
entropy

Article

Specific Differential Entropy Rate Estimation for
Continuous-Valued Time Series
David Darmon

Department of Military and Emergency Medicine, Uniformed Services University, Bethesda, MD 20814, USA;
david.m.darmon@gmail.com

Academic Editor: Raúl Alcaraz Martínez
Received: 29 January 2016 ; Accepted: 13 May 2016; Published: 19 May 2016

Abstract: We introduce a method for quantifying the inherent unpredictability of a continuous-valued
time series via an extension of the differential Shannon entropy rate. Our extension, the specific
entropy rate, quantifies the amount of predictive uncertainty associated with a specific state, rather
than averaged over all states. We provide a data-driven approach for estimating the specific entropy
rate of an observed time series. Finally, we consider three case studies of estimating the specific
entropy rate from synthetic and physiological data relevant to the analysis of heart rate variability.
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1. Introduction

The analysis of time series resulting from complex systems must often be performed “blind”:
in many cases, mechanistic or phenomenological models are not available because of the inherent
difficulty in formulating accurate models for complex systems. In this case, a typical analysis might
treat the data as the model, in the spirit of nonparametric statistics, and attempt to generalize from the
available data to the system more generally. For example, a common question to ask about a times
series is how “complex” it is, where we place complex in quotes to emphasize the lack of a satisfactory
definition of complexity at present [1]. An answer is then sought that agrees with a particular intuition
about what makes a system complex. For example, trajectories from periodic or entirely random
systems appear simple, while trajectories from chaotic systems appear quite complicated. On a more
practical level, it is common to compare two time series from similar systems, in which case one wants
to meaningfully ask: is the phenomenon resulting from System A more or less complex than the
phenomenon resulting from System B?

There are many possible definitions of the complexity of a time series. See [1,2] for comprehensive
reviews. Some notable attempts at formal definitions include Kolmogorov complexity [3], stochastic
complexity [4], forecast complexity [5], and Grassberger–Crutchfield–Young statistical complexity [6].
Perhaps the most well-developed theory of complexity, which incorporates and expands on many of
these quantities in the special case of discrete-valued time series, is computational mechanics [7]. For
example, see [8] for an elucidation of the amount of information, in a formal sense, stored in a single
observation from a discrete-valued stochastic process.

Practical definitions of complexity for continuous-valued time series are much less well-developed.
The most common definitions rely on some notion of the difficulty in predicting a time series. There are
currently at least two schools of thought for the (un)predictability-based notions of complexity when
applied to systems with continuous states: Kolmogorov–Sinai entropy [9,10] and the Shannon entropy
rate [11]. Approaches based on the former treat the data as a trajectory from a deterministic dynamical
system and seek to estimate the Kolmogorov–Sinai entropy based on the trajectory [12]. This school of
thought goes back to some of the earliest work applying nonlinear dynamics to observational data [13].
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Approaches based on the latter treat the data as a realization from a stochastic process and focus on
the entropy rate from a statistical perspective [14]. While these approaches seem very similar and are
typically treated as such in much of the applied literature, they in fact give diverging answers to similar
questions. In particular, the Kolmogorov–Sinai entropy of a stochastic dynamical system is infinite,
while the differential Shannon entropy rate of a deterministic dynamical system is infinite [15]. These
facts have been noted in some of the earliest work on estimating entropy rates from continuous-valued
time series [16], but are largely ignored in the applied literature. Moreover, methods proposed to
estimate Kolmogorov–Sinai entropy may in fact be estimating the Shannon entropy rate, and vice versa.
The situation may be further confused by the fact that the Kolmogorov–Sinai entropy does correspond
to a Shannon entropy rate, in this case the supremum over the discrete Shannon entropy rates induced
by finite partitions of the state space of a dynamical system [17].

In addition to the methodological divide between the two dominant approaches to entropy rate
estimation, neither has been used to provide a specific entropy rate for the system as a function of
its state. That is, estimates are typically reported as time averages, which under certain conditions,
converge to state space averages. However, it may be desired to know the entropy rate associated with
a system now, at the present state, rather than on average. It is difficult to define such a state-specific
entropy rate in the Kolmogorov–Sinai framework. For stochastic dynamics, such a state-specific
entropy rate can be defined over ensembles of the system starting at the specified state. Thus, one of the
aims of this paper is to provide an estimator for such a specific entropy rate.

The contributions of this paper are three-fold. First, we reemphasize the dependence of the
short-term predictability of a nonlinear dynamical system on its current state and propose an
information theoretic quantity, the specific entropy rate, that captures this dependence. Second,
we propose a statistically-principled approach to estimating the specific entropy rate from a
continuous-valued time series that takes advantage of recent advances in conditional density
estimation. Finally, we demonstrate the new approach with both synthetic and real data to highlight
its strengths and weaknesses, with a special emphasis on inter-event interval data as found in heart
rate variability analysis. Throughout, we also make connections to modern practices in entropy rate
estimation, both of the Kolmogorov–Sinai and differential schools, and seek to highlight how our
estimator fits into those frameworks.

2. Methodology

In the following sections, we define the specific entropy rate of a stochastic dynamical system
and develop an approach for its estimation from data. In Section 2.1, we fix our notation and define
a stochastic dynamical system. In Section 2.2, we review the entropy rate of a stochastic dynamical
system and define the specific entropy rate. In Sections 2.3 and 2.4, we propose a method for estimating
the specific entropy rate from finite data. Finally, in Section 2.5, we make connections between the
specific entropy rate and other commonly-used entropy rate estimators.

2.1. Stochastic Dynamical System

Consider an observed scalar real-valued time series x1, x2, . . . , xT . We explicitly model the time
series as a realization from an autonomous stochastic dynamical system [18,19]. That is, unlike for
autonomous deterministic dynamical systems, which assume that a deterministic update rule acts on
the precisely-known state of the system, we assume that the states are stochastic and, moreover, that
transitions from state to state occur according to a transition density. Thus, we view x1, x2, . . . , xT , as a
realization from the system {Xt}t∈Z, where we use the standard convention of using upper/lower
case to denote a random variable/its realization. For n > m, let Xn

m = (Xm, Xm+1, . . . , Xn−1, Xn)

denote the n−m + 1 block of states for the dynamical system from time m to time n. Similarly, let
Xm
−∞ = (. . . , Xm−1, Xm) denote the semi-infinite past until time m and let X∞

n = (Xn, Xn+1, . . .) denote
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the semi-infinite future starting at time n. Then, a general model [19] for how the state evolves assumes
that the future state Xt can be expressed as a random transformation of its past Xt−1

−∞ ,

Xt = F
(

Xt−1
−∞ ; εt

)
(1)

where εt represents dynamical noise, that is noise that influences the dynamics of the system, to be
contrasted with observational noise, which impacts the observations of the system, but not its dynamics.
Equivalently, Equation (1) can be expressed explicitly in terms of the transition density f

(
x | xt−1

−∞

)
as:

Xt ∼ f
(

x | Xt−1
−∞

)
. (2)

More typically, the dynamical noise is taken to be additive, in which case:

Xt = G(Xt−1
−∞) + εt (3)

where typically, {εt} is taken to be independent and identically distributed and εt is taken to be
independent of previous values of Xs, s < t. Finally, we note that we consider solely scalar time series
in this paper. While much of the theory can be translated to the case of multivariate time series by
replacing the scalar observable Xt with a d-dimensional vector observable Xt, the impact of this change
on the computational and statistical burdens of an approach such as the one we develop here is less
easily overcome.

2.2. Differential Entropy Rate and Its Estimation

Let {Xt}t∈Z be a discrete-time, continuous-state stochastic dynamical system as defined in the
previous section. Recall that for a continuous-valued random variable X with density f (x), the
differential entropy [20] of X is given by:

h[X] = −E[log f (X)] (4)

= −
∫
R

f (x) log f (x) dx. (5)

We will always take the logarithm with base e, and thus, all differential entropies are in nats. For
the remainder of this paper, because our focus is on continuous-state systems, when we use the term
entropy, we refer to differential entropy. For random variables (X, Y) with joint density f (x, y), the
joint entropy of X and Y is defined similarly as:

h[X, Y] = −E[log f (X, Y)] (6)

= −
∫
R2

f (x, y) log f (x, y) dx dy. (7)

Applying Equation (7) to a stochastic dynamical system {Xt}t∈Z with a block-p joint distribution
ft at time t, the block-p entropies at time t are given by:

h
[

Xt+p−1
t

]
= h[Xt, . . . , Xt+p−1] = −E[log ft(Xt, . . . , Xt+p−1)]. (8)

There are two definitions of the differential entropy rate that are equivalent for a strong-sense
stationary stochastic process [21,22]. The first, which we denote as h̄1(X), defines the entropy rate in
terms of the rate of growth of block-p entropies,

h̄1(X) = lim
t→∞

h[X1, . . . , Xt]

t
. (9)
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The second, which we denote as h̄2(X), defines the entropy rate in terms of the entropy of a
one-step-ahead future conditional on a sufficiently long past,

h̄2(X) = lim
t→∞

h
[
Xt+1 | Xt

1
]

. (10)

While these are equivalent for strictly stationary stochastic processes, they need not be for an
arbitrary process. Because we are interested in quantifying the predictability of a stochastic process over
time, we take Equation (10) as our definition of the entropy rate, h̄(X) ≡ h̄2(X).

Clearly, care must be taken when interpreting the densities that appear in the definitions of
the entropies and entropy rates we have defined thus far, and this interpretation depends on the
assumptions that the practitioner is willing or able to make about the system under consideration.
In practice, the assumption is typically made that {Xt}t∈Z is strong-sense stationary [23] or at least
can be made so via transformations, such as differencing or detrending. These assumptions are
typically violated in practice. We make a less restrictive assumption on the system under consideration,
namely that it is conditionally stationary [24]. A process is conditionally stationary if the conditional
distribution function of Xt+1 given (Xt, . . . , Xt−p+1) = x does not depend on t for some fixed p: that is,
the statistical future of the process conditional on a past of sufficient length does not depend on when
that past was observed. Strong-sense stationary processes and Markov processes are special cases of
this type.

The value of h̄(X) depends on h
[
Xt+1 | Xt

1
]

and, thus, on the conditional structure of the stochastic
process. Consider the conditional entropy of Xt given the block Xt−1

t−p of length p. Under the assumption
of the conditional stationarity of order p, this conditional entropy can be rewritten as:

h
[

Xt | Xt−1
t−p

]
= −E[log ft(Xt | Xt−1

t−p)] (11)

= −
∫
Rp+1

ft(xp+1
1 ) log ft(xp+1 | xp

1 ) dxp+1 dxp
1 (12)

= −
∫
Rp+1

ft(xp
1 ) ft(xp+1 | xp

1 ) log ft(xp+1 | xp
1 ) dxp+1 dxp

1 (13)

= −
∫
Rp+1

ft(xp
1 ) f (xp+1 | xp

1 ) log f (xp+1 | xp
1 ) dxp+1 dxp

1 (14)

= −
∫
Rp

ft(xp
1 )E

[
log f (Xt | Xt−1

t−p) | Xt−1
t−p = xp

1

]
dxp

1 (15)

= −E
[

E
[
log f (Xt | Xt−1

t−p) | Xt−1
t−p

]]
. (16)

where going from Equations (13) to (14), we have applied conditional stationarity. Thus, we see that
the order p conditional entropy depends on two properties of the stochastic process: the state-specific
entropy conditional on a particular past xp

1 and the overall density of the pasts Xp
1 . This decomposition

motivates defining the state-specific entropy rate of order p at time t as:

h(p)
t ≡ h[Xt | Xt−1

t−p = xt−1
t−p] (17)

= −E
[
log f (Xt | Xt−1

t−p) | Xt−1
t−p = xt−1

t−p

]
(18)

= −
∫
R

f (xp+1 | xp
1 ) log f (xp+1 | xp

1 ) dxp+1. (19)

We will call h(p)
t the specific entropy rate of order p or simply the specific entropy rate where the order

p is clear. We will specify a procedure for choosing p in Section 2.4. The specific entropy rate quantifies
the unpredictability of the process conditional on the specific past xt−1

t−p observed immediately before
time t. We see that Equation (19) emphasizes the well-known fact that the difficulty in prediction can
depend on the current state for both deterministic and stochastic nonlinear dynamics [25,26]. This is
not the case for linear time series models, where the specific entropy rate is independent of the present
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state of the system. We note that our specific entropy rate is similar in spirit to the specific information
of a stimulus [27] from computational neuroscience, local information measures from [28,29], and the
Lyapunov-like index [25] from statistical nonlinear time series analysis. The specific information of a
stimulus notes that the mutual information between two random variables R and S can be decomposed
as I[R ∧ S] = H[R]− H[R | S] where H denotes the discrete Shannon entropy. Thus, the specific
information of a particular stimulus s for a response R is taken to be I[R ∧ s] = H[R]− H[R | S = s],
using a similar decomposition as Equation (16). The local information measures go one further step
back, defining the local information measures in terms of the argument of the expectation associated
with the information measure. For example, the local entropy rate of order p at xp+1

1 under this
formalism is defined as − log f (xp+1 | xp

1 ), rather than as −E[log f (Xp+1 | Xp
1 ) | Xp

1 = xp
1 ] in our

definition. The Lyapunov-like index is defined in terms of divergences with respect to the past of
conditional expectations of the future given the past and, thus, measures uncertainty about the future
given the past using solely the first moment of the predictive density.

In practice, the predictive density f (xp+1 | xp
1 ) is unknown and must be inferred from observations

of the system under consideration. Thus, we consider the plug-in estimator for the specific entropy
rate, namely:

ĥ(p)
t ≡ −E

[
log f̂ (Xt | Xt−1

t−p) | Xt−1
t−p = xt−1

t−p

]
(20)

where we substitute an estimator f̂ (xp+1 | xp
1 ) for the unknown predictive density f (xp+1 | xp

1 ). Finally,
if an estimator for the overall entropy rate (10) of the system is desired, we define the estimator:

ˆ̄h(p) =
1

T − p

T

∑
t=p+1

−E
[
log f̂ (Xt | Xt−1

t−p) | Xt−1
t−p = Xt−1

t−p

]
(21)

=
1

T − p

T

∑
t=p+1

ĥ(p)
t , (22)

a time-average of the specific entropy rates, using the empirical distribution over the pasts as an
estimator for ft(xp

1 ) in Equation (15).
Before considering the problem of estimating the predictive density f̂ (xp+1 | xp

1 ), we note that we
are really interested in the specific entropy of the predictive density and not the predictive density
outright. Thus, the predictive density f (xp+1 | xp

1 ) is a nuisance parameter and a difficult one to
estimate, especially in higher dimensions. Based on this insight, many information theoretic estimators
has been proposed that directly estimate the quantity of interest without first estimating the underlying
density. For example, many estimators have been proposed based on the statistics of k-nearest
neighbors amongst the sample points [30–35]. In fact, many of these estimators correspond to plug-in
estimators using variable bandwidth kernel density estimators [36], with the bandwidth varying with
the evaluation point: the bandwidth is taken to be the distance to the k-th nearest neighbor. A key
aspect of our estimator, which we turn to in Section 2.4, is the use of model selection to directly
learn which lags are relevant to prediction. A similar approach could be taken with the k-th nearest
neighbor-based estimators, letting k vary with each lag. We return to a discussion of this approach and
its relation to our method in Section 4.

2.3. Conditional Density Estimation

The problem of estimating a conditional density goes back to the pioneering work of
Rosenblatt [37]. We estimate the predictive density using the conditional kernel density estimator
proposed in [38,39]. See [40] for additional theoretical results for density estimators for general
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stochastic processes. Consider a continuous-valued time series {Xt}T
t=1 for which we desire to estimate

the predictive density f (xp+1 | xp
1 ). Recalling that the predictive density is given by:

f (xp+1 | xp
1 ) =

f (xp
1 , xp+1)

f (xp
1 )

, (23)

we can estimate the predictive density by estimating the joint density f (xp
1 , xp+1) and the marginal

density f (xp
1 ) and taking their ratio. We estimate the marginal and joint densities using the kernel

density estimators:

f̂ (xp
1 ) =

1
T − p

T

∑
t=p+1

Kk(xp
1 , Xt−1

t−p) (24)

and:

f̂ (xp
1 , xp+1) =

1
T − p

T

∑
t=p+1

Kk(xp
1 , Xt−1

t−p)Lkp+1(xp+1, Xt), (25)

respectively, where Kk is the product kernel:

Kk(xp
1 , Xt−1

t−p) =
p

∏
j=1

1
k j

K

(
xj − Xt−p+j−1

k j

)
, (26)

Lkp+1 is the univariate kernel:

Lkp+1(xp+1, Xt) =
1

kp+1
K

(
xp+1 − Xt

kp+1

)
, (27)

k1, . . . , kp+1 are the bandwidths and K(·) is a kernel function, i.e., a positive, symmetric probability
density with finite second moment. The estimator for the conditional density f̂ (xp+1 | xp

1 ) is then:

f̂ (xp+1 | xp
1 ) =

f̂ (xp
1 , xp+1)

f̂ (xp
1 )

. (28)

Note that the joint and marginal density estimators are coupled since they use the same bandwidths
k1, . . . , kp for both the marginal and joint density estimators. This coupling is necessary to ensure
that, for example, the conditional density integrates to one with respect to xp+1. On a more practical
level for time series, this coupling allows us to screen out the distant past. Consider, for example, the
extreme case where the past is irrelevant to the future in terms of prediction. By this coupling, we
can ignore the past by setting the bandwidths k1, . . . , kp to large values. This has the effect of giving
f̂ (xp+1 | xp

1 ) ≈ f̂ (xp+1) and recovering the appropriate independence relationship. More generally,
if q < p lags are sufficient to screen off the distant past, then by setting the bandwidths k1, . . . , kp−q

sufficiently large, we can recover f̂ (xp+1 | xp
1 ) ≈ f̂ (xp+1 | xp

p−q+1). We discuss how to take advantage
of this property of conditional kernel density estimators in more detail in the next section.

2.4. Bandwidth and Order Selection

The estimator of the conditional density function (28) and, thus, the estimator of the specific
entropy rate (20) depend on the choice of the order p and bandwidths k1, . . . , kp+1. We therefore require
a principled and repeatable procedure for selecting them. For example, in the context of transfer entropy
estimation, [41] noted how, depending on the choice of these parameters, the direction of causality can
be reversed. Because our approach explicitly builds a statistical model for the dynamical system, we
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choose the order and bandwidths via l-block cross-validation [42] of the negative log-likelihood of the
conditional density (note that [42] calls their method h-block cross-validation, which we rename in this
manuscript to avoid confusion with differential entropy). l-block cross-validation is an extension of
leave-one-out cross-validation where instead of leaving out a single observation at each evaluation,
we remove the observation and l observations on either side of that observation. That is, we seek the
values of p and k = (k1, . . . , kp+1) that minimize:

CVl(p, k) = − 1
T − p

T

∑
t=p+1

log f̂−t:l(Xt | Xt−1
t−p), (29)

where f̂−t:l is the estimate of conditional density after removing the 2l + 1 observations about t. This
accounts for a bias in zero-block cross-validated likelihood resulting from the dependence inherent
in temporally nearby realizations of a time series. We immediately see that Equation (29) takes the
form of an entropy rate, so this cross-validation procedure can also be thought of as minimizing the
entropy rate of the model. Thus, cross-validation provides a principled means for choosing the order
of the entropy rate in analogy to common practices in the discrete-valued case. For example, when
computing the entropy rate for discrete-valued data, it is frequently recommended to choose the order
of the entropy rate by searching for an asymptotic value for the order-p entropy rate as a function of
p [43]. Thus, our approach extends this heuristic to the continuous-valued case, with an additional
penalty on p induced by the nature of cross-validation. Moreover, both theoretical and empirical
work have shown that choosing the bandwidth via cross-validation can automatically “smooth out”
irrelevant predictors by setting their bandwidths very large [38,44]. This is clearly desirable in the
time series case, since we expect to induce conditional independence between the distant past and the
future after accounting for a sufficient portion of the recent past. By using cross-validation, we get this
dimension reduction for free.

Because of the computationally-intensive nature of l-block cross-validation, we begin by fixing
p and choosing the bandwidths (k1, . . . , kp+1) using zero-block cross-validation, which reduces to
leave-one-out-cross-validation. Then, using these bandwidths, we choose p via l-block cross-validation.
In all of the reported results, we use l = 50, thus leaving out 101 points about any evaluation
in Equation (29). In principle, the block size could be chosen using the autocorrelation time or lagged
mutual information [12] or a data-driven approach [45]. We leave the exploration of these approaches
for future work.

2.5. Relationship to Other Entropy Rate Estimators

In the nonlinear dynamics community, especially in applications to biological systems, two
popular measures of the uncertainty associated with the dynamics of a system are approximate
entropy [46] and sample entropy [47]. Despite their names, both of these quantities correspond to
estimators of entropy rates rather than entropies. Approximate entropy, as originally proposed by
Pincus, was motivated by a finite-time, finite-resolution approximation to the Kolmogorov–Sinai
entropy of a deterministic dynamical system. The sample entropy was proposed as a modification
to the approximate entropy that addressed several of its deficiencies. In [14], Lake elucidates the
key connection between the approximate and sample entropies and information theoretic entropy
rates. In particular, Lake shows that the approximate entropy corresponds to a kernel density-based
estimator of the Shannon differential entropy rate using uniform kernels and fixed bandwidths
k1 = k2 = . . . = kp+1, while the sample entropy corresponds to a kernel density-based estimator
of the Rényi entropy rate with order α = 2, the so-called collision entropy, with a particular choice
of definition for the conditional Rényi entropy (unlike conditional Shannon entropy, no standard
definition of conditional Rényi entropy exists for arbitrary α [48]). In later work, recommendations
were made for choosing the model order p [49], for setting the common bandwidth [50], and for
incorporating an adaptive bandwidth [51]. In the Appendix to this paper, we reproduce the derivation
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made in [14] connecting the approximate entropy statistic to kernel density-based estimators of the
differential entropy rate.

3. Results

We consider entropy rate estimation in three examples of increasing realism. The first example,
described in Section 3.1, applies the specific entropy rate estimator to a second-order Markov model.
This example was designed to emphasize, in a simple way, the potential dependence of the specific
entropy rate ht on the state of the system. In Section 3.2, we consider the entropy rate of inter-event
intervals resulting from an integrate-and-fire model driven by synthetic chaotic signals. This type
of model is typically implicit in many of the analyses of biological signals ranging from heart rate
variability to neural firing. This example demonstrates how our entropy rate estimator performs when
the assumption of a stochastic dynamical system is violated. Finally, in Section 3.3, we demonstrate the
specific entropy rate estimator using interbeat interval sequences resulting from a tilt table experiment.

Throughout these examples, we use the R package np [39] to estimate the conditional densities
using second-order Gaussian kernels [52]. As recommended in the Methodology section, for a
particular model order p, we choose the bandwidths using leave-one-out cross-validation on the
log-likelihood and choose the model order p using l-block cross-validation with l = 50. We then
estimate the specific entropy rate using Equation (20).

3.1. A Second-Order Markov Process

Our first example is chosen to highlight the state-dependent nature of the specific entropy
rate Equation (19). We consider a stochastic dynamical system with three effective states. One of the
states corresponds to a crossing event, when the system switches from positive to negative outputs
or vice versa. This state has a high specific entropy rate. The other two states correspond to when
the system settles into either a run of positive outputs or a run of negative outputs. In these states,
the specific entropy rate is smaller. Explicitly, consider the second-order Markov process with the
transition density:

f (xt | xt−2, xt−1) =


p+φ(xt; 5, 1) + (1− p+)φ(xt;−5, 1) : xt−2, xt−1 > 0
p−φ(xt;−5, 1) + (1− p−)φ(xt; 5, 1) : xt−2, xt−1 < 0

φ(xt; 0, 32) : otherwise
(30)

where p+ = p− = 0.9 and φ(x; µ, σ2) is the probability density function for a normal random variable
with mean µ and variance σ2,

φ(x; µ, σ2) =
1√

2πσ2
e−

1
2σ2 (x−µ)2

. (31)

The transition densities for each effective state are shown in the left panel of Figure 1. The first
effective state (red solid) corresponds to when the two previous observations were positive; the second
effective state (blue dashed) corresponds to when the two previous observations were negative; and
the third effective state (green dash-dotted) corresponds to when the two previous observations had
opposite signs. The right panel of Figure 1 shows a scatter plot representation of the marginal density
(Xt, Xt+1) with the quadrants colored by the effective states.
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Figure 1. (Left) The predictive densities associated with each of the effective states for the Markov
process (30); (Right) a scatter plot representation of the marginal density of (Xt−2, Xt−1) with the
effective states colored according to the convention in the left panel.

The top panel of Figure 2 shows an example realization with T = 1000, which we use to
estimate the specific entropy rate. We can compute the specific entropy rate ht for each effective
state exactly. By symmetry, the first two effective states have the same specific entropy rate, which we
compute by evaluating Equation (19) numerically: 1.744 nats per symbol. The third effective state’s
predictive density corresponds to a normal density with a variance of nine and, thus, has specific
entropy rate 1

2 log(2πe · 32) ≈ 2.518 nats per symbol. The bottom panel shows the specific entropy rate
(dashed blue), along with the estimated specific entropy rate with p = 2 (solid red). From the specific
entropy rate, we can clearly see when the system switches from one of the low specific entropy rate
states to the high specific entropy rate state and vice versa. Moreover, we see that the estimated entropy
also displays these transitions, though not as cleanly.
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Figure 2. An example realization from Equation (30) (top), along with the specific entropy rate (bottom).
The dashed blue line indicates the true specific entropy rate, while the solid red line indicates the
entropy rate estimated using Equation (20).
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To see the performance of the estimator as a function of the history, for each time point t, we
compute both the estimator of the specific entropy rate ĥt, as well as the empirical bias between the
estimated and true value,

Bias
(

ĥt

)
= ĥt − ht. (32)

Figure 3 displays the estimated specific entropy rate (left) and bias (right) as a function of the
history (xt−2, xt−1). As we saw in Figure 2, the estimator successfully distinguishes between the
high entropy rate effective state (colored purple) and the low entropy rate effective states (colored
yellow). Because the estimated specific entropy rate is always positive for this system, a positive bias
indicates that the estimated entropy rate is larger (greater predictive uncertainty) than it should be, and
a negative bias indicates that the entropy rate is smaller (lower predictive uncertainty) than it should
be. We see that a large positive bias occurs for those pasts that belong to either the first (red) or second
(blue) effective states, but lie near the border with the third (green) effective state. This occurs because
of the discontinuous transition in the predictive density between each state. It is especially pronounced
for those (rare) pasts near the origin, again because of the discontinuity.
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Figure 3. The estimated specific entropy rate ĥt (left) and its bias ĥt − ht (right) as a function of the
history (Xt−2, Xt−1) for the Markov model. Note that the estimator correctly identifies the high and
low specific entropy rate histories, and its largest bias occurs near the transitions between quadrants.

Finally, we demonstrate two snap shots of the system in Figure 4 to recall the intuition behind the
specific entropy rate and how it relates to the predictive density of the stochastic dynamical system.
Each panel shows the state of the system (top) with the present state xt marked by a blue circle and
the past (xt−2, xt−1) marked by red circles, the estimated predictive density f̂ (· | xt−2, xt−1) (middle)
and the estimated specific entropy rate (bottom). The left panel corresponds to when the two past
observations were positive, and thus, the system is in one of the low entropy rate effective states. The
right panel corresponds to when the two past observations were opposite in sign, and thus, the system
is in the high entropy rate effective state. We see that in both cases, the estimated predictive densities
and estimated entropy rates agree with the effective states.
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Figure 4. A demonstration of two adjacent time points of (top) a realization from the second order
Markov model, (middle) the estimated predictive density f̂ (xt | xt−2, xt−1) and (bottom) the specific
entropy rate for the second-order Markov process in low (left) and high (right) specific entropy rate
states. In the top panels, the dashed vertical bar indicates the time t; the red points correspond to the
specific pasts (xt−2, xt−1); and the blue points correspond to the future values xt.

3.2. Inter-Event Intervals from an Integrate-And-Fire Model Driven by Chaotic Signals

For our second example, we consider inter-event intervals resulting from an integrate-and-fire
model driven by a chaotic signal. This model implicitly motivates many of the embedding-based
analyses used with neural and heart rate variability data. For example, it is common to consider the
times between heart beats (called interbeat intervals or RR intervals because the interbeat intervals
are taken between consecutive R waves on the electrocardiogram) as if they are equispaced samples
from a continuous time process, and then apply methods from nonlinear dynamics. There is not, a
priori, any reason to assume that such an analysis of inter-event interval data through this “wrong”
lens (e.g., treating the inter-event times from a point process as the output from a map) should give rise
to meaningful results. However, a surprising result by Sauer [53] demonstrates at least one scenario
where this type of analysis does give rise to meaningful results. In particular, Sauer demonstrated that
when the state of a chaotic dynamical system is mapped into an inter-event interval sequence via an
integrate-and-fire model, a one-to-one mapping exists between the full, unobserved state of the system
and an embedding of the inter-event interval sequence as long as the embedding is of a dimension at
least twice the box counting dimension of the underlying chaotic system. Thus, it is possible to recover
the true state of the entire system by considering sufficiently long inter-event interval sequences.

This fact poses a problem for the analysis of inter-event interval data using quantities such as
approximate entropy or sample entropy, since as we have noted, those can be seen as estimators of
differential entropy rates and differential entropy rates of deterministic dynamical system are infinite.
Thus, the quantity being used is at least potentially misspecified for the phenomenon being studied.
Nevertheless, it seems unlikely that the popularity of approximate entropy or sample entropy will
abate in the near future [54], and thus, it is interesting to consider how a more principled entropy
rate estimator performs in the misspecified case. Moreover, in practice, the deterministic dynamical
system model is almost certainly misspecified for complex systems. As noted in [16], there is hope that
observational and dynamical noise might smooth out the infinities, thus resulting in useful estimates
of entropy rates.
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Consider a non-negative signal S(t) = g(x(t)) mapping the m-dimensional state x(t) ∈ Rm of a
chaotic dynamical system to a scalar value. The integrate-and-fire model generates a series of discrete
events based on when the integrated signal crosses a fixed threshold Θ. Setting T0 = 0, for a fixed
threshold value Θ, the threshold crossing events {Ti} are defined recursively as:

∫ Ti+1

Ti

S(t) dt = Θ (33)

and the inter-event intervals are given by the time between event i− 1 and i, IEIi = Ti − Ti−1.
We consider signals generated by two classic chaotic systems, the Lorenz system evolving

according to:

ẋ = σ(y− x)

ẏ = x(ρ− z)− y

ż = xy− βz

(34)

with the canonical values σ = 10, β = 8/3 and ρ = 28, and the Rössler system evolving according to:

ẋ = −y− z

ẏ = x + ay

ż = b + z(x− c)

(35)

with the canonical values of a = 0.1, b = 0.1 and c = 14. For both the Lorenz and Rössler systems,
following [53], we take the signal to be:

S(t) = (x(t) + 2)2 (36)

and fix Θ = 60 and Θ = 125, respectively.
Figure 5 demonstrates example realizations of the inter-event intervals IEIi = Ti − Ti−1 by event

index i (left), as well as a lag-lag plot of consecutive inter-event intervals (right) for the Lorenz (top)
and Rössler (bottom) systems. We see that the two systems give rise to very different time courses of
inter-event intervals, as we would expect from differing dynamics of the two systems. In particular,
since both the x- and y-coordinates of the Rössler system evolve in a nearly-linear fashion, we see
that the inter-event intervals are relatively regular. By comparison, the inter-event intervals for the
Lorenz system are much more erratic. Thus, we might intuitively expect the inter-event intervals
from the Lorenz system to give higher specific entropy rates than the inter-event intervals from the
Rössler system.

Next, we turn to estimating the specific entropy rate for each of these systems. For each system,
we generated inter-event interval sequences of length T = 1000. We then chose the model order p and
bandwidths (k1, . . . , kp+1) as described in Section 2.4. The 50-block cross-validated log-likelihood (29)
as a function of p is shown in Figure 6. Based on the embedology [55] result from [53], an embedding of
at least twice the box counting dimension of the underlying attractor is required. Both the Lorenz and
Rössler attractors have box counting dimensions between two and three; thus, we expect that a value
of p around six should be sufficient for the predictive density. We see that the 50-block cross-validated
log-likelihood chooses p = 9 and p = 8 for the Lorenz and Rössler systems.
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Figure 5. Example inter-event intervals from an integrate-and-fire model driven by the x(t) states of
the Lorenz (top) and Rössler (bottom) systems. The inter-event interval lengths versus the event index
(left) and the lag plots of the inter-event interval sequences (right) for both systems.

As mentioned in Sections 2.3 and 2.4, using cross-validation to choose the bandwidths of the
conditional kernel density estimator introduces a form of feature selection into the conditional density
estimation process: lags that are not relevant, as measured by the cross-validation score, are smoothed
out by setting their associated bandwidths to infinity (in practice, to a large value). We demonstrate
this phenomenon now for the bandwidths estimated for the inter-event intervals derived from the
Lorenz and Rössler systems. For a fixed maximal lag p, Table 1 shows the bandwidths estimated
for the Lorenz (top) and Rössler (bottom) systems. The first row indicates the bandwidths chosen
by cross-validation for the future k0 and past k−1 when we include only a single lag; the second row
indicates the bandwidths chosen for the future k0 and past (k−1, k−2) when we include two lags, etc.
A horizontal dash (—) indicates that cross-validation has set the bandwidth associated with that lag to
a value of five or greater, which is large with respect to the scale of the dynamics, thus in effect ignoring
the lag in the estimation of the predictive density. Note that these bandwidths are for Gaussian kernels
and, thus, are not immediately at the scale of the data. A transformation from the Gaussian scale to the
uniform scale could be performed using the concept of canonical kernels [56]. Comparing Table 1 to
Figure 6, we see that for the inter-event intervals generated by the Lorenz system, Intervals 4 through 7
can be ignored. This agrees with the sharp drop in Figure 6 at p = 3. Then, the Intervals 8 and 9 are
included, but no others, thus giving the minimum at p = 9. A similar result holds for the bandwidths
for the Rössler-governed inter-event intervals, where the bandwidths stabilize at p = 8, which also
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corresponds to the minima in the 50-block cross-validated log-likelihood. Beyond this automatic
selection of relevant lags, we see that the magnitudes of the bandwidths are very different amongst
the k = (k0, k−1, . . . , k−p): as one might expect, the bandwidths for the near past are smaller than the
bandwidths for the distant past, i.e., we should pay more attention to the recent past for prediction.
Compare this inherent dynamic range in the bandwidths across lags to the fixed bandwidths across
lags used in other statistics, such as approximate entropy, sample entropy, and multiscale entropy.
If viewed as estimators of different differential entropy rates, these estimators would be severely biased
by the fixed bandwidths.
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Figure 6. The 50-block cross-validated log-likelihoods (29) for the Lorenz (top) and Rössler (bottom)
inter-event interval sequences as a function of the autoregressive order p. The vertical lines mark the
minimum 50-block cross-validated log-likelihoods, which occur at p = 9 and p = 8, respectively.
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Table 1. The optimal bandwidths k = (k0, k−1, . . . , k−p) chosen using Equation (29) with p fixed
from 1 to 12 for the inter-event intervals derived from the Lorenz (top) and Rössler (bottom) systems.
A horizontal dash (—) indicates that cross-validation set the bandwidth associated with that lag to a
value of 5 or greater, in effect ignoring the lag in the estimation of the predictive density. The bold rows
correspond to bandwidths selected for the minimal values of p, as shown in Figure 6.

p k0 k−1 k−2 k−3 k−4 k−5 k−6 k−7 k−8 k−9 k−10 k−11 k−12
1 0.048 0.035
2 0.059 0.039 0.055
3 0.059 0.039 0.051 0.559
4 0.059 0.039 0.051 0.558 —
5 0.059 0.039 0.051 0.563 — —
6 0.059 0.039 0.051 0.564 — — —
7 0.059 0.039 0.051 0.576 — — — —
8 0.070 0.050 0.057 0.450 0.541 0.625 — — 0.674
9 0.059 0.039 0.052 0.570 — — — — 1.263 0.826

10 0.059 0.039 0.052 0.573 — — — — 1.194 0.816 —
11 0.059 0.039 0.052 0.571 — — — — 1.188 0.819 — —
12 0.059 0.039 0.052 0.574 — — — — 1.184 0.816 — — —

(a) Lorenz

p k0 k−1 k−2 k−3 k−4 k−5 k−6 k−7 k−8 k−9 k−10 k−11 k−12
1 0.047 0.087
2 0.062 0.054 0.052
3 0.064 0.049 0.044 0.058
4 0.065 0.048 0.046 0.072 0.078
5 0.065 0.049 0.047 0.073 0.087 0.575
6 0.065 0.053 0.051 0.082 0.089 0.751 0.185
7 0.064 0.052 0.051 0.088 0.086 0.787 0.359 0.732
8 0.065 0.053 0.055 0.086 0.100 — 0.360 0.820 0.553
9 0.064 0.054 0.055 0.086 0.100 — 0.366 0.805 0.613 —
10 0.065 0.053 0.054 0.085 0.100 — 0.359 0.810 0.573 — —
11 0.064 0.054 0.055 0.087 0.099 — 0.369 0.812 0.592 — — —
12 0.065 0.054 0.054 0.086 0.101 — 0.366 0.808 0.580 — — — —

(b) Rössler.

200 400 600 800

0
1

2
3

4
5

Time (au)

IE
I (

au
)

200 400 600 800−
2.

0
−

1.
0

0.
0

0.
5

Time (au)

h t
 (n

at
s /

 e
ve

nt
)

200 400 600 800

0
1

2
3

4
5

Time (au)

IE
I (

au
)

200 400 600 800−
2.

0
−

1.
0

0.
0

0.
5

Time (au)

h t
 (n

at
s /

 e
ve

nt
)

(a) Lorenz (b) Rössler
Figure 7. The inter-event interval sequence (top) and specific entropy rate (bottom) for the Lorenz (left)
and Rössler (right) systems. Note that both the inter-event intervals and specific entropy rates are
plotted as a function of the event times rather than the event index. The solid red line indicates
a time-windowed average of the specific entropy rate with a uniform kernel with a window
length of 60 au.
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Now, consider the specific entropy rate of two inter-event interval sequences as a function of time,
shown in Figure 7. Note that both the inter-event intervals and specific entropy rates are shown as
a function of the time rather than the event index. That is, for each inter-event interval sequence, we
show (Ti, IEIi) and (Ti, hi). The estimate of the time-averaged specific entropy rate (20) for the Lorenz
and Rössler inter-event interval sequences are −0.41 nats/event and −1.0 nat/event, respectively. In
addition, we also show a moving windowed average of the specific entropy rate using a uniform
kernel of a width of 60 au in red in the bottom panel of Figure 7. This can be thought of as a local
(in time) version of Equation (20) and allows us to determine if there are periods of time when the
inter-event intervals are more, or less, predictable. For example, we see a drop in the specific entropy
rate for the Lorenz inter-event intervals around 300 au, which corresponds to a run of relatively long
and regular inter-event intervals.

We see from both Equation (20) and its time-local version that the interbeat interval sequence
derived from the Rössler system is more predictable, which matches our intuition as outlined above
based on the near-linear dynamics of the x-coordinate of the Rössler system. The thresholds Θ were
chosen such that each system has approximately equal mean inter-event interval lengths: 0.90 au and
0.88 au for the Lorenz and Rössler systems, respectively. However, the pointwise standard deviations
of the two inter-event interval sequences are different: 0.39 au and 0.73 au for the Lorenz and Rössler
systems, respectively. Recall that, unlike discrete entropy, differential entropy is not scale invariant.
This motivates determining a scale-invariant analog of the specific entropy rate that teases apart
inherent unpredictability from the natural scale of the system. We will consider this point in the
Discussion section.
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Figure 8. The inter-event interval sequence (top) and specific entropy rate (bottom) for the
concatenation of Lorenz, Rössler, and Lorenz inter-event intervals. The dashed blue lines indicate the
transitions from one system to the other. Compare to Figure 7, where the specific entropy rates were
estimated individually for each system.

As a final example, we consider the estimation of the specific entropy rate where the inter-event
interval sequence transitions from being generated by the Lorenz system to being generated by the
Rössler system and back again. In this case, the inter-event interval sequence is clearly non-stationary.
However, conditional stationarity is only violated locally in time around the transitions. To generate
this time series, we concatenate 500 inter-event intervals each from the Lorenz, Rössler, and then
Lorenz systems, and thus, T = 1500. This sequence is shown in the top panel of Figure 8. We estimate
the autoregressive order p over the entire time series using Equation (29). The 50-block cross-validated
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log-likelihood as a function of p is shown in Figure 9. The minima occurs at p = 11. Note that this is a
higher order than chosen for either the Lorenz (p = 9) or Rössler (p = 8) systems when estimated in
isolation. We see that additional information about the past is required when we need to distinguish
between the two systems. Finally, Table 2 demonstrates the bandwidths chosen by cross-validation as
a function of the maximal lag p. Again, we see that cross-validation provides both model selection and
adaptive smoothing.
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Figure 9. The 50-block cross-validated log-likelihood (29) for the concatenation of the Lorenz, Rössler,
and Lorenz inter-event interval sequences as a function of the autoregressive order p. The vertical line
marks the minimum log-likelihood, which occurs at p = 11.

Table 2. The optimal bandwidths k = (k0, k−1, . . . , k−p) chosen using Equation (29) with p fixed from
1 to 12 for the inter-event intervals derived from the concatenation of the Lorenz, then Rössler, then
Lorenz systems. A horizontal dash (—) indicates that cross-validation set the bandwidth associated
with that lag to a value of 5 or greater, in effect ignoring the lag in the estimation of the predictive density.
The bold row correspond to bandwidths selected for the minimal value of p as shown in Figure 9.

p k0 k−1 k−2 k−3 k−4 k−5 k−6 k−7 k−8 k−9 k−10 k−11 k−12
1 0.048 0.063
2 0.064 0.046 0.059
3 0.074 0.046 0.047 0.370
4 0.071 0.049 0.051 0.417 0.459
5 0.070 0.047 0.058 0.431 0.512 0.650
6 0.070 0.047 0.058 0.431 0.513 0.649 —
7 0.070 0.047 0.058 0.432 0.513 0.646 — —
8 0.070 0.050 0.057 0.450 0.541 0.625 — — 0.674
9 0.070 0.051 0.059 0.455 0.531 0.661 — — 0.710 —

10 0.070 0.050 0.057 0.454 0.542 0.620 — — 0.666 — —
11 0.071 0.051 0.058 0.470 0.548 0.632 — — 0.622 — — 0.985
12 0.071 0.051 0.057 0.471 0.548 0.634 — — 0.628 — — 0.997 —

The bottom panel of Figure 8 shows the specific entropy rate as a function of time for the
concatenated system. As before, the black line is the specific entropy rate, and the red line is a moving
windowed average of the specific entropy rate. Again, we see that the specific entropy rate drops as
the system transitions from the Lorenz inter-event intervals to the Rössler inter-event intervals and
then increases after the transition back to the Lorenz inter-event intervals. There is, however, a slight
penalty to estimating the specific entropy rate for the concatenated inter-event interval sequences all at
once. During the Lorenz-governed inter-event interval sequence, the time-averaged specific entropy
rates are −0.30 nats/event and −0.28 nats/event, compared to −0.41 nats/event when estimated
in isolation. Similarly, the time-averaged specific entropy rate for the Rössler-governed inter-event
interval sequence is −0.72 nats/event compared to −1.0 nats/event when estimated in isolation.
In both cases, we see that the specific entropy rates have increased. This is largely due to the fact
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that the optimal bandwidths k1, . . . , kp+1 when estimating the predictive density for either system in
isolation are not optimal for estimating the concatenation of the two systems. This will lead to larger
bandwidths overall and, thus, higher specific entropy rates. For this system, the difference in the
dynamics is very large and the transition point relatively obvious, and thus, a better approach might
be to estimate the predictive densities separately for each segment. However, in those cases where
such transitions are non-obvious or where manual transition detection is not desirable, we see that
estimating the predictive density all at once still leads to discrimination between high and low specific
entropy rates.

Figure 10 demonstrates the inter-event interval sequence (top), predictive density (middle), and
specific entropy rate (bottom) for the inter-event interval sequence for two time instants during the
Lorenz (left) and Rössler (right) portions. The time instant during the portion governed by the Lorenz
system has a higher specific entropy rate, as we would expect given the multi-modal nature of the
estimated predictive density in the middle panel. In contrast, the time instant during the portion
governed by the Rössler system has a lower specific entropy rate, as we would expect from the
uni-modal and narrow estimated predictive density. However, we see that in both cases, the specific
entropy rate can vary widely depending on the state of the system. For example, during periods
around the long inter-event intervals, the inter-event intervals generated by the Rössler system can
have higher specific entropy rates than those governed by the Lorenz system (the peaks in the specific
entropy rate).
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Figure 10. A demonstration of (top) the inter-event interval sequence, (middle) the estimated predictive

density f̂
(

IEIi | IEIi−1
i−11

)
and (bottom) the specific entropy rate for the concatenated Lorenz, Rössler,

Lorenz system during the Lorenz (left) and Rössler (right) portions of the sequence. In the top panels,
the dashed vertical bar indicates the event index i; the red circles correspond to the specific past IEIi−1

i−11;
and the blue circles correspond to the future value IEIi.

3.3. Specific Entropy Rate from a Tilt Table Experiment

As a final example, we consider the specific entropy rates of interbeat interval sequences from
subjects participating in a tilt table experiment. It is well known by anyone with a heart that the rate of
their pulse, the average number of beats within a specified window of time, can vary widely based on
environmental, physiological, and psychological factors. However, it was not until the 20th century
that researchers came to realize that beat-to-beat variations in heart rate convey information about the
health of individuals. The study of beat-to-beat variations in heart rate is typically referred to under the
umbrella term of heart rate variability. See [57–59] for a historical perspective on heart rate variability.
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The nonlinear dynamics community has contributed a large number of methods for the analysis of
interbeat intervals. See [60] for an extensive historical and methodological review.

In what follows, we use the term interbeat interval (IBI) to refer to the times between the R
components of adjacent QRS complexes in the electrocardiograms. Common statistics computed
from heart rate variability data include the mean interbeat interval and the standard deviation of the
interbeat intervals. In addition, it is common to interpolate the interbeat interval sequence to obtain
an equi-spaced sequence for spectral analysis [61], from which the power of high frequency and low
frequency components, and their ratio, are commonly reported. It is also very common to compute
approximate and/or sample entropies of interbeat interval sequences. Any, and sometimes all, of these
statistics are referred to as heart rate variability (HRV), and thus, we will refrain from using that term.
Many of these quantities can be computed by off-the-shelf software tailored for heart rate variability
analysis, such as Kubios [62], though we recommend caution when using such software, since many of
the parameters involved in both pre-processing of the data and its analysis are set in an ad hoc fashion.

As before, our approach to analyzing an interbeat interval sequence is to view it as the realization
of some conditionally stationary stochastic dynamical system. This perspective naturally handles the
fact that heart beats occur as a point process in time, as we saw in the previous section. Thus, we can
compute the specific entropy rate associated with the time until the next heart beat, conditional on the
most recent interbeat intervals. That is, if we denote the time between the (i− 1)-th and i-th heart beat
by IBIi, we consider the specific entropy rate as h

[
IBIi | IBIi−1

i−p

]
.

We will investigate the specific entropy rate from the interbeat interval sequences of five subjects
participating in a tilt table experiment. The population consisted of two males and three females
between the ages of 27 and 44. In the experiment, the subject initially positioned himself/herself in
a prone position on the table and was secured to the table. The subject was then kept in the supine
position for five minutes, then tilted upright for five minutes and finally was returned to a supine
position for five minutes. An electrocardiogram (ECG) was continuously recorded throughout the
experiment. The interbeat intervals were extracted using the first amplitude-and-first derivative (AF1)
algorithm from [63].

Specific entropy rates were computed for each subject using model orders p and bandwidths
(k1, . . . , kp+1) chosen as described in Section 2.4. The interbeat interval sequences (top) and specific
entropy rates (bottom) for each subject are shown in Figure 11. For each subject, we see the expected
decrease in interbeat interval length (increase in heart rate) as they move from a supine to upright
position. However, for subjects (a)–(d), this change in mean interbeat interval length is also associated
with a change in the overall dynamics of the interbeat interval sequence, which results in a drop
in the specific entropy rate during the upright time period. With the return to supine position, the
interbeat interval lengths again increase (the heart rate decreases), and the specific entropy rates of
subjects (a)–(d) return to the same level as the start of the experiment.

Clearly, with only five subjects and a single session from each subject, we cannot say much about
either the typical or atypical evolution of specific entropy rates in a tilt table experiment. However, it is
interesting to note that Subject e, the only outlier in terms of the evolution of their specific entropy
rate over time, is also the only subject with a traumatic brain injury in their past. Head trauma has
been associated with changes in both spectral and information theoretic properties of interbeat interval
sequences at rest [64,65]. Our results corroborate these findings and suggest that additional studies
that include a physiological stressor, such as the tilt table, may be even more disclosing.
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Figure 11. The interbeat interval sequences (top) and specific entropy rates (bottom) for each of the
five subjects (a)–(e) in the tilt table experiment. The solid red line indicates a time-windowed average
of the specific entropy rate with a uniform kernel with a window length of 60 s.

4. Discussion and Future Directions

An important consideration for any estimator relates to how it behaves under error or in the
presence of noise. Care must be taken with respect to how one defines error, however. For example,
does error refer to observational noise, model uncertainty/misspecification, or unobserved factors [43]?
We have not considered the impact of observational noise, for example, because the measurements
we have considered, namely inter-event and interbeat intervals, can be treated as relatively noise free.
However, if observational noise is a major concern, then the estimation of the specific entropy rate
must be carefully applied in this context, since direct estimation from the observed signal will combine
dynamical and observational uncertainties. Possible solutions include the errors-in-variables model
for density estimation [40] or more general nonlinear filtering approaches [66].

We have considered only fixed bandwidths for the conditional kernel density estimator in
estimating the specific entropy rate: regardless of the past and future states of the system, we use
the same bandwidths in estimating the predictive density. In Section 3.2, we saw a scenario where
this estimation strategy may be problematic: the typical scale of the inter-event intervals differed
between the Lorenz-governed and Rössler-governed periods, and this led to suboptimal bandwidths.
Alternative variable bandwidth density estimation schemes allow the bandwidths to vary with either
the data used in estimation of the density or the point of evaluation [36]. For example, the estimator
for the differential entropy of a random vector developed in [30] based on k-nearest neighbor statistics
is equivalent to a plug-in estimator of the differential entropy using a kernel density estimator with a
bandwidth that varies with the point of evaluation, in this case the distance to the k-th nearest neighbor
of the evaluation point, along with an additional bias correction term. Many other estimators, such as
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the popular Kraskov–Stögbauer–Grassberger mutual information estimator [31], fall into this category.
Future work will explore the tradeoff between the resolution gained by variable bandwidth estimators
of a specific entropy rate and the statistical and computational burden imposed. One recent approach
along these lines used a variable bandwidth kernel density estimator to estimate the transfer entropy
for various simulated systems [67].

Another potential issue with scaling, as we again saw in Section 3.2, is that differential entropy
and, thus, the differential entropy rate are not invariant to scaling. For example, changing the units
used to measure the system under consideration will result in an affine shift to the differential entropy.
Depending on the application at hand, this may or may not be problematic. If comparing the entropy
rate of multiple time series, all with the same units, then the lack of invariance to scale washes out.
However, if one is analyzing a single time series that has large variations in its characteristic scale over
time, then the dependence on scaling may be problematic. One potential alternative is to normalize the
differential entropy rate using the typical scale of the system at any given instant. A good candidate
for this is the negentropy [68] of a random variable, which normalizes the differential entropy by the
differential entropy associated with a Gaussian density with the same variance. The negentropy, unlike
the differential entropy, is invariant to affine transformations of a random variable. Thus, we might
define a specific negentropy rate by normalizing the specific entropy rate by an instantaneous measure
of the variance. This is analogous to the redundancy [43] of discrete-state stochastic processes, which
normalizes the entropy rate of a stochastic process by the entropy rate of a uniformly-distributed
process with the same alphabet.

Any method that utilizes either approximate or sample entropy could be modified to use our
specific entropy rate estimator. For example, the multiscale entropy [69], which is defined as the sample
entropy of a time series at varying levels of aggregation, could easily be modified by direct substitution
with the specific entropy rate. This would allow for not only an analysis of the unpredictability
across scales, but also across time. Similarly, the point process model of interbeat interval sequences
introduced in [70–72] is a particular parametric form for the stochastic dynamical system Equation (2).
In a sequel [73], the authors propose using the filtered state from this model to estimate what they call
the inhomogeneous point-process entropy. They estimate this quantity using either the approximate
or sample entropy, and thus, based on the analysis from [14], we see that their estimator is for the
unscaled Shannon or Rényi entropy rate of the filtered state. Thus, the specific entropy rate could be
used on the filtered state.

Our approach to specific entropy rate estimation via conditional kernel density estimation can
also be extended to any of the various other information theoretic measures gaining popularity,
including transfer entropy [41,74], causation entropy [75], and co-/multi-information [76]. Many of
these quantities would benefit from a data-driven approach to bandwidth selection, in addition to
the automatic dimension reduction such approaches induce. However, we also note that with each
additional probabilistic conditioning required by these measures, we increase both the statistical and
computational burden for constructing the appropriate estimator. For example, the convergence rate
of kernel density-based estimators for many information theoretic quantities scale exponentially in the
reciprocal of the dimension of the random vector [77], while their time complexities scale exponentially
in the dimension of the random vector [34].

5. Conclusions

Via a decomposition of the entropy rate of a discrete-time, continuous-valued stochastic dynamical
system, we have proposed a measure of state-specific uncertainty: the specific entropy rate. We have
shown how to estimate the specific entropy rate from finite data using kernel density estimators and
provided a data-driven method for choosing the free parameters in the kernel density estimation.
Given the immense popularity of heuristic approaches to entropy rate estimation, such as approximate
entropy and sample entropy, it is our hope that a more principled approach to entropy rate estimation
will be found useful by the larger research community.
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All of the software used in this paper was developed in R via extensions to the np library for
kernel density estimation. We have made this implementation available on GitHub [78]. In an effort to
match the naming convention applied to Approximate Entropy (ApEn) and Sample Entropy (SampEn),
we call our R implementation spenra for Specific Entropy Rate.

Acknowledgments: The author thanks Chao Wang, David Keyser, Chris Cellucci, and Paul Rapp for valuable
discussions, as well as Dominic Nathan for providing the data from the tilt table experiment.
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Appendix: Relationship between the Kernel Density Estimator for the Differential Entropy Rate
and Approximate Entropy

In this Appendix, we make the connection first noted in [14] between the kernel density estimator
for the differential entropy rate and approximate entropy, emphasizing the implicit assumptions
on the kernel, bandwidths, etc., that result from the default parameters used by most approximate
entropy-based analyses. However, we also note that [46] did not motivate approximate entropy
as a kernel density-based estimator of the entropy rate, but rather as a family of statistics for
comparing two time series. This explains, for example, the inclusion of both self-matching and
sample size-independent bandwidths, which would lead to estimation bias from the perspective of
kernel density estimation.

We begin by recalling the standard formulation of approximate entropy from [46]. Consider a

time series {Xt}T
t=1. For an embedding dimension p, we form the embedding vectors

{
X(p)

t

}T−p+1

t=1

where X(p)
t = (Xt, Xt+1, . . . , Xt+p−1). For each vector X(p)

t , we compute the number of other vectors

(including the vector indexed by t) that are within a tolerance r of X(p)
t under the infinity norm,

C(p)
t (r) =

#
{

X(p)
t′ :

∣∣∣∣∣∣X(p)
t − X(p)

t′

∣∣∣∣∣∣
∞
≤ r
}

T − p + 1
, (A1)

where we recall that the infinity norm || · ||∞ of a vector u = (u1, . . . , up) is given by:

||u||∞ = max
i
|ui|. (A2)

Finally, we compute the average logarithm of Equation (A1) across all of the vectors, giving:

Φ(p)(r) =
1

T − p + 1

T−p+1

∑
t=1

log C(p)
t . (A3)

For fixed p, r, and T, the approximate entropy is defined as:

ApEn(p, r, T) = Φ(p)(r)−Φ(p+1)(r). (A4)
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We next show that Equation (A4) is almost equivalent to a plug-in entropy rate estimator based on
kernel density estimation. We begin by rewriting the C(p)

t (r) terms using the uniform/boxcar kernel
Kuniform(u) = 1[−1,1](u) as:

C(p)
t (r) =

#
{

X(p)
t′ :

∣∣∣∣∣∣X(p)
t − X(p)

t′

∣∣∣∣∣∣
∞
≤ r
}

T − p + 1
(A5)

=
1

T − p + 1

T−p+1

∑
t=1

Kuniform


∣∣∣∣∣∣X(p)

t − X(p)
t′

∣∣∣∣∣∣
∞

r

 (A6)

=
1

T − p + 1

T−p+1

∑
t=1

p−1

∏
i=0

Kuniform

(
|Xt+i − Xt′+i|

r

)
. (A7)

We see that Equation (A7) is equivalent to the kernel density estimator for the density of{
X(p)

t

}T−p+1

t=1
using a product of uniform kernels up to a normalization factor of (2r)−p. The true

kernel density estimator therefore would be given by:

f̂
(

x(p)
)
=

1
T − p + 1

T−p+1

∑
t=1

1
(2r)p Kuniform

(
||x(p) − X(p)

t ||∞
r

)
(A8)

=
1

T − p + 1

T−p+1

∑
t=1

p−1

∏
i=0

1
2r

Kuniform

(
|xi − Xt+i|

r

)
. (A9)

Therefore, we see that Equation (A1) is the unnormalized form of Equation (A9) evaluated at X(p)
t .

If we include the normalization, the summation Equation (A3) becomes:

Φ(p)
normalized(r) =

1
T − p + 1

T−p+1

∑
t=1

log f̂
(

X(p)
t

)
. (A10)

If f̂ were replaced with the true density f , then for large T, Φ(p)
normalized(r) approximates the

negative joint differential entropy:

h
[
X(p)

]
= −E

[
log f

(
X(p)

)]
(A11)

= −
∫
Rp

f
(

x(p)
)

log f
(

x(p)
)

dx(p) (A12)

by the law of large numbers. However, because we evaluate the estimator f̂ with the same data used
to estimate it, Equation (A10) is a biased estimator of the negative differential entropy −h

[
X(p)

]
. A

simple modification of Equation (A10), due to [77,79], provides an estimator for the joint differential
entropy with a fast rate of convergence in the i.i.d. case. In particular, let f̂−t be the kernel density
estimator for the joint density formed by leaving out the t-th vector Xt. That is, we estimate the joint
density using Equation (A9) with all of the vectors, except Xt. This gives the leave-one-out (LOO)
estimator for the joint differential entropy,

−Φ(p)
normalized, LOO(r) = −

1
T − p + 1

T−p+1

∑
t=1

log f̂−t

(
X(p)

t

)
. (A13)
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Thus, we see that with the proper normalization, a modification of the approximate entropy gives
an estimator for the finite-p differential entropy rate,

h[Xp+1 | Xp, . . . , X1] = h[X1, . . . , Xp+1]− h[X1, . . . , Xp]. (A14)
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