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Abstract: We develop a novel method for multiphoton controllable transport between remote resonators.
Specifically, an auxiliary resonator is used to control the coherent long-range coupling of two spatially
separated resonators, mediated by a coupled-resonator chain of arbitrary length. In this manner,
an arbitrary multiphoton quantum state can be either transmitted through or reflected off the
intermediate chain on demand, with very high fidelity. We find, on using a time-independent
perturbative treatment, that quantum information leakage of an arbitrary Fock state is limited by
two upper bounds, one for the transmitted case and the other for the reflected case. In principle,
the two upper bounds can be made arbitrarily small, which is confirmed by numerical simulations.
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1. Introduction

The realization of quantum information transport between remote parties is of central importance
for any scalable quantum information processing. To this end, one straightforward approach is to use
quantum channels to connect these spatially separated parties. Owing to high speed transmission
and negligible interaction with the environment, in the form of flying qubits, photons are the
natural candidates for long-distance quantum communication [1–7]. Alternatively, for short-distance
quantum communication inside a quantum computer, the majority of promising channels rely
upon the use of solid-state-based devices, including nuclear spins in nuclear magnetic resonance
(NMR) [8,9], electron spins of nitrogen-vacancy (NV) colour centers in diamond [10–15], and flux
qubits in superconductors [16–19]. Moreover, coupled-resonator arrays (CRAs), being currently
explored in various physical systems such as superconducting transmission line resonators [20–24],
toroidal microresonators [25–28] and plasmonic nanoparticle arrays [29], have been attracted much
attention in recent years. A particular advantage of such arrays is the full addressability of individual
resonators, which allows each of the resonators to act as a quantum network node [30–32]. Indeed,
utilizing these CRAs of having the same fundamental hardware to process quantum information can
also avoid a quantum interface between the quantum register and the quantum channel.

In addition to offering an effective platform to simulate quantum many-body phenomena such
as Mott-superfluid and topological effects [33–36], the CRAs have been previously considered for
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controllable transport of photons by making use of the photon-atom scattering [22,37–41]. Despite such
substantial developments, prior work on controllable photon transport has typically focused upon
either single photons [22,38,42–44] or nearby CRAs [45–49]. However, the ability to transport
multiphoton quantum states is a key requirement for encoding a high-dimensional Hilbert space,
which is applicable, for example, to universal quantum computation [50–52]; at the same time, quantum
information stored in the multiphoton fields needs to be controllably transported between two distant
quantum registers to carry out quantum network operations. For these reasons, developing a quantum
channel capable of controllably transporting multiphoton states is thus of both fundamental and
practical importance.

In this paper, we propose and analyze a multiphoton controllable transport protocol, where we
use an auxiliary resonator coupled to one resonator of a coupled-resonator chain, which serves as
a quantum channel to connect two remote resonators. The physical essence underlying our method
is that this auxiliary resonator is employed to control the coherent long-range interaction between
the two boundary resonators. To be specific, in the case when the auxiliary resonator is absent,
the two boundary resonators could be only coupled to a specific eigenmode of the intermediate
chain, within the weak-coupling regime. In this case, the time evolution can swap arbitrary bosonic
quantum states of the two boundary resonators, yielding an effective photon transport channel (EPTC).
In contrast, when the auxiliary resonator is coupled to the intermediate chain, the specific eigenmode
could be split, such that the two boundary resonators are decoupled from the intermediate chain in the
large-detuning limit. Photons are therefore reflected back, remaining unchanged. As opposed to prior
work, the proposed model is capable of controlling the coherent transport of an arbitrary multiphoton
quantum state between two distant resonators over an arbitrarily long range.

2. Physical Model and Effective Hamiltonian

The basic idea of our protocol is schematically illustrated in Figure 1a. To begin, we consider
a quantum channel consisting of a coupled-resonator chain of N resonators, with a Hamiltonian

H0 = κ
N−1

∑
i=1

(
c†

i ci+1 + H.c.
)

(1)

where ci (c†
i ) represents the annihilation (creation) operator acting on the resonator i and obeys a boson

commutation relation
[
ci, c†

j

]
= δij, and κ is the coupling constant between the nearest-neighbor

resonators. Two distant resonators, labelled 0 and N + 1, are coupled to the ends of the quantum
channel, and the interaction Hamiltonian is correspondingly given by

V1 = g0

(
c†

0c1 + c†
N+1cN + H.c.

)
(2)

where g0 is the coupling strength between the two boundary resonators and the intermediate chain.
In order to control the multiphoton coherent transport, we introduce an auxiliary control resonator,
labelled N + 2, to interact with the m-th resonator of the quantum channel through

V2 = J0

(
c†

N+2cm + H.c.
)

(3)

with a coupling strength J0. Here, we have assumed that all resonators have a common frequency ω,
and the system is transformed into a frame rotating at ω. Therefore, the total Hamiltonian governing
the system is HT = H0 + V1 + V2.

Upon following an orthogonal transformation [53,54],

fk =

√
2

N + 1

N

∑
i=1

sin
ikπ

N + 1
ci (4)
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the Hamiltonian H0 is diagonalized to

H0 =
N

∑
k=1

εk f †
k fk (5)

where εk = 2κ cos [kπ/ (N + 1)]. Substituting Equation (4) into Equations (2) and (3), V1 and V2 are
likewise transformed to

V1 =
N

∑
k=1

gk

[
c†

0 fk + (−1)k−1 c†
N+1 fk + H.c.

]
(6)

and

V2 =
N

∑
k=1

Jk

(
c†

N+2 fk + H.c.
)

(7)

respectively. Here, we have defined

gk = g0

√
2

N + 1
sin

kπ

N + 1
(8)

and

Jk = J0

√
2

N + 1
sin

mkπ

N + 1
(9)

By restricting our attention to odd N, it yields the existence of a single zero-energy mode in the
intermediate chain corresponding to k = z ≡ (N + 1) /2, such that this mode is in resonance with the
two boundary resonators as well as with the auxiliary resonator. Under the assumption that g0 and
J0 are much smaller than κ, off-resonant couplings to the boundary resonators and to the auxiliary
resonator can be neglected owing to {gz, Jz} � |εz±1− εz| [55]. As a result, the full evolution dynamics
is reduced to an effective model in which only the two boundary resonators, the auxiliary resonator and
the zero-energy mode are involved, and accordingly HT is approximated as an effective Hamiltonian

Heff = gz

[
c†

0 fz + (−1)z−1 c†
N+1 fz + H.c.

]
+ Jz

(
c†

N+2 fz + H.c.
)

(10)

which can be used to make a multiphoton quantum switch.

(b)

Photons are transmitted

Uncoupled case
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0
g !  

(c)

Photons are reflected 

Coupled case

0
2J
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J g 
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0
g  

N+2
(a)

0
g 

Figure 1. Cont.
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Figure 1. (color online) (a) Two remote resonators, labelled 0 and N + 1, are coupled to the ends of
a coupled-resonator chain of N resonators with g0, the coupling strength between the two boundary
resonators and the intermediate chain, and κ, the coupling strength between the intrachain elements.
To achieve multiphoton transport, we introduce an auxiliary resonator, labelled N + 2, to interact
with the m-th resonator of the intermediate chain, with strength J0; (b) In uncoupled case of J0 = 0,
the intermediate chain could, under the assumption that g0 � κ, coherently couple the two spatially
separated resonators, such that photons are transported between the two boundary resonators after
the time evolution; (c) However, when g0 � J0 � κ, the boundary resonators are decoupled from
the intermediate chain owing to the large detunings. In this case, photons are reflected back and
remains unchanged.

3. Multiphoton Controllable Transport and Fidelities

If the auxiliary resonator is uncoupled to the intermediate chain, J0 = 0, the effective Hamiltonian becomes

Heff = gz

[
c†

0 fz +(−1)z−1 c†
N+1 fz +H.c.

]
(11)

In this case, the two boundary resonators are coherently coupled by means of the zero-energy mode.
In the Heisenberg picture, a straightforward calculation yields

c†
0 (t) = c†

0 +
1
2

[
−1+ cos

(√
2gzt

)][
c†

0 +(−1)z−1 c†
N+1

]
+

i sin
(√

2gzt
)

√
2

fz

Choosing the evolution time t = τ ≡ π/
√

2gz gives

c†
0 (τ) = (−1)z c†

N+1 (12)

and in a similar manner, we have
c†

N+1 (τ) = (−1)z c†
0 (13)

Equations (12) and (13) exhibit that the evolution for a specific time behaves as a swap operation
between the two boundary resonators, as shown in Figure 1b. However, this zero-energy mode could,
in the case when the auxiliary resonator is coupled to the intermediate channel, be split into two new
modes separated by an energy gap 2Jz. It follows, on ensuring g0 � J0, that the two boundary
resonators are significantly detuned from the new modes if m is odd, and thus are decoupled from the
intermediate channel. In this case, the time evolution is referred to as an identity operation, leading to

c†
0 (t) = c†

0 (14)

and
c†

N+1 (t) = c†
N+1 (15)
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Let us consider the controllable transport of an arbitrary Fock state |n〉, for example, from the
left resonator to the right resonator. The more general treatment of an arbitrary superposition of Fock
states are presented in the Appendix. Such a Fock state can be generated using a nonlinear quantum
system as an intermediary between a classical radiation field and the resonator [56]. We start with
an initial state of the total system,

|Φ (0)〉 = |n〉0|0〉|0〉N+1 =

(
c†

0
)n

√
n!
|0〉T (16)

where |0〉 = |0〉1 · · · |0〉N|0〉N+2, and |0〉T = |0〉0|0〉|0〉N+1 is the vacuum state of all resonators. Under the
time evolution, the total system freely evolves into a finial state,

|Φ (t)〉 =
[
c†

0 (−t)
]n

√
n!

|0〉T (17)

In the uncoupled case when J0 = 0, according to Equation (12), the finial state for time τ is
|Φ (τ)〉 = (−1)nz |0〉0|0〉|n〉N+1, which means that all photons are simultaneously transported from
the left resonator to the right resonator as desired. In contrast, in the coupled case of g0 � J0 � κ,
the finial state becomes |Φ (t)〉 = |Φ (0)〉 according to Equation (14), thus these photons are reflected back,
remaining unchanged.

In order to characterize the quality of our protocol, we employ two fidelities with one transmission
fidelity, Ft = 〈n|ρN+1 (τ) |n〉, and one reflection fidelity, Fr = 〈n|ρ0 (τ) |n〉. Here, ρ0 (τ) and ρN+1 (τ) are
the reduced density matrices of the resonators 0 and N + 1, respectively, at time t = τ. Together with
an (N + 1)× (N + 1) coupling matrix A, the total Hamiltonian can be compactly expressed as

HT =
N+2

∑
i,j=0

Aijc†
i cj (18)

where Aij is the coupling strength between two resonators i and j. Applying the Heisenberg equation
of motion, ci (t) = i [H0, ci (t)], one finds that

ci (t) =
N+2

∑
j=0

Mijcj (19)

with M = exp (−iAt) being a unitary evolution matrix. To calculate the two fidelities Ft and Fr,
more explicitly, we rewrite ci (t) of Equation (19) as

c0 (t) = M0,µcµ +
√

δµcδµ
(20)

where δµ = 1− |M0,µ|2 and µ = 0, · · · , N + 2. Here, we define a collective mode cδµ
as a normalized

linear combination of all modes apart from cµ, resulting in
[
cµ, c†

δµ

]
= 0 and

[
cδµ

, c†
δµ

]
= 1.

In combination with Equations (17) and (20), we have

|Φ (t)〉 =
n

∑
r=0

fµ (r, n) |r〉δµ
|n− r〉µ (21)

where
fµ (r, n) =

√
Cr

nMn−r
0,µ δr/2

µ (22)

Cr
n =

n!
r! (n− r)!

(23)
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and |r〉δµ
is a Fock state of the collective mode cδµ

. The corresponding density matrix is

ρ (t) = |Φ (t)〉〈Φ (t) |

=
n

∑
r,r′=0

fµ (r, n) f ∗µ
(
r′, n

)
|n− r〉µ〈n− r′| ⊗ |r〉δµ

〈r′| (24)

and then, by tracing out the variables of the collective mode, the reduced density matrix of the resonator
µ is calculated as

ρµ (t) =
n

∑
r=0
| fµ (r, n) |2|n− r〉µ〈n− r| (25)

Thus, the transmission fidelity and the reflection fidelity are respectively given by

Ft = | fN+1 (0, n) |2 = |M0,N+1|2n (26)

and
Fr = | f0 (0, n) |2 = |M0,0|2n (27)

In Figure 2 we plot the transmission fidelity Ft versus J0/κ with g0/κ = 0.01 (see Figure 2a),
or 0.005 (see Figure 2b), as well as the reflection fidelity Fr. In the two cases, we assume that a Fock
state |n〉 is initialized into the left boundary resonator, and further take n = 2, 3 and 5 as three special
examples to simulate numerically. It is shown that as J0 = 0, we obtain Ft ' 1 while Fr ' 0, implying
that photons are transmitted from the left resonator to the right resonator. In contrast, in the regime
g0 � J0 � κ, photons are reflected back to the left resonator, according to Ft ' 0 whereas Fr ' 1.
Hence, a Fock state could, by tuning the coupling strength J0, be transmitted forward or reflected
backward at will.
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Figure 2. (color online) Transmission fidelity Ft and reflection fidelity Fr as a function of J0/κ with
either (a) g0/κ = 0.01 or (b) 0.005 for n = 2, 3 and 5, corresponding to solid black lines, dashed red
lines and dot-dashed blue lines, respectively. Here, the evolution time t = τ and we choose N = 7,
m = 3.
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4. Quantum Information Leakage

Having explicitly demonstrated the controllable eigenmode-mediated transport of multiphoton
information, we now calculate the quantum information leakage by making use of perturbation theory.
We begin by considering the evolution matrix of Equation (19). In fact, the coupling matrix A is
identical to the total Hamiltonian confined in a single-excitation subspace,

HS = g0 (|0〉〈1|+ |N + 1〉〈N|+ H.c.) + κ
N−1

∑
j=1

(|j〉〈j + 1|+ H.c.) + J0 (|N + 2〉〈m|+ H.c.) (28)

where |µ〉 = c†
µ|0〉T (µ = 0, · · · , N + 2) represents the µ-th basis of this single-excitation subspace.

As a consequence, the evolution matrix M is identical to U (t) = e−iHSt, so that Mµ,µ′ = 〈µ|U (t) |µ′〉.
By introducing an orthogonal transformation,

|k〉 =
√

2
N + 1

N

∑
j=1

sin
jkπ

N + 1
|j〉 (29)

the Hamiltonian HS is transformed to

HS =
N

∑
k=1

gk

[
|0〉〈k|+ (−1)k−1 |N + 1〉〈k|+ H.c.

]
+

N

∑
k=1

εk|k〉〈k|+
N

∑
k=1

Jk (|N + 2〉〈k|+ H.c.) (30)

Based upon such a Hamiltonian, we can obtain the leakage of quantum information for the
uncoupled case of J0 = 0, and the coupled case of g0 � J0 � κ, respectively, as we will show in
the following.

Let us first focus upon the former case, where the total system can be thought of as an EPTC being
perturbatively coupled to a fictitious bosonic environment in the limit g0 � κ. The corresponding
Hamiltonian could be divided into three parts, HS = HE + Hz + Vz. HE features the Hamiltonian for
the EPTC:

HE = gz

[
|e1〉〈e2|+ (−1)z−1 |e3〉〈e2|+ H.c.

]
(31)

where, for convenient, we have used {|e1〉, |e2〉, |e3〉} to replace {|0〉, |z〉, |N + 1〉}. The environment is
determined by

Hz = ∑
k 6=z

εk|k〉〈k| (32)

of having 2N bosonic modes, and εk = ε−k. The part Vz modelling the interaction between them is

Vz = ∑
k 6=z

gk

[
|e1〉〈k|+ (−1)k−1 |e3〉〈k|+ H.c.

]
(33)

Assuming that the EPTC Hamiltonian can be diagonalized through a unitary transformation T,
it results in ∑3

i,j=1 T†
q′ ,iTj,q〈ei|HE|ej〉 = λqδq′ ,q, such that

HE =
3

∑
q=1

λq|q〉〈q| (34)

with |q〉 = ∑3
i=1 Tiq|ei〉. Similarly,

Vz = ∑
k 6=z

3

∑
q=1

(
Gkq|q〉〈k|+ H.c.

)
(35)
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where
Gkq = gk

[
T†

q,1 + (−1)k−1 T†
q,3

]
(36)

By performing a first-order perturbative treatment, Vz has no effects on the eigenenergies λq

and εk; nevertheless, the eigenstates |q〉 and |k〉 are modified by

|q̃〉 ' |q〉 − ∑
k 6=z

G∗kq

εk
|k〉 (37)

and

|k̃〉 ' |k〉+
3

∑
q=1

Gkq

εk
|q〉 (38)

respectively. Combining Equations (37) and (38), we find, up to second order,

|q〉 '
(

1− ∑
k 6=z

|Gkq|2

ε2
k

)
|q̃〉+ ∑

k 6=z

G∗kq

εk
|k̃〉 − ∑

k 6=z
∑

q′ 6=q

G∗kqGkq′

ε2
k
|q′〉 (39)

and hence, after an iteration, |q〉 takes the form of

|q〉 ' |q̃〉+ ∑
k 6=z

G∗kq

εk
|k̃〉 − ∑

k 6=z

3

∑
q′=1

G∗kqGkq′

ε2
k
|q̃′〉 (40)

Since

〈q̃′|q̃〉 = δq′ ,q + ∑
k 6=z

G∗kqGkq′

ε2
k

〈k̃′|k̃〉 = δk′k + ∑
q

G∗k′qGkq

εk′ εk

〈q̃|k̃〉 = 0 (41)

the matrix elements of U (t) in the energy space can be evaluated as

〈q′|U (t) |q〉 ' e−iλqtδq′ ,q − ∑
k 6=z

G∗kqGkq′

ε2
k

e−iλq′ t + ∑
k 6=z

Gkq′G∗kq

ε2
k

e−iεkt (42)

Subsequently, after inversion back to the space spanned by {|ei〉} (i = 1, 2, 3), we arrive at

〈e1|U (t) |e3〉 ' 〈e1|e−iHEt|e3〉

+ ∑
k 6=z

(−1)k−1 g2
k

ε2
k

e−iεkt − ∑
k 6=z

g2
k

ε2
k

[
(−1)k−1 〈e1|e−iHEt|e1〉+ 〈e1|e−iHEt|e3〉

]
(43)

Combining the evolution under HE leads to 〈e1|e−iHEτ |e3〉 = (−1)z and 〈e1|e−iHEτ |e1〉 = 0,
and further we find

M0,N+1 ' (−1)z (1− 2∆t) (44)

for the evolution time τ. Here, we have defined

∆t = ∑
k<z

g2
k

ε2
k

[
1− (−1)k+z−1 cos (εkτ)

]
(45)
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The transmission fidelity is therefore modified by

Ft ' (1− 2∆t)
2n ' 1− 4n∆t (46)

The leakage of quantum information can be quantified using a transmission infidelity,
σt = 1− Ft ' 4n∆t, and thus has an upper bound,

σt ≤ 8n ∑
k<z

g2
k

ε2
k

(47)

We now consider the coupled case. In this case, the zero-energy mode of the intermediate chain
is the only state coupled to the auxiliary resonator due to J0 � κ, which induces two new modes as
previously mentioned. The two boundary resonators are coupled to such new modes in addition to the
fictitious environment; however, this coupling to the environment can be neglected so long as g0 � J0.
The Hamiltonian is therefore reduced to

HS = gz

[
|e1〉〈e2|+ (−1)z−1 |e3〉〈e2|+ H.c.

]
+ Jz (|e4〉〈e2|+ H.c.) (48)

Here, we have used {|e1〉, |e2〉, |e3〉, |e4〉} to replace {|0〉, |z〉, |N + 1〉, |N + 2〉} for convenient.
Using |γ1〉 = (|e2〉+ |e4〉) /2, |γ2〉 = (|e2〉 − |e4〉) /2 and |±〉 = (|e1〉 ± |e3〉) /

√
2, the Hamiltonian HS

of Equation (48) is brought to

HS =
gz

2 ∑
k=1,2

[(
|+〉+ |−〉

)
〈γk|+ (−1)z−1 (|+〉 − |−〉)〈γk|+ H.c.

]
+ ∑

k=1,2
Jk|γk〉〈γk| (49)

with J1 = −J2 = Jz. When (−1)z−1 = 1, we get

HS = gz ∑
k=1,2

(|+〉〈γk|+ H.c.) + ∑
k=1,2

Jk|γk〉〈γk| (50)

from which we can follow the same recipe as described in the uncoupled case to obtain

M0,0 ' 1− 2∆r (51)

where

∆r =
g2

z
2J2

z
[1− cos (Jzt)] (52)

For (−1)z−1 = −1, it has the same result as mentioned in Equation (51). In direct analogy to the
uncoupled case, the reflection fidelity is modified by

Fr ' (1− 2∆r)
2n ' 1− 4n∆r (53)

Correspondingly, the reflection infidelity is σr = 1− Fr ' 4n∆r, together with an upper bound,

σr ≤ 4n
g2

z
J2
z

(54)

To confirm our calculation of quantum information leaking into the off-resonant couplings [57],
we compare numerical results of the transmission infidelity to the analytical upper bound as depicted
in Figure 3, as well as the reflection infidelity in Figure 4. It is found that this upper bound is in
excellent agreement with the numerical results. In addition, the leakage of quantum information
decreases with deceasing g0/κ, so that this leakage can, in principle, be made arbitrarily small.
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Figure 3. (color online) Numerical results of the transmission infidelity, σt = 1− Ft, as a function of
g0/κ with either (a) n = 2 or (b) n = 5 in the uncoupled case of J0 = 0. The analytic upper bounds are
represented by the bold red lines. Here, the evolution time t = τ and we choose N = 7, m = 3.
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Figure 4. (color online) Numerical results of the reflection infidelity, σr = 1− Fr, as a function of g0/κ

with either (a) n = 2 or (b) n = 5 in the coupled case of J0/κ = 0.1. The analytic upper bounds are
represented by the bold red lines. Here, the evolution time t = τ and we choose N = 7, m = 3.
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5. Conclusions

In this paper, we have proposed a new approach for multiphoton controllable transport between
two remote resonators being coupled to the ends of a coupled-resonator chain of arbitrary length.
This manner essentially enables a coherent long-range interaction between the two spatially separated
resonators, in this case, the pure Hamiltonian evolution for a specific time is referred to as a swap
operation of the two boundary resonators. As a result, an arbitrary multiphoton quantum state can be
transported with quantum information leakage arbitrarily close to zero. However, if an auxiliary resonator
is harnessed to coupled to one resonator of the intermediate chain, this coherent long-range interaction
will be eliminated, so the two boundary resonators are decoupled from the intermediate chain,
yielding that the time evolution functions as an identity operation. Thus, an arbitrary multiphoton
quantum state can be reflected back with quantum information leakage also arbitrarily close to zero.
Our approach potentially allows for realizing controllable transport of an arbitrary dimensional
quantum state or even a coherent state (see the Appendix), and can also be directly generalized to
quantum networks consisting of at least three quantum registers. In fact, although we have discussed
the specific case of a coupled-resonator chain, such a description is consistent for quantum coupled
spin systems of having been widely studied [53–55,58–62]. Hence, the present approach could be
applied to the realization of scalable quantum devices, for example, quantum switches.
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Appendix

In this appendix, we will discuss the controllable transport of an arbitrary d-dimensional
multiphoton state |ψ〉, which is a linear superposition of Fock states, |ψ〉 = ∑d−1

n=0 αn|n〉. When preparing
this state in the left resonator, the initial state of the total system then is

|Φ (0)〉 = |ψ〉|0〉|0〉N+1 =
d−1

∑
n=0

αn
(
c†

0
)n

√
n!
|0〉T (A1)

Under the total Hamiltonian HT, according to Equation (21), the time evolution results in

|Φ (t)〉 =
d−1

∑
n=0

n

∑
r=0

αn fµ (r, n) |r〉δµ
|n− r〉µ (A2)

so the corresponding density matrix could be expressed as

ρ (t) =
d−1

∑
n,n′=0

n

∑
r=0

n′

∑
r′=0

αnα∗n′ fµ (r, n) f ∗µ
(
r′, n′

)
|n− r〉µ〈n′ − r′| ⊗ |r〉δµ

〈r′| (A3)

Consequently, by tracing out the variables of the collective mode, the reduced density matrix of
the resonator µ is evaluated as

ρµ (t) =
d−1

∑
n,n′=0

min{n,n′}

∑
r=0

αnα∗n′ fµ (r, n) f ∗µ
(
r, n′

)
|n− r〉µ〈n′ − r| (A4)
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After a straightforward computation, the transmission and reflection fidelities are given,
respectively, by

Ft ≡ 〈ψ|P†ρN+1 (τ) P|ψ〉 =
d−1

∑
n,n′=0

min{n,n′}

∑
r=0

(−1)(n+n′)z αnαn′−rα
∗
n′α
∗
n−r fN+1 (r, n) f ∗N+1

(
r, n′

)
(A5)

along with P = exp{izπc†
N+1cN+1} to ensure the right phase evolution, and

Fr ≡ 〈ψ|ρ0 (τ) |ψ〉 =
d−1

∑
n,n′=0

min{n,n′}

∑
r=0

αnαn′−rα
∗
n′α
∗
n−r f0 (r, n) f ∗0

(
r, n′

)
(A6)

In order to quantify information transport more precisely, we need to calculate the average
transmission and reflection fidelities over all initial pure states. Characterizing a d-dimensional pure
state by means of the Hurwitz-parametrization method [63,64], then yields

〈Ft〉 =
1

d (d + 1)

[
d−1

∑
n=0

n

∑
r=0
| fN+1 (r, n) |2 +

d−1

∑
n,n′=0

(−1)(n+n′)z fN+1 (0, n) f ∗N+1
(
0, n′

)]
(A7)

and

〈Fr〉 =
1

d (d + 1)

[
d−1

∑
n=0

n

∑
r=0
| f0 (r, n) |2 +

d−1

∑
n,n′=0

f0 (0, n) f ∗0
(
0, n′

)]
(A8)

In Figure A1 we plot the average transmission fidelity and the average reflection fidelity. It is
found that they exhibit similar behaviors to what we have observed in Figure 2, except that, in the
limit J0 � g0, the average transmission fidelity is close to 1/d instead. This difference arises from the
fact that the vacuum component of the superposition state |ψ〉 has an average population probability
of 1/d after we average over all initial pure states. Hence, controllable transport can be achieved not
only for the Fock states but also for arbitrary multiphoton quantum states.

We now consider the quantum information leakage. Specifically, we use an average transmission
infidelity 〈σt〉 = 1− 〈Ft〉 for the uncoupled case, and an average reflection infidelity 〈σr〉 = 1− 〈Fr〉
for the coupled case, to quantify the quantum information leakage. It follows, on combining
Equations (22), (45) and (A7), that the average transmission infidelity 〈σt〉 is

〈σt〉 =
2d (d− 1)

d + 1
∆t (A9)

thereby having an upper bound,

〈σt〉 ≤
4d (d− 1)

d + 1 ∑
k<z

g2
k

ε2
k

(A10)

In a similar way, the average reflection infidelity 〈σr〉 is

〈σr〉 =
2d (d− 1)

d + 1
∆r (A11)

and also has an upper bound

〈σr〉 ≤
2d (d− 1)

d + 1
g2

z
J2
z

(A12)

As described in the main text, we compare numerical results of the average transmission and
reflection infidelities to their analytical upper bounds as shown in Figures A2 and A3, respectively.
We find, as expected, that the quantum information leakage for controllable transport of arbitrary
multiphoton states is limited by two upper bounds which can be made arbitrary small, in direct
analogy to the cases of Fock states in Figures 3 and 4.
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Figure A1. (color online) Average transmission fidelity 〈Ft〉 and average reflection fidelity 〈Fr〉 as
a function of J0/κ with either (a) g0/κ = 0.01 or (b) 0.005 for d = 2, 3 and 5, corresponding to solid
black lines, dashed red lines and dot-dashed blue lines, respectively. Here, the evolution time t = τ

and we choose N = 7, m = 3.
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Figure A2. (color online) Numerical results of the average transmission infidelity, 〈σt〉 = 1− 〈Ft〉,
as a function of g0/κ with either (a) d = 3 or (b) d = 5 in the uncoupled case of J0 = 0. The analytic
upper bounds are represented by the bold red lines. Here, the evolution time t = τ and we choose
N = 7, m = 3.
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Figure A3. (color online) Numerical results of the average reflection infidelity, 〈σr〉 = 1 − 〈Fr〉,
as a function of g0/κ with either (a) d = 3 or (b) d = 5 in the coupled case of J0/κ = 0.1. The analytic
upper bounds are represented by the bold red lines. Here, the evolution time t = τ and we choose
N = 7, m = 3.
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