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Abstract: The objective of this study was to investigate the effects of muscle fatigue on the multi-scale
entropy of surface electromyography (EMG) in children with cerebral palsy (CP) and typical
development (TD). Sixteen CP children and eighteen TD children participated in experiments where
they performed upper limb cyclic lifting tasks following a muscle fatiguing process, while the surface
EMG signals were recorded from their upper trapezius muscles. Multi-scale entropy (MSE) analyses
of the surface EMG were applied by calculating sample entropy (SampEn) on individual intrinsic
mode functions (IMFs) adaptively generated by empirical mode decomposition (EMD) of the original
signal. The declining degree of the resultant MSE curve was found to reflect muscle fatigue level for
all subjects, with its slope (purposely calculated over the first four scales) increasing significantly
as the fatigue level increased. Further, such a slope increase was less significant for CP children as
compared with TD children. Our findings confirmed that the decrease of muscle fiber conduction
velocity (MFCV) and the increase of motor unit synchronization may be two possible factors induced
by muscle fatigue, and further indicated that there appear to be some neuromuscular changes (such as
MFCV decrease, motor unit synchronization increase, motor unit firing rates reduction, selective
loss of larger motor units) that occur as a result of cerebral palsy. These changes may account for
experimentally observed difference in fatiguing effects between subject groups. Our study provides
an investigative tool to assess muscle fatigue as well as to help reveal complex neuropathological
changes underlying the motor impairments of CP children.
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1. Introduction

Cerebral palsy (CP) is a non-progressive disorder that can induce abnormal control of posture
and movement [1,2]. Activities of daily living are consequently affected by the resultant motor
function deficiency. The symptoms frequently manifested for CP children include spasticity, dystonia,
contractures and loss of selective motor control [3,4]. There exists various clinical methods for
the assessment of neuromuscular function for CP children [5,6]. Evaluation of their ability to
independently perform a specific motor task, say a sustained activity, may be one necessary approach.
However, compared with their healthy peers, muscle fatigue is a more frequently reported complaint
during task performance in CP children [7]. Muscle fatigue, defined as a reduction in maximal
muscle force generation during sustained activity [8], is a limitation for CP children to independently
accomplish a motor task. Thus for CP children, investigations into muscle fatigue may provide a way
for the clinical assessment of their capacity to perform daily living activities.
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Surface electromyography (EMG) measures electrical potentials during muscle activity using
electrodes placed over skin surface of the muscle in a non-invasive manner. It is able to reflect the
changes in motor control during muscle fatiguing contractions [9]. To quantify surface EMG signals
during fatiguing processes, root mean square (RMS) of the signal amplitude [10,11], and mean power
frequency (MPF) and median frequency (MDF or MF), which consider spectral distribution of the
signal [12,13], are three widely used variables. An increase of signal amplitude (RMS increases) and a
shift in power spectrum towards lower frequencies (MPF, MDF decreases) are expected to be indicators
of muscle fatigue during isometric or isokinetic tests [10,11,13].

Various studies have shown that surface EMG signals tend to exhibit nonlinear properties [14,15].
Conventional time-or frequency-domain parameters fail to capture these properties of the surface
EMG. Entropy, defined as the rate of information creation in nonlinear dynamical system, has been
developed to quantitatively measure complexity of a time series signal or the system generating that
signal. A variety of entropy measures, including approximate entropy (ApEn) [16], sample entropy
(SampEn) [17], have been proposed as approaches to quantify complexity in nonlinear dynamical
systems, with wide applications in analyses of nonstationary biomedical signals including EMG [18–21].
It has been reported in the literature [18–23] that surface EMG complexity reflects its generative
processes involving recruitment and firing behaviors of active motor units during muscle contractions
under regulation of the central nervous system. As illustrated in previous research [22,23], entropy of
the surface EMG changes as a consequence of the increased level of muscle fatigue and serves as a
better indicator of fatigue compared with traditional frequency domain parameters. Thus analyzing
surface EMG using entropy measures may provide a way to evaluate fatigue and help to understand
its internal mechanisms.

Moreover, it has been shown that surface EMG signals have multiple spatial and temporal scales.
Multi-scale analysis of surface EMG has been reported to help characterize the structural properties
of the signal, as compared with the standard single scale approach [24,25]. For example, multi-scale
entropy (MSE) [26], which extends standard single-scale sample entropy to multiple time scales using
“coarse-grained” approach, has shown its analytic power feasibility to assess surface EMG changes over
different time scales during fatiguing muscle contraction [27]. Alternative multi-scale approaches, such
as wavelet analysis [24,28] and empirical mode decomposition (EMD) [29,30], have been proposed for
signal analysis. Specifically, EMD has shown its advantages in adaptively decomposing a signal into
multiple representative components representing the intrinsic oscillation modes [29]. Such adaptive
decomposition by EMD makes it suitable for multiscale analysis of nonstationary electrophysiological
signals such as surface EMG [25]. In a recent study by Chowdhury et al. [31], EMD was applied to
surface EMG during human walking exercise to identify muscle fatigue.

Considering how the entropy of these components changes with the increased fatigue level may
provide a novel way to investigate muscle fatigue. With the above considerations, in the current study,
a novel MSE analysis was applied to surface EMG from children with CP or typical development
(TD) for examining muscle fatigue during upper limb lifting tasks. The MSE method used in this
study computes SampEn over different time scales represented by intrinsic mode functions (IMFs)
derived from EMD decomposition of an original surface EMG time series. The findings of this study
demonstrated that the MSE of surface EMG can serve as an appropriate indicator of muscle fatigue.
Moreover, investigation into MSE changes of surface EMG during fatiguing muscle contractions can
help better understand regulation mechanisms of the central nervous system and neuropathological
mechanisms underlying motor impairments of CP.

2. Method

2.1. Subjects

Sixteen children diagnosed with CP (12 males, four females, age: 7.4˘ 2.3 years, mean˘ standard
deviation) were recruited in our research. For comparison, eighteen age-matched healthy children
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with typical development (TD) (11 males, seven females, age: 7.9 ˘ 1.6 years) without any known
neurological deficiencies also participated in our study as the control group. All CP participants were
recruited from Jingu Hospital (Hefei, China) which is devoted to the treatment and rehabilitation
of CP children. All TD children were recruited from faculty family at the University of Science
and Technology of China (USTC, Hefei, China). The study with recruitment of human subjects was
approved by ethic review boards of both institutes. The inclusion criteria of CP children participating
in our research include: (1) age between 4 and 13 years old; (2) no abnormal postures or involuntary
movements were shown during upper limb lifting task performance; (3) ability to independently
complete tasks without some external assistance; (4) ability to sustain some extent of external loads;
(5) ability to comprehend instructions from researchers; (6) no history of other kinds of pathological
cause that lead to the motor function deficiency despite cerebral palsy. For each CP child, upper limb
function was evaluated by manual ability classification system (MACS) proposed by Eliassen et al. [32],
which classifies CP children’s manual ability by observing how they use their upper limbs to handle
objects in daily activities. The information of all CP children was shown in Table 1.

Table 1. Information of all CP children.

Subject Gender Age (Years) Diagnosis MACS Tested Limb MLF (N)

CP1 M 7.2 Spastic II R 35
CP2 M 5.0 Spastic II R 28
CP3 M 8.4 Spastic I L 53
CP4 M 5.0 Spastic II R 30
CP5 M 4.5 Spastic II R 18
CP6 F 7.0 Spastic I R 54
CP7 F 4.8 Spastic II R 20
CP8 F 12.2 Spastic II R 36
CP9 M 8.3 Spastic I R 43

CP10 M 5.7 Spastic III L 16
CP11 M 11.7 Right hemiplegia I R 57
CP12 M 8.3 Right hemiplegia II R 40
CP13 F 6.5 Right hemiplegia II R 24
CP14 M 7.0 Right hemiplegia III R 22
CP15 M 9.6 Right hemiplegia II R 47
CP16 M 6.7 Right hemiplegia II R 35

In addition, none of the recruited TD children had any neuromuscular problems in their upper
limbs and their information is shown in Table 2. Written consent was obtained from the guardians of
all CP and TD children prior to their participation in the study.

Table 2. Information of all TD children.

Subject Gender Age (Years) Tested Limb MLF (N)

TD1 M 7.8 R 36
TD2 M 8.3 R 53
TD3 M 7.0 R 60
TD4 M 6.7 R 45
TD5 M 5.2 R 28
TD6 F 11.0 R 60
TD7 F 7.3 R 40
TD8 M 7.0 R 35
TD9 M 7.0 R 60
TD10 F 7.4 R 38
TD11 M 12.3 L 68
TD12 M 8.0 R 62
TD13 F 8.3 R 44
TD14 F 7.4 R 42
TD15 F 8.7 R 60
TD16 F 8.5 L 53
TD17 M 7.7 L 46
TD18 M 7.0 R 57
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2.2. Experiment

In our experiments, participants were required to continuously lift their tested limb up and down
within a fixed vertical distance until they were unable to sustain the performance due to the fatigue of
the associated muscle. The vertical distance, which was equally divided by the equilibrium position,
was determined prior to task performance. The equilibrium position was defined as the position
where the shoulder was flexed to 90 degrees and the upper limb was stretched forward, parallel to the
ground, with a full extension in the elbow. Since the length of the limb for each subject was a fixed
quantity and measured as l, the angle α between the equilibrium position and the top/bottom lifting
position was used to determine the vertical distance s “ 2lsinα , as illustrated in the Figure 1a.
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Figure 1. (a) Illustration of vertical distance determination; (b) Illustration of MLF determination;
(c) The apparatus; (d) Upper limb lifting with sandbags tied on the limb. Arrows denoted a lifting cycle.

The maximum lifting angle was set as α = 30˝ for both TD and cerebral palsy subjects. It was
verified that all CP children recruited in our experiment could lift their limb over that vertical distance
without any external assistance.

A load determination was performed for each subject before the experiment. The maximum lifting
force (MLF) for each subject, was measured as the maximum level of force that the subject was able to
exert in order to maintain the tested limb at the equilibrium position against a sustained increasing
force along the gravitational direction. Each subject was first asked to unbend the tested limb and
maintain it at the equilibrium position. Then a soft inelastic bandage was tied on the wrist. A spring
dynamometer with maximum measurement capacity 100 N was used by researchers to measure
force, the hanging hook of which was fixed tightly on the bandage. During the whole measurement
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process, as illustrated in Figure 1b, researchers pulled the dynamometer downward vertically with a
sustained increasing force and subjects were required to try their best to maintain their limb at the
equilibrium position. However, at the instance when the limb was pulled down about 10˝ deviating
from the equilibrium position, the force recorded by the dynamometer was regarded as the MLF.
In order to get reliable and accurate results, the measurement was repeated twice for each subject.
The interval between two successive measurements was about 5 min. The higher value between both
measurements was regarded as the final MLF value for each participant. MLF values for all the CP
children (35 ˘ 13 N) and all the TD subjects (49 ˘ 11 N) are shown in Tables 1 and 2 respectively.
After the MLF was obtained for each subject, three different loads, expressed as 0%, 30% and 60%
of the MLF, were calculated. These external loads were represented by weight-adjustable sandbags
which were tied tightly on the tested limb during task performance. Each subject was asked to perform
three different fatiguing tasks, each with a predefined load, respectively. The load presentation was
randomized in our experiments.

In order to perform the muscle fatigue protocol in a more sensible and controllable way, we
devised a convenient apparatus using some affordable electronic devices. As shown in Figure 1c, the
main part of the apparatus was a cuboid-like rigid frame of which the height was fixed at 1500 mm.
The inside of the apparatus was empty to allow the upper limb of participants lifting inside. There were
two long slots opened on it, one on the left side and the other on the right side. Two pairs of infrared
radiation switches (24 V DC), called switch pair A and switch pair B, could be moved and placed
at arbitrary positions on the slots using screw bolts. After determining the equilibrium position
for each subject, the switch pair A and B were placed on the slots about half of the lifting vertical
distance above and below the equilibrium position, respectively. Additional pair of long rods were
placed about 1 to 2 cm apart from the switch pair A and B, in order to limit the vertical range for the
subject to perform the arm lifting task. The output states of these two switch pairs (A and B) were
recorded by a programmable logic controller (PLC, S7-2006ES7222-1BB23-0XB8, Siemens, Munich,
Germany) installed on the top of the apparatus, and were used to control two indicator lights C and D,
respectively. When the tested arm passed through a switch pair (A for example), it was turned off and
its corresponding light indicator (C for example) was turned on. Thus whether the designed position
can be reached or not could be ascertained by observing the states of two indicator lights when the
arm was swing up and down inside the empty part of the apparatus (Figure 1d).

Before task performance, subjects were instructed to remain fully relaxed without any physical
activity for at least two hours. After familiarization with the apparatus and experimental process,
subjects were positioned in a height-adjustable chair. Each task with a predefined load consisted of
two trials. The interval between any two successive tasks and two trials was sufficiently long to allow
the fatigued muscles to fully recover. During task performance, subjects sit in front of the apparatus
and their tested limb was lifted inside of the apparatus with a fixed vertical distance determined by
positions of two switch pairs (Figure 1d). The beginning position of the arm was the lowest points of
the vertical distance (namely, the position of switch pair B) and a lifting cycle was made when the arm
was lifted to the highest point (the position of switch pair A) and returned back to the lowest point of
the entire vertical distance. Subjects were asked to try their best to reach the highest point in each cycle.
During fatiguing protocol, it became difficult for subjects to reach the determined vertical distance as a
result of increased level of muscle fatigue. We assumed full fatigue of the related muscles if the highest
point could not be reached for four successive cycles, and then the task performance was terminated.
Oral encourages were essential for every subject during each trial.

Surface EMG was recorded using a home-made data recording system from the upper trapezius
muscle, which was regarded to be highly involved in upper limb lifting. The surface EMG sensor
used in this study consisted of two parallel bar-shaped electrodes in a size of 1 mm ˆ 10 mm with an
electrode-to-electrode distance of 10 mm to constitute a signal-differential recording channel. These two
electrodes were placed on the skin surface in the middle of the tested upper trapezius muscle along
the muscle fibers. The surface EMG signals were band-pass filtered between 20 Hz and 500 Hz and
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were further sampled at 1 kHz. All recorded surface EMG data was stored to the hard disk of a laptop
computer for further analysis using Matlab (Version 2013, The Mathworks Inc., Natick, MA, USA).

2.3. Data Segmentation

From visual inspection of the recorded data, a surface EMG time series during each trial showed
a series of muscle activity bursts, each corresponding to a muscle contraction during the upper limb
lifting up (see Figure 2). For each trial, a segment of surface EMG data between the onset of the first
muscle activity burst and offset of the last one was selected. The signal within the last four cycles of
upper limb lifting were further discarded since the task performance in that period may not meet
the basic requirement as a result of muscle fatigue. The remaining surface EMG segment was further
divided into three non-overlapping data windows of equal duration (see Figure 2a). The resultant
three data windows were denoted as W1, W2 and W3, being the first, second and final thirds of the
surface EMG segment recorded in each trial, to account for three different levels of muscle fatigue.
Then the following MSE analysis was performed on each data window.

2.4. MSE Analysis

2.4.1. Empirical Mode Decomposition

Empirical mode decomposition (EMD) method, proposed by Huang et al. [29], is a time-frequency
analysis method for adaptive decomposition of a signal into a set of intrinsic mode functions (IMFs)
representing its intrinsic oscillation modes in the signal. Due to its advantages, EMD has been
successfully used in the analysis of non-linear and non-stationary biomedical signals including
EMG [31,33,34]. These resultant IMFs can also be considered as different scales of the original signal
for multi-scale analysis [25]. The EMD process requires that upper and lower envelopes defined by
identifying local extremes of the original signal s(t) should be created first. The upper envelope is
created by cubic spline interpolation between local maximums. Analogously, the lower envelope is
derived from local minimums. Then, the mean of two envelopes is calculated as m(t) and is subtracted
from s(t).

The residual signal d(t) is regarded as an IMF if it satisfies two conditions. The first condition is
that the number of all local extremes (including maximums and minimums) is equal to the number
of zero-crossings of the signal or their difference is one. The second is that the mean of two envelops
of the signal is zero. However, if the above two conditions are not satisfied, the signal d(t) cannot
be regarded as an IMF. Under this circumstance, the mean of its two envelops is subtracted and the
process described above is repeated on the residual signal until a true IMF is identified. After an IMF
is extracted from the original signal s(t), the above analysis is iterated on the residue to further get
other IMFs. Such iteration is referred to as the sifting process. The whole process terminates when
the final residue is a monotonic function or a function with only one extreme. Overall, the sums of all
IMFs extracted approximately equal to the original signal:

s ptq “
n
ÿ

i“1

IMFi ` rn (1)

where n is the total number of IMFs extracted, rn is the final residue.

2.4.2. Sample Entropy

Sample entropy (SampEn), originally proposed by Richman and Moorman [17], is an effective
measure of the complexity of short time series, with wide applications in analyzing non-linear and
non-stationary biomedical signals including EMG [21,35,36].
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Figure 2. Decomposition results of a representative surface EMG signal from one TD subject (TD2)
under 0% load. (a) Raw sEMG signal segmented by three windows with an equal length; (b) One part
selected from the W1 signal in detail and its corresponding 7 IMFs after EMD; (c) The power spectra of
corresponding IMFs.
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To calculate the sample entropy of a scalar time series tx1, x2, . . . xNu with length N, the first step
is to embed this time series in a delayed m-dimensional space, where vectors are defined as:

Xm piq “ rx piq , x pi` 1q , . . . , x pi`m´ 1qs pi “ 1, 2, . . . , N ´mq (2)

Then for each Xm piq, the number of all other vectors which satisfy the condition that their distances
from Xm piq are smaller than the tolerance r is counted as N piq. Next the frequency of occurrence Bm

i prq
is calculated as N piq { pN ´m´ 1q, and Bm

i prq is averaged over all i:

Bm prq “
1

N ´m

N´m
ÿ

i“1

Bm
i prq (3)

By increasing the dimension to m + 1, we can similarly get Bm`1 prq using process described
above. Finally, the sample entropy is calculated as:

SampEn pm, r, Nq “ ´ln
´

Bm`1 prq {Bm prq
¯

(4)

The dimension m and the tolerance r need to be determined before entropy calculation.
With reference to the literature [17,26,37], the tolerance r can be selected as between 0.15ˆ SD and
0.25ˆ SD, where SD is the standard deviation of the input time series. The use of larger tolerance was
also recommended for relatively shorter time series [17]. Based on some pretests, the parameters were
selected as m “ 2, r “ 0.2ˆ SD in our study.

2.4.3. EMD-Enhanced MSE Analysis

With EMD acting as a multi-scale analysis tool to decompose input data (each data window in this
study) into IMFs, the MSE can be straightforwardly performed by applying SampEn on each resultant
IMF. The MSE analysis was performed independently on each data window to produce a series of
SampEn values, forming a MSE curve over multiple scales (i.e., IMFs). The mean of the MSE curves
derived from two trials of the same task (with the same load) was calculated for each subject. For each
of three different loads, the MSE curves were further averaged over all subjects in each subject group,
for the comparison between the CP group and the control group.

2.5. Statistical Analysis

It was found in our study that the EMD produced 7 IMFs for all surface EMG data windows
(see Figure 2), and that the subsequent MSE curves showed an evident declining trend across all trials
and all subjects as the IMF order increased (see Figure 3). In order to assess the fatiguing effect on the
MSE results, a linear regression analysis was performed on SampEn values at the first four IMF orders
(i.e., IMF1-4), and the slope was obtained to represent the declining degree of the MSE curve for each
data window.

The reason for using first four IMF orders to account for the fatiguing effect was a significant
change in their entropy declining trend with increasing level of muscle fatigue (from W1 to W3), as
explained in the following experimental results.

In order to examine the effect of fatigue (represented by the data windows) and the load on the
MSE results, and to identify difference of such effect between two subject groups, a mixed linear model
was applied on the slope values, with the window (three levels: W1, W2 and W3) and the load (3 levels:
0%, 30% and 60%) considered as both within-subject factors and the group (2 levels: CP vs. TD)
considered as the between-subject factor. A series of post-hoc pairwise multiple comparisons with
Bonferroni correction were used. The level of statistical significance was set as p ă 0.05 for all analyses.
All statistical analyses (including linear regression) were carried out using SPSS software (Version 16.0,
SPSS Inc., Chicago, IL, USA).
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Figure 3. MSE curves averaged across subjects in each of the control group and the CP group under
three fatigue degrees (windows) and three loads: (a) 0% load; (b) 30% load; (c) 60% load, respectively.

3. Results

For both two subject groups and all three loads, the total number of IMFs extracted was seven for
each signal window. The results of data segmentation and decomposition for one TD subject (TD2)
were used as an example and shown in Figure 2. In Figure 2a, the raw EMG signal segment under 0%
load was divided by three signal windows of equal length: W1, W2 and W3. The 7 IMFs derived from
the signal window W1 via EMD were shown in Figure 2b in details. In addition, power spectrum of
each corresponding IMF was also shown in Figure 2c, thus confirming that higher-order IMFs tended
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to carry relatively lower-frequency components (representing longer-term temporal scales) of the
original signals.

For both two groups, the mean MSE curves averaged over all subjects in each of CP and TD
groups under three different loads were shown in Figure 3, with the error bars indicated the standard
deviations. It can be observed from Figure 3 that for both two subject groups, the MSE curves showed
an evident declining trend with the increase of IMF order. Furthermore, the visually observed declining
degree of MSE curve varied across three data windows. This was especially the case for the SampEn
values at the beginning four IMF orders (namely, IMF1 to IMF4). For TD subjects under load 0%
(Figure 3a), an obvious entropy declining trend could be seen from the signal window W1 which
represented the lowest level of muscle fatigue. For the window W2, the entropy value of IMF4 was
almost in the same level with IMF2 and IMF3. In window W3, compared with IMF1, entropy of
IMF3 and IMF4 relatively increased, thus leading to an even locally increasing trend from IMF1 to
IMF4. Consequently, the degree of entropy declining was found to reduce from window W1 to W3.
Consistent trend was also found under other two loads for the control group and all three loads for the
CP group. In addition, the load was also observed to be a factor that affected the decline of the MSE
curve. For each group under load 30% (Figure 3b), compared with load 0% (Figure 3a), entropy values
of IMF3 and IMF4 in window W3 were at the same level as or even climbed beyond those at IMF1.
By contrast, for both two subject groups, the declining trend remained the same at higher IMF orders
(namely, IMF5 to IMF7), regardless of the load or the fatigue degree (data windows).

In order to characterize the experimentally observed fatiguing effect on the MSE curve, a linear
regression was performed on the SampEn values at the first four IMF orders, for each data window
from a subject. The resultant mean slope values, averaged across subjects in each group, was shown
in Figure 4 for three signal windows and three loads, respectively, where the error bars indicated
the standard deviations. It was found that the mean slope value for both two groups increased from
window W1 to W3.Entropy 2016, 18, 177 11 of 15 
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Figure 4. Mean slope values averaged across subjects in each of two groups for three fatigue degrees
(W1, W2 and W3) and three loads: (a) 0% load; (b) 30% load; (c) 60% load, respectively. Asterisks
indicate statistical significance in multiple pairwise comparisons: * 0.01 < p < 0.05; ** 0.001 < p < 0.01;
*** p < 0.001.

The mixed linear model reported an overall significant effect of all the window (F = 85.944,
p < 0.001), the load (F = 5.17, p = 0.02) and the group (F = 6.143, p = 0.019) on slope values. Moreover, a
significant interaction between any two (p < 0.041) or among all three factors (F = 2.885, p = 0.035) was
revealed as well. Significant slope increase was reported for the control group when the fatigue level
increased from W1 to W3, while no significant difference between windows was found for the CP
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group. Under 0% load, the window W3 yielded higher slope value than W2 with statistical significance
(p = 0.007) for the control group, while no significant difference was revealed between any two of three
signal windows (p = 1) for the CP group. Under 30% load, significant difference was observed between
every two windows of control group (p < 0.003), while a significant difference was only seen between
W1 and W3 (p = 0.016), and between W2 and W3 (p = 0.019) for the CP group. Under 60% load, a
significant difference was observed for every two windows (p < 0.001) for the control group, while a
significant difference was only found between W2 and W3 (p = 0.014) for the CP group.

Statistical analysis revealed that load had significant effect on slope values for the control group,
whereas such effect was not significant for the CP group. For window W1, a significant difference was
seen between 0% load and any of the other two loads (p < 0.001) for the control group. However, there
was no difference between 30% load and 60% load (p = 1). For window W2, a significant difference was
revealed between 0% load and 30% load (p = 0.029), while no difference was revealed for any other
comparisons (p > 0.05). For window W3, no difference was revealed between any two loads, with
p > 0.05 for every two loads. For each signal window of the CP group, p = 1 was found for comparisons
between every two loads.

When considering difference in MSE slope between two groups, statistical significance was
reported for W1 under load 30% (p = 0.003) or 60% (p = 0.005), while no significance was found for any
other windows under any other loads (p > 0.05).

4. Discussion

Empirical mode decomposition can adaptively decompose a complicated time series into a finite
number of intrinsic mode functions (IMFs) [29]. Compared with the “coarse-grained” approach [26]
and the wavelet analysis [24,28], EMD uses a so-called sifting process which is adaptive and makes
no assumption about the original signal. The proposed EMD-driven MSE analysis was performed
to apply entropy estimate to individual IMFs which represent the intrinsic oscillation modes of the
original signal. In our study, we investigated how the MSE of surface EMG changes with the increased
level of muscle fatigue in children with TD and CP.

By calculating SampEn values over multiple IMFs of surface EMG, the resultant MSE curve
showed a general trend of direct decline with increasing IMF orders. The reason for explaining the
declining trend of MSE curve can be the sifting process involved in the EMD algorithm. Since the
number of extrema decreases during residue iterations in the sifting process, the corresponding spectral
quantities can accordingly decrease [38]. As a result, higher order IMFs tend to become more regular by
carrying more slowly oscillatory modes (as demonstrated by the spectral analysis of IMFs in Figure 2)
in the original signals, consequently yielding smaller SampEn values. This was found to be evident
without significant muscle fatigue (for W1). Moreover, our study further revealed that the declining
trend of MSE was expected to decrease or even to change to an increasing trend as a result of increased
fatigue level (from W1 to W3), regardless of any subject group. Specifically, such change in MSE curve
was visually observed to be evident at the first four IMF orders. Therefore, the slope from a linear
regression of SampEn values at first four IMF orders was proposed to quantify the fatiguing effect
on MSE curve. On this basis, the increase in slope values was found from W1 to W3, with overall
statistical significance revealed by the mixed linear model. The decreased declining trend of MSE
(i.e., increased slope) reflected a relative increase in entropy of lower oscillation modes (higher IMF
orders) during the fatiguing process (from W1 to W3).

Muscle fatigue is a complex physiological process that involves interactions of multiple
neuro-muscular variables [8,9]. Our MSE analysis suggested a relative increase in entropy values of
lower oscillation modes with respect to those of higher oscillation modes as a result of muscle fatigue.
This may be the consequence of the decrease in muscle fiber conduction velocity (MFCV) [8,9,39,40]
during the muscle fatiguing process. It has been widely recognized that the recorded EMG signal
is composed of several motor unit action potentials (MUAPs) which reflect the electrical activity of
anatomical motor units [27,41]. At the single motor unit level, decrease in fiber conduction velocity
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may lead to the reduction in the sharpness of the discharged MUAP, resulting in much smoother and
widen MUAP waveform. Therefore, from the whole EMG signal’s perspective, decrease in MFCV
may lead to slow oscillations of the signal, thus increasing the portion of lower oscillation modes
carried in the original signal. This change in signal structure might lead to the increase in entropy of
corresponding higher order IMFs, thus decreasing the declining trend in MSE curve. Another reason
for explaining the relative increase of entropy values at the third and fourth IMF orders may be the
increased motor unit synchronization, which has been reported as a possible factor contributing to
surface EMG alternations as a result of fatigue [8,9,27,42,43]. Synchronization is defined as the almost
simultaneous discharge of MUAPs in motor units. Therefore, the resultant overlapped MUAP may
tend to show a smoother and enlarged waveform with a broadened time course, thereby having
lower oscillation modes in the resultant surface EMG recording. Similarly, an increase in motor unit
synchronization as a result of muscle fatigue may also contribute to a relative increase in entropy of
higher order IMFs (decrease in entropy declining trend). Our findings based on MSE analysis showed
some accordance with previous reports relying on spectral analysis for muscle fatigue assessment.
It has been widely recognized that surface EMG spectral parameters, such as mean power frequency
(MPF) and median frequency (MDF), showed a declining trend during fatiguing process [12,13,44,45],
which confirmed power spectrum shift toward lower-frequency bands [39,40,46–48]. Considering the
nature of the sifting process of EMD that higher order IMFs represent lower frequency components in
the original EMG signals, power spectrum’s shifting toward lower-frequency bands may lead to the
increase in the proportions of lower frequency components (higher order IMFs) in the original signals.
Consequently, entropy values of higher order IMFs are relatively increased, leading to a decrease in
entropy declining trend.

Although alterations in slope of MSE curve at the beginning four IMF orders could be observed
as a result of muscle fatigue for both subject groups, such a slope increase found from W1 to W3 in the
CP group was not as statistically significant as that in control group. This different fatigue induced
consequence assessed by the MSE between two groups may reflect complex neural or muscular
changes at work underlying the motor impairment of CP. Specifically, the above-mentioned muscle
fatigue-related changes, including MFCV decrease and motor unit synchronization increase, may
have been already involved in muscles of CP children. On one hand, predominance of type I muscle
fibers and atrophy of type II fibers have been reported to take place in muscles of CP patients [49–52].
This morphological and structural changes in muscles may be the consequence of the selective loss
of larger motor units (with higher MFCV) [53]. As a result, relatively smaller and lower-threshold
motor units are very likely to be recruited for CP children during their voluntary muscle contractions,
primarily with type I fibers which are less fatigable than type II fibers. Consequently, the reduction
in overall conduction velocity of muscle fibers during fatiguing process was not significant for CP
patients as compared with TD children. On the other hand, higher level of synchronization and
broader duration of synchronization may be the resulted from lesions of the central nervous system
and have been reported in subjects with neurological disorders or injuries such as stroke, spinal cord
injury, or CP [54,55]. Thus, such synchronization degree may not change much for CP during fatiguing
muscle contractions. When the increase in slope of MSE curve was considered as an indicator of
muscle fatigue, less change in this indicator for CP patients exhibited their impaired capability of
motor control regulation adaptive to fatiguing muscle contraction.

Besides, load acted as a factor that affected MSE results as well. It was found from the Figure 2 that
higher load percentages tended to yield higher MSE values especially at lower order IMFs. Moreover,
the MSE curves derived from the TD group lay beyond those from the CP group, regardless of any
window or any load. This is primarily due to relatively lower muscle contraction intensity in the CP
group given the same load percentage, as a result of their insufficient ability of force production.

It has been recognized that the number of active motor units and their firing rates are two factors
which modulate the force generation during muscle contraction [53,56].
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Thus for higher level of muscle contraction, more motor units are recruited and their overall firing
rates are increased. As a result, for TD subjects, MSE values in each signal window increased from
0% load to 60% load. This was specifically evident at lower-order IMFs, since the higher oscillation
modes tended to show higher increases in entropy values. For each signal window, the discrepancy
between entropy values of higher and lower oscillation modes became larger and a more significant
declining entropy trend could be seen when the load was increased from 0% to 60%, as showed in
Figure 3. However, this was not true for CP patients. Statistical analysis revealed that loads had no
significant effect on their entropy declining trend. As it has been described above that CP patients may
have limited capability to increase motor unit firing rates, the only way for higher force production
under some extent of external loads was just to recruit more additional motor units. In this regard,
some larger and higher threshold motor units are likely to be recruited even at relatively lower force
level. Further, due to selective loss of larger motor units, the number of all motor units to be recruited
in muscles of CP patients may be limited as well. As a result, they truly showed limited capability of
force production, which inhibited the increase in MSE values when loads quantity increases.

In order to fully reveal the motor control mechanisms underlying changes in the declining entropy
trend during fatiguing muscle contractions of CP children, more diagnostic indicators and investigative
tools need to be incorporated, due to their lesions of the central nervous system and impaired motor
pathways. In addition, our study showed statistically significant differences in entropy declining trend
between TD and CP subjects at the group level. However, significant differences between individual
subjects were not demonstrated. A larger study with many more CP participants to assess differences
at the individual subject level is needed for the possible application of our method to clinical diagnosis.

5. Conclusions

Our study examined entropy of all IMFs obtained by EMD in surface EMG signals during
fatiguing process in children with CP and TD. We discovered that the declining trend of the MSE
curves decreased during muscle fatiguing process. This finding can be attributed to a MFCV decrease
and motor unit synchronization increase in fatiguing muscles. Compared with a significant increase
in slope of MSE curve with the increased muscle fatigue level for TD subjects, such a slope increase
was not significantly observed for CP children. There appears to be complex neuromuscular changes
(such as MFCV decrease, motor unit synchronization increase, motor unit firing rates reduction,
selective loss of larger motor units) occurring as a result of cerebral palsy that may account for the
experimentally observed differences between subject groups. Our study may provide a new way to
assess muscle fatigue as well as to help reveal the complex neuropathological changes underlying the
typical motor impairments of CP children.
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