.In addition to the faces other figures were also included to check how the synergetic
computer responds and what properties it displays when recognizing these patterns. From [51].

In the first step of our analysis we set all λk “ λ and offer the test pattern of Figure 19 (or more
precisely, its translation-invariant version) to the computer. The resulting time evolution of the OP
ξ belonging to the woman with the label u “ 1, reaches its fixed point ξ1 “ 1, while the other OPs
decay to zero. At this moment (or even somewhat earlier) we or the computer set the attention
parameter, λ1, which belongs to the pattern just recognized equal to zero, whereas all other λ’s remain
unchanged. Then the test pattern (in its translation-invariant form) is offered to the computer again.
The results are shown in panels II and III of Figure 21. ξ1 decays and finally crosses the growing
ξ2-curve. ξ2 eventually reaches its fixed point, indicating that the partly hidden face in Figure 19 has
been recognized.
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Figure 21. Time evolution of the order parameters ξ1 (woman), ξ2 (man) corresponding to Figure 19.
When ξ1 has come close to unity, the attention parameter for the woman is switched to zero and
then a new time evolution sets in as shown, eventually indicating that the man has been recognized.
From [51].

This procedure can be generalized to the recognition of several prototype patterns in composite
scenes. For instance Figure 22 has been analysed in this way. For details cf. [51]. All in all we may state
that attention saturation and thus quasi-attractors are crucial for scene recognition.
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8. Saccadic Eye Movements

As noted in Section 1.2.3, IA is implemented by a sequence of actions that involve interplay
between SHI and SI/PI. Our empirical basis was the process of vision as described in Section 1.2.3 and
Figure 6. This process of vision is implemented by various activities that take place in the brain, but
also by saccadic eye movements, to which we refer in this section. For a review on human saccadic eye
movements cf. Findlay & Walker [64].

Our starting point is the concept of quasi-attractors developed in the previous section. As we’ll
show now, this concept plays a fundamental role also in our model of saccades. Here we can literally
observe how the direction of our glance is attracted to a salient area in an image, but then leaves it to
be attracted by another area and so on.

A recent approach to treat saccades has been published by Friston et al. [47] where also references
to earlier work can be found. Friston et al. [47] describe the process generative (sampling) sensory
information based on a specific generative model in the frame of active inference equipped with
suitable priors (hypotheses) maximizing salience. In this variational treatment, the potential (V) is
associated with the surprise or the negative log probability of sensory samples under the generative
model. Their form of information adaptation rests upon minimizing surprise (implicit in the flow
down potential gradients described above). In particular, they simulate the active sampling of a visual
scene given three hypotheses about its causes (namely an upright face, a rotated face and an inverted
face). The ensuring eye movements are driven by a prior belief that surprise or uncertainty will
be resolved by sampling each new part of the visual scene. Friston et al. discussed also possible
anatomical substrates. Our focus differs from Friston’s by stressing the aspects of information and
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selforganization in particular dealing with the enigma of crucial cues and the appropriate choice of
prototypes (hypotheses).

8.1. Some Basic Facts

An image is projected through the eye’s pupil on the retina. If the eyeball is immobilized,
the image is no more perceived after 1–3 s. This “blindness” effect is counteracted by small rapid
motions of the eye ball (“microsaccades”). Here we are concerned with “macrosaccades”, however.
The local resolution of the projected image is largest in the fovea and decreases (“blurring”) towards
the periphery of the retina. The glance is consecutively directed to salient parts of the image so that
their projections come into the fovea by a sequence of macrosaccades. Basically they may serve two
different purposes: learning or recognition. In both cases we distinguish between three phases of
a macrosaccade:

(1) Even in spite of blurring the brain draws a rough map of the salient parts.
(2) In the following premotor covert phase attention is directed to one of the salient parts.
(3) An overt phase in which the eye ball makes a rotation so that an attention preselected spot is

projected on the fovea.

After some saturation of attention, a new saccade is made to some other salient spot, etc.
The interplay between bottom-up and top-down processes is summarized, e.g., by van der Stighel and
Nigboer [65] as follows:

The activity in the saccade map is determined by the interaction between bottom-up (or
stimulus-driven) and top-down (or task-driven) information (Ludwig & Gilchrist, 2002,
Ludwig & Gilchrist 2003, van Zoest, Donk & Theeuwes, 2004). Bottom-up information
reflects the influence from the outside world, every image that falls on our retina. Top-down
information reflects all intentions and goals that one might have at a certain moment.
As visual attention and eye movement are strongly related (Rizzolatti, Riggio & Sheliga,
1994, Van der Stighel & Theeuwes, 2007), both types of information reflect the same
constructs as used in the attention literature (for a review, see Van der Stigchel, Belopolsky,
Peters, Wijnen, Meeter & Theeuwes, 2009). The continuous competition between these two
types of information has to be resolved in order to execute an eye movement. Behavioral
studies have shown that bottom-up information is dominant early in the selection process,
whereas top-down information can influence the selection process with increasing latency
(Ludwig & Gilchrist, 2002, Ludwig & Gilchrist 2003, van Zoest et al., 2004).

(—Van der Stighel and Nigboer [65])

In our paper we want to deal with these processes from the point of view of information processing,
in particular:

(1) how can we formalize the saccadic map?
(2) how can we formalize the competition between bottom-up and top-down influences?
(3) what happens when a salient spot falls onto the fovea?
(4) what determines when to start a new saccade?

In our approach we ignore a number of important effects, e.g., the “global effect” in which the
“eye lands” in between two salient spots (cf., e.g., [65,66]). We ignore the detailed eye ball dynamics
(cf., e.g., Hepp and coworkers: [67,68]).

8.2. Why Saccades?

Before we start an attempt at a modeling it is useful to deal with the questions why the human
eyes perform saccades. Quite evidently the reason for saccades rests on the local differences of the
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spatial resolution of the retina. Thus the eyeball must be directed consecutively to the individual
parts of the image to be recognized (or learned). Apparently, the eye does it in a most economic way
by “visiting” only the most salient parts. As witnessed by Yarbus’ [69] pioneering experiments, each
such spot is visited only for some short time, then another one, then in case of several salient parts
after visiting them, the first part is visited again. Why these short individual visits instead of detailed
ones? We believe that the reason lies in human evolution. As we will discuss, the saccades do not only
serve data collection, but are used also for decision-making. In the following we will try to model
both processes.

8.3. The Problem of Saliency

According to Yarbus [69]: “ . . . the elements attracting attention may contain, in the observer’s
opinion, information useful and essential for perception”. How can we characterize such salient
elements when aiming at a mathematical model? First of all we expect an interplay of bottom-up
processes (kind of stimuli) and top-down processes (e.g., expectations, hypotheses).

To get a preliminary insight, we again refer to Yarbus. According to his statements there is
a decisive top-down influence, but it seems difficult (if not impossible) to draw general conclusions
on the kind of raw data offered by an image that may serve as cues. Many of them that could come
to mind are ruled out by Yarbus, e.g., brightness, outlines, edges, etc., so eventually no one seems to
be left. Our attempt at a resolution of this dilemma rests on a basic principle ruling self-organization:
i.e., circular causality between order parameters and (enslaved) parts. We assume that each class
(e.g., “faces”, “animal”, etc.) is characterized by an order parameter and that the parts are the most
important characteristic features of that class. We assume that the capability of extracting such salient
feature is partly inherited, partly learned. The latter is an important topic in unsupervised learning
by computers, e.g., by feed-forward networks with hidden variables. In the following we deal with
an explicit example. Once the map of salient spots (attractors) is established, the situation the eyes
(brain) are confronted with is typically the same as more generally a human (or animal) is confronted
with in an affordance landscape we discuss in Section 1.2.3 in more detail.

If there is only one attractor, the eyeball will be moved towards it. Here, we are not concerned
with a modeling of equations of motion. The eyeball motion has been determined experimentally
by Yarbus.

Here we are concerned with the brain’s reaction(s) in case of several attractors (spots) which
may be spontaneous or by “decision” making based on hypotheses on the meaning of the image.
From an evolutionary point of view, for the survival of an individual, the fast distinction between
friend or foe is decisive. What are the most salient and typical features for both? Clearly, a pair of eyes.
In fact, e.g., monkeys possess neurons (or assemblies of them) that are specialized for face recognition.
Our point of view is supported by recent computer experiments by Hinton [70] on machine vision,
who used a multi-layer network (more than 20 layers network) to “destill” the most probable pattern
occurring in many photographs of humans in different positions or groups of them. He found as
pattern an egg-shaped figure with two dark circles at the eyes positions and that of the mouth. (The
second most frequent pattern was a cat’s shape). Thus, in the case of two spots (or perhaps three;
nose/mouth), the hypothesis that these spots represent eyes will be dominant and start a process to
scrutinize these spots. If the answer is positive at one spot, this quasi-attractor will be closed (the criteria
to be discussed below) and the next saccade will start to eventually scrutinize the other spot(s) (and
so on, e.g., nose/mouth). As is witnessed by Yarbus’ experiments, the saccades are repeated leading
to the recognition of a face. What happens if the “face-hypotheses” is not verified? We may assume
that a process called “heuristics” starts, where hypotheses are tested consecutively depending on their
relative probabilities. It is here, where our approach of Section 6.1 comes in, where we determined the
probabilities of learned order parameters ξu. (Which can be still more elaborated taking into account
the invariance properties, if needed). What happens when the glance is directed such that the salient
spot falls on the fovea. We may expect a process of pattern recognition such as we dealt with in
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Section 5. However, why is this process repeated as shown by the experiments? A possible answer may
be as follows: As dictated by evolution (as mentioned above), the decision “eye” or “not eye” must be
made quickly. Thus in a first step it will be sufficient to compare the salient spot with a prototypical
eye. This may be obtained by, e.g., a mere superposition of several different eyes, or by an eye whose
OP had been learned most frequently. Since the distance d “ |v pobservedq ´ v pprototypeq| cannot be
zero, it will be sufficient to close this present attractor provided d ă dc, where dc is a predetermined
critical distance. In the following saccades, sets of more detailed prototypes with smaller (or even zero)
dc may be tested.

8.4. Construction of the Salience Map

In the following we cast our approach into a mathematical form.

8.4.1. The Map: ImageÑRetina

The image in projected through the eye’s lens onto the retina. Using geometrical optics, there is
a one—to one correspondence between the pixels of the image and those of the retina. To avoid too
many technicalities we directly deal with the image projected on the retina. Idealizing the eyeball by
a sphere, we use angular coordinates in the horizontal, α, and the vertical β.

The pixel position is thus characterized by α, β and the projected gray value distribution by q pα, βq.
Because of the eye movement, we must use two different coordinate systems:

(a) in resting position of eye, α, β. Because of the weaker resolution away from the fovea the
projected image q is blurred (at the blind spot it even vanishes which we will ignore in the following).
We model this effect by the convolution of q with a blurring function G,

qb pα, βq “ G ˝ q (130)

We will define G below.
(b) We turn to the rotated eyeball, where the coordinates α “ 0, β “ 0 become αr, βr in rotated

position, and we have to introduce a new coordinate system α1, β1 relative to the gaze direction so that

α Ñ rα “ α´ α1 (131)

β Ñ rβ “ β´ β1 (132)

and
q pα, βq Ñ q

`

α´ α1, β´ β1
˘

(133)

An explicit example of G is a Gaussian of width δ

G
`

α´ α1, β´ β1; δ
`

α1, β1
˘˘

“ N exp
!

´δ´2
´

`

α´ α1
˘2
`
`

β´ β1
˘2
¯)

(134)

Note that because of decreasing resolution δ “ δ
`

α1, β1
˘

. In the resting state

qb pα, βq “ G ˝ q “
ż

G
`

α´ α1, β´ β1; δ
`

α1, β1
˘˘

q
`

α1, β1
˘

dα1dβ1 (135)

and in rotated state

rqb pα, β; αr, βrq “

ż

G
`

α´ α1, β´ β1; δ
`

α1, β1
˘˘

q
`

α1 ´ αr, β1 ´ βr
˘

dα1dβ1 (136)

8.4.2. Characterization of Saliences

At least in a number of cases, e.g., faces as witnessed by Yarbus’ results, saliences can be
characterized by regions with high spatial frequencies. In other cases, other (e.g., hypothesis and/or
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instruction based) cues must be used. To construct an attractor landscape we apply a high band pass
filter which can be realized by the convolution of qb por rqbqwith 1´ G∆, where G∆ is a Gaussian with
small width ∆.

Any function f pxq “
ş

eikxckdk is sent to f̂ pxq “
ş

eikxckp1´ e´∆2k2 1
4 qdk.

Thus we define
q̂b

`

α, β; α1, β1
˘

“ p1´ G∆q ˝ qb (137)

Eventually, the potential landscape is formed by

V
`

α, β; α1, β1
˘

“ ´
`

q̂b
`

α, β; α1, β1
˘˘2 C (138)

where an average is taken over a small neighbourhood of α, β, (or, equivalently, over αr, βr

(microsaccades!), and C ą 0 is a constant.

8.5. Dynamics of Saccades

8.5.1. Eyeball Fixed, αr “ βr “ 0

Two quantities have been determined before: (a) q̂b pα, β; 0, 0q; (b) V pα, β; 0, 0q.
(a) allows a preliminary check against fundamental prototype patterns, in particular faces (zero

hypotheses)(needed in case of recognition, optional in case of learning).
We form

xq̂b pα, β; 0, 0q v pα, β; average f aceq y (139)

only in case of recognition:
If large enough, we retain hypothesis; if not: heuristics (cf. above Section 8.2).
(b) V pα, β; 0, 0q defines an attention parameter field Λ pα, βq “ ´ V pα, β; 0, 0q with maxima at

pαk, βkq, k “ 1, . . . , M. We attach an OP ξk to each maximum, where ξk is a measure of the amount with
which that position is “occupied“ and correspondingly a local attention parameter λk. We determine
the trajectory α ptq , β ptq Ñ α1 “ α1, β1 “ β1 so that (after saccade)

V pα1β1; α ptq , β ptqq minimum !

The details of this process are not considered here.

8.5.2. Eye Ball Rotated to First αk, βk, k “ 1 (Presumably Closest to α “ 0, β “ 0)

We invoke Equations (124) and (125)

d ξk
dt

“ ξk

˜

λk ´ C1

M
ÿ

k1‰k

ξ2
k1 ´ C2

M
ÿ

k1

ξ12k

¸

(140)

dλk
dt

“ ´γ
´

λk ` ξ2
k ´ 1

¯

(141)

where ξk ” ξk ptq , λk ” λk ptq , C1, C2, γ ą 0.
The fixation of the initial values depends on learning/recognition. In case of learning we choose

ξ1 p0q “ 1, ξ2 p0q “ ξ3 p0q “ 0 and, in view of our previous computer experiments [61], λ1 « 0.5,
λ2 “ λ3 “ 1.

In case of recognition, the initial conditions are

ξk “ xq̂b pα, β; α1, β1q vk pα, β, localqy (142)

with vks chosen according to basic hypotheses: face (eyes, mouth).
We first consider learning.
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We ignore the explicit dynamics of the saccades. At each saccade s some data on pattern q
are selected

qs “ pqs
1, qs

2, . . . qs
Nq ”

`

qs
l
˘

, s “ 1, . . . , N (143)

where the part (with indices l) falling on the fovea is sharper than its blurred surround.
(Note that s is an upper index and not a power). We may also think of suppression of the surround

instead of blurring. Furthermore and still more important, because of the limited time, even in the
fovea, the data acquisition will be incomplete. We assume that the finally recognized (“learned”)
pattern is a superposition of qs, i.e.,

qN
l “

N
ÿ

s“1

qs
l (144)

There is a subtlety to be taken into account. At each step the patterns qs
l must be shifted by

a coordinate transformation of α, β to compensate the displacements of the projected images on the
rotated retina so that in the relevant layer of the visual cortex a stable input image results. We may
assume that due to brain processes

ÿ

l

qN
l “ 0 (145)

To define the information of q, we require (with help of a normalization factor)

ÿ

l

´

qN
l

¯2
“ 1 (146)

and put

pN
l “

´

qN
l

¯2
S “ ´

ÿ

l

pN
l lnpN

l (147)

Since the normalized superposition Equation (144) diminishes blurring of the total image, we
may expect that S Equation (147) is decreased with an increasing number N of saccades. Furthermore,
to have a measure for the data acquisition process we form the Kullback–Leibler information gain
(cf. [71]) K pN ` 1, Nq of the distribution

pN
l , and pN`1

l (148)

and require
K pN ` 1, Nq Ñ 0 (149)

or, in practice
K pN ` 1, Nq ă K0 (150)

because the learning capacity is limited. For a related use of information gain for learning cf.
Appendix D. There is an interesting analogy with the study (analysis) of rat’s behavior (See below),
where eye movements seem to correspond to those of whiskers. These considerations conclude the
learning procedure mediated by Equations (140) and (141). We now turn to recognition.

8.6. Recognition

The basic steps concerning the updating of q (cf. Equation (144)) are the same as before. However,
the resulting intermediate qs serve time and again as offered test patterns to the recognition process
modelled by the synergetic computer (SC) where a whole set of prototype patterns (“hypotheses”)
is offered simultaneously. If the data contained in an (updated) q are insufficient, the SC process does
not lead to a unique attractor (prototype pattern) and must be repeated after some more saccades. We
suppose that in the brain the SC is stopped after a given time, perhaps as a consequence of the attention
saturation dynamics. All in all, the updating process is chopped at times where some ξk ą 0, λk “ 0
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so to allow the SC recognition process come in which may explain the various glance durations. Our
model may shed light on the interplay between bottom-up and top-down process, i.e., data collection
and prototype (hypotheses) checking. We assume that gaze duration is directly correlated with the
SC-process.

In our approach we have dealt with the initial phase of saccades leading to the recognition of
a face or even of that of a specific person, based on primitive cues. In our opinion, only then the
observer may scrutinize an image based on his/her personal experience. At this point we may refer to
Yarbus [69]:

The human eyes and lips (and the eyes and mouth of an animal) are the most mobile and
expressive elements of the face. The eyes and lips can tell an observer the mood of a person
and his attitude towards the observer, the steps he may take next moment, and so on. It is
therefore absolutely natural and understandable that the eyes and lips attract the attention
more than any other part of the human face.

(—A.L. Yarbus [69])

We can model this phenomenon by an adaption of the relative weights of the attention parameters
in the course of the process.

8.7. Saccades of Instructed Observers

In the foregoing we have presented a model on saccades and information processing of
an uninstructed and unbiased observer. We mention two more groups of experiments:

(1) Study of saccades (eye glances) of an observer who is questioned about the picture.
(2) As already noted by Yarbus [69]:

Eye movements reflect the human thought processes; so the observer’s thought may be
followed to some extent from records of eye movements (the thought accompanying
the examination of the particular object). It is easy to determine from these records
which elements attract the observer’s eye (and, consequently, his thought), in what
order, and how often.

(—A.L. Yarbus [69])

Such studies can be continued with investigations of language production. Here, for instance,
saliency maps (attentional landscapes (e.g., [72,73]) can be established and their (information) entropy
measured. This might open a way to connect our type of modelling with experimental findings by
Coco and Keller [74] to mention but one recent example.

8.8. Exploratory Behavior

In their above noted study, Friston et al. [47] (p. 151) refer to saccades eye movements as
“exploratory behaviour and visual search strategies . . . an emergent property of minimizing surprise
about sensations and their causes.” It is interesting to note that the notion of “exploratory behaviour”
is central also to variety of domains in which the exploration is implemented by a moving (“behaving”)
animal or human introduced to a novel environment.

Experimental studies exhibit remarkable analogies between exploratory behavior of human
saccadic eye movements and whole body exploratory behaviour. Three main similarities are
relevant here:

(1) As in eye movement so in whole body exploratory behaviour, the process is highly structured,
consisting of distinct forms of body movement and action in the environment. For example
([75,76]), when a rat in normal conditions is being put into a circular arena (Figure 23), it first
moves forward relatively slowly, making frequent (5–14) stops until it reaches a certain threshold
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stop from which it begins a backward movement that is fast and with no stops. In the next
excursion it moves fast through the previously explored “familiar” area, all the way to its final
stop, from which it starts the exploratory forward movement, as before, and then the backward
movement. This time, however, on its fast movement to the home base, it “takes a rest” in some
of the previously determined stops. This exploratory behavior continues until the whole area
is explored.

(2) As in saccadic eye movements, in whole body exploratory behaviour, salient features in the
environment play an important role in determining the animal’s movement [77,78]: This is so
with respect to the form of the explored area as a whole (Figure 24), and this is so with respect to
salient features within the area. Here it was found that not only those salient features attract the
animal’s movement, but also that different spatial configurations of salient environmental objects,
entail different forms of exploratory spatial movements. This is illustrated in Figure 25 that maps
the paths of progression of four rats in grid versus irregular layouts during the 20 min of testing.
In the grid layout, the rats’ movement was dispersed throughout the arena, spanning the objects
and the perimeter. In the irregular layout, the rats’ movement was in relation to the start point
and the nearby arena wall, covering only a portion of the arena area.

(3) As in saccadic eye movements, whole body exploratory behaviour of rats and mice, implemented
as it is by whisking and locomotion, was found experimentally to be managed by alternate
switching between forward and backward movement as described in point (1) above.
Gordon et al. [79] have suggested a generic, information-theoretic model that accounts for the
underlying principles of exploration behavior. Based on experimental exploratory behavioral
studies of whisking and locomotion in rats and mice, their model indicates that these rodents
maximized novelty signal-to-noise ratio during each exploration episode, when novelty is defined as
the accumulated information gain. In particular Gordon et al. [79] modelled approach-avoidence
behavior where novelty is managed by alternate switching between efficient novelty seeking
and reflexive-like novelty aversive motor primitives. Their quantitative model findings further
suggest a process which is in line with our notion of IA, namely, “that curious animals do not
attempt to maximize or minimize novelty, but rather maintain a constant flow of novelty by
switching between behaviors that increase or reduce it.”
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In terms of embodied cognition we have thus discussed above action-perception at three levels
of scales: neurological level implemented by brain activities only; saccadic eye movement level
implemented by both eye movement and neurological activity, and exploration by body movement
that in the case of humans is implemented by all three.

9. From Finger Movement to Walking Speed

9.1. Finger Movement

In Section 1.2.3 above we have suggested a rough approximation of the finger movement case
study; in what follows we suggest a refined formal approximation. To this end consider Figure 26 in
which ξ is the value of the OP phase ϕ = ξ.

We define probability ppξq “ exppλ´Vpξqq, expp´λq
r

expp´Vpξqqdξ “ 1 (normalization) and
SHI i for value ξ:

ipξq “ ´lnppξq “ λ`Vpξq (151)

(also called “surprise”) realized are states (cf. Figure 26) where

BV
Bξ

“ 0 and local minimum :
B2V
Bξ2 ą 0

thus “information criterion” for realizable states

Bi
Bξ
“ 0 and

B2i
Bξ2 ą 0

The voluntary behavior may choose between 1 and 2 if the situation permits, but the state with
higher i(ξ) (or higher V(ξ)) requires more effort in FM (finger movements).

Note, firstly, that in Figure 26 the states at ϕ = ´π and ϕ = π are identical. Secondly, that the
transition from Figure 26 left to Figure 26 right is caused by change of a control parameter. As noted
above, in the case of FM it is the PI task that prescribes the speed of finger movement.

A similar experiment, but in a situation of collective behavior, was conducted by Schmidt, Carello
and Turvey [80]: Two seated persons were asked to move their lower legs in parallel and watch
each other while doing so (Figure 27). As the speed of the legs’ movement increased, an involuntary
transition to the antiparallel movement suddenly occurred, in line with the Haken–Kelso–Bunz [32]
phase transition model [42] (pp. 87–90). This experiment is of special significance as it implies collective
behaviour—a phenomenon that plays an important role in urban dynamics.
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9.2. When in Rome Do as the Romans Do: Pedestrians’ Behavior in Cities

Pedestrian movement is probably the most salient aspect of humans’ behavior in cities. In 1976
Marc and Helen Bornstein [81] have published a paper showing correlation between population size
of cities and walking speed of pedestrians in these cities (Figure 28); this, as part of their attempt to
study the impact of urbanization on the pace of life.
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Subsequent studies have supported and elaborated these findings [82,83]. More recently the
issue appeared once again, this time, however, in the context of complexity theories of cities as part of
an attempt to show that “many properties of cities from patent production and personal income to
electrical cable length” as well as pedestrians walking speed, “are shown to be power law functions
of population size with scaling exponents, β, that fall into distinct universality classes”. [84]. In this
section we suggest to interpret behavior in general and behavior in cities in particular as a form of
information adaptation.

Compared to the above IA interpretation of the FM paradigm, we can say the following about
the correlation between city size and pedestrians’ speed of movement: First, unlike FM, here there
is no explicit, externally determined, PI task. Rather the task is a property that emerges out of the
interplay between SHI and SI. For example, when a newcomer settles in a city, s/he observes the other
citizens and makes (hopefully unbiased) guesses on their behavior. In other words, s/he uses Shannon
information, maximizes it under the observed constraints (e.g., average velocity, etc.). This allows
her/him to determine the attractors, i.e., the PI that instructs him/her on how to behave in accordance
with the general behavior.

9.3. A Mathematical Algorithmic Model

We start with the following definitions (see Figure 29):
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The relevant variables/parameters are:

1. Order parameter: mean velocity of pedestrians’ movement, ξ

2. Control parameter: city size, population density
3. City: A suggestion on V(ξ) (qualitative!)

Measurable quantity:

1. Average number N(ξ) of people with velocity ξp” vq
2. Then p(ξ) = const. N(ξ)

Velocity ξ has all the properties of an order parameter:

1. it describes a property of the total system: here velocity distribution and its most probable velocity;
2. it is brought about by the internal system dynamics;
3. it enslaves the behavior of the individual parts: the velocity ξ determines, how many people N(ξ)

move at this velocity (on the average);
4. it is influenced by control parameter(s); here, city size;
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5. a change of control parameter induces a qualitative macroscopic change: here change of velocity.

Our approach in terms of information adaptation runs as follows:
Shannon information

i “ ´
ż

ppξqlnppξqdξ

maximized under constraints! In the present case, constraints are not explicitly known, though most
probably <ξ> and <ξ2> or similarly. In this case Vpξq “ λ1ξ ` λ2ξ2, where λ1, λ2 constitute “village”
(or small town) if: λ1 ě 0, λ2 ą 0, “City”: λ1 ă 0, λ2 ą 0.

This is a typical “phase transition”! At any rate, we know how the outcome must look like (see
above):

p pξq “ expλexp p´V pξqq

and the form of V(ξ) can be deduced from experiments. Or, alternatively, by a “model” on V(ξ) as
described above. In particular, in the spirit of IA, the points of the minima of V(ξ), ξ1, ξ2, . . . represent
the semantic information PI (here, how fast to walk, i.e., instruction).

9.4. The Synchronization Urge

Clearly, our new citizen does not use algorithms, but when we try to translate her/his intuitive
action into the language of information processing, we may arrive at our IA interpretation. Or, put
differently, when we were to devise a “citizen” robot, we would equip its brain with our IA algorithm
(There is presently an interesting debate on the relations (or virtue) of intuition versus algorithm (as
e.g., applied to medical treatment in stroke units) by Gigerenzer [85]. He thinks that in important cases
intuition (or heuristics) is better than algorithms).

But what is the psychological-cognitive origin of this synchronization urge? Why would/should
our newcomer synchronize behavior with the other inhabitants and why do they synchronize their
walking speed in the first place? The answer comes from synchronization/coordination dynamics as
in the above FM and Schmidt et al. (ibid.) experiments and HKB interpretation. As is well experienced
and recorded, people walking together (who know each other) tend to synchronize pace, etc. (and also
their speed). Intuitively, probably the same might happen when many anonymous people in high
density are walking to the same direction—they will give rise to an order parameter that will enslave
their walking speed, etc.

But why the walking speed in large cities is faster? There have been here several suggestions or
rather speculations, ranging from the assumption that pedestrians try to avoid “social interference” [81]
and “sensory overload” [86] that rises with the size of cities, to suggestions that people try to save time
whose economic value is higher the larger the city is [83].

To the latter we might add the following: behavioral movement in cities might be divided
into productive (in workplace one produces and earns money) and non-productive (movement to
workplace, i.e., commuting), which is often considered as a “waste of time”. With few exceptions
(siesta), the larger the city the longer is the non-productive time (journey to work). In small cities
where everything is nearby, there is no waste of time, but in large cities it is a problem. In the latter, as
part of their attempt to minimize the waste of time associated with the movement to work, people
move faster.

10. A Glance at Consciousness Research

While considered by neuroscientists for some time as a doubtful enterprise, more recently the
field of consciousness research has become a serious and vivid domain of neuroscience. (cf. e.g.,
Tononi [87], Dehaene [88] and others). In what follows we refer to Dehaene [88] and show how
our present elaboration fits into consciousness research. Dehaene’s [88] hypotheses reads as follows:
“Consciousness is global information processing in the cortex serving a massive distribution of relevant
information over the whole brain. Consciousness selects, enhances and transmits relevant thoughts.”
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In the 1990s, Francis Crick and Christoph Koch [89,90] recognized that visual illusions provide
science with means to follow up the fate of conscious or unconscious stimuli in the brain. A relevant
phenomenon is “binocular rivalry” discovered by the English scientist Charles Wheatstone in 1838 [91].
In his experiments, the two eyes are shown completely different images, e.g., a face and a house.
Wheatstone found that the images do not merge, rather their perception oscillates. The same image is
perceived for some time, while it disappears from our conscious perception for some other time, and so
on. Though in our paper in general we do not enter a discussion of the neurophysiological processes,
we mention the results by David Leopold and Nikos Logothetis [92]. They observed for the first time
by experiments on the reactions of individual neurons of monkeys, which were trained to react to
a visual illusion, that in the early stages (areas V1 and V2) the illusion was not present. However, in
particular in the inferotemporal cortex and superior temporal sulcus, most neurons correlated with the
subjective conscious perception.

Let us return to the “phenomenological” level. It is here where the Ditzinger-Haken [61] approach
(cf. Section 7.1) comes in because the corresponding equations can be directly applied to model
the switching phenomena the same way as they applied to the Borsellino et al. experiments [93].
In this model, attention parameters played a decisive role. Actually, the exploration of attention plays
a fundamental role in consciousness research, e.g., blinking of attention. In analogy to the competition in
binocular rivalry, during that blinking a competition occurs between two subsequently shown images
at the same place but along the temporal axis. It will be tempting to apply the Ditzinger-Haken model
also to this phenomenon. It is interesting to see, how the human brain deals with the “information
bottle-neck”. It avoids destroying information entities (in our approach governed and described by
corresponding order parameters!) rather by merging their parts, be it in space, be it in time. The same
phenomenon, where the whole wins over the parts can be observed in specific ambivalent images, e.g.,
Archimboldo’s painting. In terms of IA (information adaptation) the brain, time and again, deflates
SHI. Another effect, “inattention blindness” may become accessible to modelling by use of the same
attention parameter concept as dealt with by the Fuchs-Haken [51] procedure as outlined in Section 7.3.
In the experiment, subjects are asked to remember a letter shown in the upper corner of a screen (two
trials). Then, in a third trial, in addition to that letter, a further object (e.g., even a word) appears in the
middle for nearly a second. However, up to two thirds of the participants did not note it.

In particular by the psycho-physical technique of “masking” stimuli (e.g., optical, cf. below) it has
become possible to manipulate conscious vs. unconscious responses of the brain (for a review cf. [88]).
As these studies reveal, most parts of mental activity are unconscious and, in specific cases, “prepare”
(in our words) a conscious percept. In the context of our approach the transition from unconscious to
conscious is of particular interest. Indeed the experimental results by Del Cul et al. [94] lend strong
support to our thesis [42] that the human brain can be conceived as a synergetic system. This implies
that the brain is a self-organizing system that acquires specific macroscopic states in analogy to pattern
formation of physical systems via non-equilibrium phase transitions (cf. Figure 3b,c) [94]. We used
this analogy [95,96] to devise the synergetic computer as a model for pattern recognition [5] (see also
Section 4.1 of our present paper).

In particular, we dealt with these transitions by means of order parameter concept. As remarked
by Dehaene and Naccache [97] the concept of phase transitions captures many properties of conscious
perception. As we know [12], phase-transition both in equilibrium and non-equilibrium systems are
characterized by a specific threshold of, in our terms, a control parameter. Dehaene and Naccache [97]
invoked this fact to state “that a short stimulus remains subthreshold, whereas a slightly longer
stimulus becomes completely visible”. In their decisive experiment Del Cul et al. [94] continuously
changed a single physical parameter (“control parameter”) on the monitor. A number was shown
for 16 ms, then a gap and finally a mask composed of a random sequence of letters. The duration
of the gap was varied in small steps of 16 ms. While at short gaps the observers could see only the
letters, at longer delays they could see the number. The reported perception of the number was
“nothing or all” corresponding to “below or above threshold”. These results were supplemented by
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EEG measurements showing an “activation avalanche” of the so called P3 wave. For a detailed further
discussion and references, also to other authors, cf. [88]. Our brief remarks may suffice here to indicate
that we believe that our approach is a viable “mesoscopic” view at brain function and may serve
as a frame for more detailed modelling at the level of groups of neurons, their synchronization, etc.
(see, e.g., [98]). It is remarkable, that, as treated by synergetics (and in contrast to bifurcation theory)
fluctuations of neuronal activity play an essential role in an explanation of the experimental results.

11. Concluding Notes

In our paper we have presented a small cross-section of the large field of information and
self-organization from the point of view of algorithmic approaches, in particular inspired by Synergetics
and the concept of information adaptation, both dealing with the interplay between microscopic and
macroscopic levels. As could be seen, our article has relations to many fields, ranging from neuroscience
and neuro-computing to psychophysics, psychology, cognition and urban dynamics. While each of the
various fields naturally has a large number of papers on the issues discussed here, we were able to refer
to only some key papers, which in turn contain numerous further references not quoted by us. Thus,
our paper is not a historical overview and we surely did not quote papers, which would have deserved
a quotation and it is likely that we may have overlooked relevant papers. Furthermore, while we have
made contact with several fields and effects, we are aware that there are many important effects that
we have not treated all. At the microscopic level we did not treat spiking neurons (including their
synchronization which may play a role in explaining “binding” [98–100], nor the molecular level that,
presumably is decisive for memory (cf. Kandel’s [101] early work on Aplysia and Hermissenda). At the
macroscopic level we ignored the world of a “freely running” brain with its thoughts, not triggered by
external stimuli, as well as the mysterious qualia problem.
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Appendix

Appendix A. Can We Attribute Shannon Information (SHI) to an Individual Image (or Pattern)?

By its definition, SHI is composed of probabilities (or relative frequencies) pj of events labelled by
j (cf. Equation (A1)). However, where does such a probability distribution come in for a single picture?
To answer this (quite basic!) question we proceed in several steps.

(1) Consider a pixeled image where pixel j has the gray value gj ě 0.

Then we set
pj “ Ngj, N´1 “

ÿ

j

gj (A1)

so that
ř

j
pj “ 1.

We define (up to a constant factor)

S “ ´
ÿ

j

pjln pj with pA1q (A2)

This implies that we interpret the gray values are random variables. However, speaking of
probabilities (or relative frequencies) implies a large number of events (for each pixel), whereas a single
image provides us with a single event. This contradiction could be circumvented by some sophistication
stating that we interpret pj just “as if” it were a probability.
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(2) Surprisingly, quantum physics provides us with a much deeper resolution of this puzzle. To this
end we remind the reader of a fundamental experiments of quantum physics: A monochromatic
light beam is sent through a slit of an opaque sheet. According to Einstein this beam is composed
of photons (“light particles”) travelling towards the sheet. Behind the opaque sheet there is
a luminescent screen (as in tv-sets) on which the photons impinge. When the light beam is
very weak, one observes a random dot pattern on the screen. When this experiment is repeated
very often (or the light beam intensity), the formerly random dots form a well defined pattern of
(interference) stripes. If the screen is replaced by photo-paper first we observe (random) black
dots, which eventually form a stripe pattern. The basic insight gained by quantum theory is
this: The normalized “blackening” (gray value!) distribution is just a (quantum theoretical)
probability distribution.

(3) Any illuminated (and not totally absorbing) image sends out photons which hit the retina
where they start a cascade of processes at the beginning of which there are “elementary”
quantum-probabilistic events (decomposition of rhodopsin). Thus seeing is definitely
a probabilistic process! Our elaboration may seem a bit far fetched, but it resolves the above
mentioned contradiction at a fundamental level. A side remark may be in order: Some scientists
consider the whole brain as a quantum system (cf. e.g., [102]). This is not our view because most
manifestations of brain activity happen at macroscopic levels where the laws of “classical physics”
hold. However, nevertheless, we, eventually, deal with probabilities!

(4) After having justified our probabilistic approach allowing us to “safely” apply SHI to image-analysis,
we have to look more closely at (A1,2) and some further brain processes. Due to them, the meaning
of the labels (indices) is changed and the probability distributions as well. This requires to discuss
the modeling of pj more closely. So we know that due to the on/off center structure of cells of the
retina a uniform light distribution is not perceived at all. We model this by replacing the gray
values gj by vj “ gj ´ g where g “ 1

L
ř

j
gj, so that

ř

j
vj “ 0, j “ 1, ¨ ¨ ¨, L.

This entails that some values of vj may become negative and are no more acceptable candidates
for pj ě 0.

For this rescue (and other neurological facts) we put

pj “ N v2
j , N´1 “

ÿ

j

v2
j

While here, j still refers to the pixel label, at still higher brain levels j may refer, e.g., to different
faces, etc. so that SHI changes from brain level to brain level. It is here where the IA [6] concept
comes in.

Appendix B. Invariance, Assimilation, Adaptation

Appendix B.1. Invariance of OP. Proof of Assertions

We define the behavior of the OP ξu under the transformations T of q and T1 of vu by

ξT,T1

u “
`

pTqq
`

T1vu
˘˘

“
1

||q pTxq||
1

ˇ

ˇ

ˇ

ˇvu
`

T1x
˘
ˇ

ˇ

ˇ

ˇ

ż

q pTxq vu
`

T1x
˘

d2x (B1)

where

||q pTxq || “
ˆ
ż

q pTxq2 d2x
˙

1
2

, ||q pxq || “ 1 (B2)

||vu
`

T1x
˘

|| “

ˆ
ż

vu
`

T1x
˘2 d2x

˙
1
2

, ||vu pxq || “ 1 (B3)
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Using the 2-dimensional transformation

Tx “ η x “ T´1η (B4)

We obtain

pB1q “
1

||q pTxq||
1

ˇ

ˇ

ˇ

ˇvu
`

T1x
˘
ˇ

ˇ

ˇ

ˇ

ż

q pηqvu

´

T1T´1η
¯

Dpηqd2η Dpηq : Jacobean (B5)

The recognition
´

ξT,T1

u

¯

dynamics is invariant against T, T1 if

p1q “ ξE,E
u ”

ż

q pxq vu pxq d2x for all u (B6)

E: identity transformation,
Sufficient conditions: Equation (6) is fulfilled if Jacobi determinant D

(a) Dpηq “ C “ const.

and

(b) T1 “ T

Proof:

||vu pTxq || “
ˆ
ż

vu pηq
2D pηq dη

˙
1
2
“ C

1
2 (B7)

||q pTxq || “
ˆ
ż

q pηq2D pηq dη

˙
1
2
“ C

1
2 (B8)

Thus
p1q “ C´1

ż

q pηq vu pηqCd2η “ ξE,E
u (B9)

˝

Necessary conditions:
We put

T1 T´1 “ rT (B10)

and study the dependence of ξT,T1

u on vu.
Since Equation (B6) must be fulfilled for any q, we choose it as narrow Gaussian

q pTxq “ Z´1exp
´

´α
`

η ´ η1
˘2
¯

, α Ñ8 (B11)

Z´1: normalization. Thus the l.h.s. of (B1), Equation (B5) becomes

Z´1
ˇ

ˇ

ˇ

ˇvu
`

T1x
˘
ˇ

ˇ

ˇ

ˇ

vu

´

T1T´1η1
¯

D
`

η1
˘

(B12)

whereas the r.h.s. of Equation (B6) becomes vu
`

η1
˘

. The first factor is an η-independent constant C1 so
that the fulfilment of Equation (B6) requires

C1vu

´

rTη1
¯

D
`

η1
˘

“ vu
`

η1
˘

, rT “ T1 T´1 (B13)

(a) T1 “ T. Then Equation (B13) becomes

C1vu
`

η1
˘

D
`

η1
˘

“ vu
`

η1
˘

(B14)
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We choose
vu

`

η1
˘

‰ 0 (B15)

for all corresponding η1s, so that D
`

η1
˘

“ C1´1
“ const. for all η1 where Equation (B15) holds

(b) T1 ‰ T
(b.1) D

`

η1
˘

“ const.

C1vu

´

rTη1
¯

“ vu
`

η1
˘

(B16)

If Equation (B15) is fulfilled, vu
`

η1
˘

belongs to rT-invariant category with a single OP ξu.
If Equation (B15) holds for all u “ 1, . . . , U, then all vu belong to the same rT-invariant category
which may be represented by a single ξu. If Equation (B15) holds only for a subset u, then invariance
of full set ξu is not given.

(b.2) D
`

η1
˘

not a constant

Then vu
`

η1
˘

does not belong to the rT-invariant category. We choose η1 “ η0 such that

vu pη0q “ 0 (B17)

Since T was assumed nonsingular, D pη0q ą 0 and thus

vu

´

rTη0

¯

“ 0 (B18)

But in the generic case Equations (B17) and (B18) cannot be fulfilled simultaneously for all η0. ˝

Appendix B.2. Assimilation Versus Adaptation

We compare

ppTqq vuq “
1

||q pTxq||

ż

q pTxq vu pxq d2x (B19)

with
`

q
`

T1vu
˘˘

“
1

ˇ

ˇ

ˇ

ˇvu
`

T1x
˘
ˇ

ˇ

ˇ

ˇ

ż

q pxq vu
`

T1x
˘

d2x (B20)

We transform Equation (B19) by Tx “ η so that

pB 19q “
1

||q pTxq||

ż

q pηq vu

´

T´1η
¯

d2η D pηq (B21)

and check pB19q ?
“ pB20q. The equality sign holds if

T1 “ T´1 and D pηq “ C, constant. (B21)

Clearly

1
||q pTxq||

ż

q pηq vu

´

T´1η
¯

D pηq dη “
1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
vu

´

T´1 pxq
¯
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ż

q pxq vu

´

T´1x
¯

dx (B22)

because of Equations (B7)–(B9)
C´

1
2 ¨ C “ C´

1
2

Note that under these assumptions the recognition dynamics remains invariant if the same T1 is
applied to all prototype patterns. Otherwise this dynamics may be changed (example: blurring!) The
necessary conditions (B22) can be checked in analogy to the foregoing.
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Appendix C. The Singular Case of a Featureless Image

The pattern recognition algorithm requires that the prototype patterns pviuq “ pv1u, . . . , vLuq obey
the relations

ÿ

i

viu “ 0 (C1)

ÿ

i

v2
iu “ 1 (C2)

If a grey value distribution giu is given, Equation (C1) can be fulfilled by putting

viu “ giu ´
1
L

ÿ

j

gju, j “ 1, . . . , L (C3)

But if, in the case of a featureless image, giu “ g “ const. ą 0, then

viu ” 0 (C4)

and Equation (C2) cannot be fulfilled. A way out is the assumption to let the grey values undergo
small fluctuations δiu ‰ 0 and replace

giu “ g by giu “ g` δiu,
ÿ

i

δiu “ 0 (C5)

so that
ÿ

viu “ 0, viu ‰ 0 (C6)

Thus by virtue of Equation (C3) we can fulfill Equation (C1). However, because of Equation (C6)
we can put

viu “ Ngiu ‰ 0 (C7)

with normalization factor N ą 0 so that

N2
ÿ

i

g2
iu “ 1 (C8)

The prototypes may be chosen orthogonal provided
ř

i
δiu1 δiu “ 0 for u1 ‰ u.

Appendix D. Determination of Lagrange Parameters

Let P pqq be the distribution function of the measured patterns and rP pqq the distribution function
Equations (25) and (26). We use the Kullback–Leibler information gain

K :
ż

Pln
ˆ

P
rP

˙

dNq ě 0 (D1)

subject to the constraints
ż

PdNq “ 1 (D2)

ż

rPdNq “ 1 (D3)

Because P is fixed and Equation (D1) can be written in the form

K “
ż

PlnPdNq´
ż

PlnrPdNq (D4)
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It will suffice to maximize
ż

P ln rP dN q “ max! (D5)

In accordance with Equations (25) and (26) we write in an obvious denotation (wØ q)

rP “ exp

¨

˝´rλ´
ÿ

j

rλjvj pqq

˛

‚ (D6)

The l.h.s. of Equation (D5) with Equation (D6), multiplied by ´1 can be written as

U “ rλ`

ż

p
ÿ

j

rλjVj pqq dNq (D7)

where because of Equations (D3) and (D6)

rλ “ ln
ż

exp

¨

˝´
ÿ

j

rλjV pqq

˛

‚dNq (D8)

The gradient strategy amounts to subjecting the Lagrange parameters rλj to

drλj

dt
“ ´γ

BU

Brλj
(D9)

with a time-scale fixing constant γ.
Inserting Equation (D7) with Equation (D8) into Equation (D9) and performing the differentiations

on the r.h.s. of Equation (D9) leads to

drλj

dt
“ γ

´

@

Vj
D

rP ´
@

Vj
D

P

¯

(D10)

where the first expression on the r.h.s. is Vj averaged over rP whereas the second part is Vj averaged
over P. Equation (D10) is the basis of the Boltzmann machine [103]. These authors used correlation
functions qiqk where the qs can acquire only two values, ˘1. In the sense of a “spin-glass” model.

Appendix E. Hybrid Images

Following the folklore in neurocomputing, we blur q by means of a Gaussian filter

Gγpx, x1q “ N expp´γpx´ x1q2q (E1)

with
r

Gγpξqdξ “ 1, ξ “ x´ x1 in 1 or 2 dimensions. If L is the side length of the image, we assume
γ>>L´2. Denoting the convolution of q, v1, v2, with Gγ by ˝, we introduce the blurred test pattern

rq “ q ˝ Gy, rv1 “ v1 ˝ Gy, rv2 “ v2 ˝ Gy (E2)

Appendix E.1. Recognition of Blurred State

To introduce the transition from recognition of 1 (Einstein) to 2 (Monroe), the transition from the
order parameters from |ξ1| ą |ξ2| Equation (127)

to
ˇ

ˇ

ˇ

rξ1

ˇ

ˇ

ˇ
ă

ˇ

ˇ

ˇ

rξ2

ˇ

ˇ

ˇ
, where rξ j “ă vjrq ą (E3)
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is needed.
In a number of cases to be discussed below, this condition can be met by choosing γ small enough.

To elucidate the point, we present a simple example (For the general case cf. Section E3 below).

A simple Example in One Dimension

We “model” (pattern E2) the prototype pattern v1 “fine lines” by (cf. Figure E1)

v1pxq “ 1?
2
¨ 4
b

2α
π pexpp´αpx` x0q

2
q ´ expp´αpx´ x0q

2
qq, |x0| ă

L
2 (E4)

and v2 (“smooth”) by

v2pxq “

c

2α

L
sinp

2πx
L
q (E5)

For α ąą 1
L2 (“fine lines”), v1 and v2 are nearly orthogonal, since v1, v2 are normalized on r´ L

2 , L
2 s.

The order parameters ξ1 and ξ2 (cf. Equation (127)) obey

|ξ1|ą|ξ2| (E6)

if in Equation (126) |a|>|b|.
To study the effect of blurring we form

rv1 “ v1 ˝ Gγ “

L
2
ż

´ L
2

v1px1qGγpx´ x1qdx1 (E7)
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with the result

rv1pxq “ 1?
2

4
b

2α
π ¨

b

γ
α`γ

!

pexpp´ αγ
α`γ px` x0q

2
q ´ expp´ αγ

α`γ px´ x0q
2
qqq

)

(E8)

and
rv2pxq “ v2pxq (E9)

in an excellent approximation provided γ ąą L´2.
These results allow us to calculate rξ1, rξ2

rξ j “ă vjrq ą, j “ 1, 2. (E10)

As above we verify that for α ąą L´2, γ ąą L´2,

ă v1rv2 ą« 0,ă v2rv1 ą« 0. (E11)

Thus
rξ1 “ a ă v1rv1 ą, rξ2 “ b (E12)

and eventually by use of v1 Equation (E4) and rv1 Equation (E7).

rξ1 “

d

2γ

α` 2γ
a (E13)

The requirement |ξ1|ă|ξ2| leads to
b

2γ
α`2γ ă

b
a and with a “ 1

2 ` ε; b “ 1
2 ´ ε; 0 ă ε ! 1

2 to the
“blurring” condition

γ ă
α

16
1´ 4ε

ε
(E14)

If Equation (E14) is fulfilled, our percept switches from recognition of v1 to that of v2.

Appendix E.2. Information of rvj Example

We use Shannon information in a continuum formulation, l Ñ x and define, up to a constant
factor and a small additive constant

S “ ´

L
2
ż

´ L
2

p pxq ln p pxq dx (E15)

Having in mind that prototype patterns result from many trials, we use as probability distribution
(relative frequency) p pxq “ rv2

j , supplemented by a constant factor so that rv2
j becomes normalized

L
2
ż

´ L
2

rv2
j dx “ 1 (E16)

Using rv2
1 in normalized form and assuming, as before, strongly peaked Gaussians, we readily

obtain for rv2
1

S1 “ ´

8
ż

´8

c

δ

π
exp

´

´δ x2
¯

˜

ln

c

δ

π
´ δ x2

¸

dx (E17)
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so that

S1 “ ´ln

c

δ

π
` 1 (E18)

where δ “ 2 αγ
α`γ ” ∆´2, ∆ width of Gaussian.

Our final result reads
S1 “ ln∆` const. (E19)

With increasing width ∆, Shannon information of rv2
1 increases. Applying the same procedure to rv2

2 and
observing that practically v2 “ rv2, S2 is not affected by blurring. In this very simple example, blurring
increases S1, and finally enables the recognition of v2.

Does this conclusion remain valid also for the general hybrid images?
Note that the orthogonality relation remains valid if ∆ is not increased too much.

Appendix E.3. General Case

In the spirit of the “construction“ principle of hybrid images produced and studied by Oliva and
Schyns [62], we represent rv1 pxq by a finite superposition of non overlapping Gaussians at locations l,

Gδ{2 px´ xlq ,

such that
ż

rv1 pxq dx “ 0,
ż

rv2
1 pxq dx “ 1 (E20)

and
rv2

1 “
ÿ

l

a2
l Gδ px´ xlq,

ÿ

l

a2
l “ 1 (E21)

with al independent of δ.
We obtain

S1 “ ´

ż

ÿ

l

a2
l Gδ px´ xlq ˆ lnp

ÿ

m
a2

m Gδpx´ xmqq dx (E22)

which because of G being strongly peaked, reduces to

S1 “ ´
ÿ

l

a2
l

ż

Gδ px´ xlq ln
´

a2
l Gδ px´ xlq

¯

dx (E23)

and eventually to

S1 “ ´
ÿ

l

a2
l

ż

Gδ px´ xlq ln Gδ px´ xlq dx´
ÿ

l

a2
l lna2

l (E24)

Since a2
l is independent of blurring the impact of blurring on S1 is expressed by the first term

in which Equation (E24) because of Equations (E19) and (E21) reduces to S1 “ ln∆` δ ´ independent
constant. Let us consider rv2which we assume as a superposition of slowly finite varying sin- and
cos-functions. As we have shown above, each of them remains practically inaffected by a change of
δ. As a closer, (still simple) analysis reveals, this result remains valid even for the total sum. In other
words, S2 remains unaffected by blurring. Finally, it is easy to show that x rv1rv2 y9

a

A1{A2 where in 1
or 2 dimensions Aj are the areas covered by prototypes 1 and 2. The extension of Equation (E24) to 2
dimensions is straightforward. The behavior of rξ1, rξ2 can be treated the same way.

Appendix E.4. Final Notes

We have analyzed the recognition of hybrid images by means of order parameter dynamics
which sheds light on the role of the relative weights of prototypes in such images. Our analysis of
the recognition of hybrid images allows us literally to “demonstrare ad oculos“ how our concept of
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information adaptation works: Increase of Shannon information changes or enables recognition either
consciously, e.g., by half-closing our eyes, stepping backwards, etc., or subconsciously enables finding
an appropriate attractor state, which, according to our IA approach [6], represents semantic information.

Appendix F. Empowerment of Agent

Klyubin et al. [28] define a universal utility function of an adaptive agent (human, animal, robot)
to control its sensors and actuators to survive. Klyubin et al. define what an agent does solely in
terms what it perceives (similar to Gibson [40]). The system‘s time-dependent random variables sensor
St, actuator At, rest of system including environment Rt, are coupled in a loop with basic elements
¨ ¨ ¨Rt Ñ St Ñ At Ñ Rt`1 . . . with discrete time steps. These authors consider a finite sequence of
actions An

t “ pAt, At`1, . . . , At`nq with instantiations (realizations) an
t . The sensor’s instantiation

at time t` n is st`n. The agent’s dynamics is described by the conditional probability distribution
p pst`n|an

t q. Klyubin et al. now invoke information theory by interpreting An
t and St`n as transmitted

and received signals, respectively. They define empowerment E as channel capacity (measured in bits)

Et “ C pp pst`n|an
t qq “ max

ppan
t q

I pAn
t ; St`nq (F1)

Following Shannon [16], C is defined by

C pp py|xqq “ max
ppxq

I pX; Yq (F2)

where I pX; Yq, the mutual information, is defined by

I pX; Yq “
ÿ

x,y
p py|xqp pxq log2

p px|yq
ř

x p py|xq p pxq
(F3)

Klyubin et al. [28] interpret empowerment as the amount of information the agent could inject
into the environment via its actuator and later capture via its sensor. This interpretation is obviously
closely related to the exploratory behavior of rats as described in Section 8.

Furthermore, in our view, contact can be made with the cat/dog response discussed in Section 1.2.3
provided we exchange in (F1) A and S and specify at`n and sn

t according to the situation. The
corresponding repertoire of (re)actions may be decisive for survival.

A minor remark to avoid misunderstandings: In a noiseless channel, where p py|xq “ δy,x

(Kronecker symbol), I pX; Yq coincides with ´
ř

x
p pxq log2 p pxq, i.e., with SHI as used in the other

parts of our paper.
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