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Abstract: A general quantum thermodynamics network is composed of thermal devices connected
to environments through quantum wires. The coupling between the devices and the wires may
introduce additional decay channels which modify the system performance with respect to the
directly-coupled device. We analyze this effect in a quantum three-level device connected to a heat
bath or to a work source through a two-level wire. The steady state heat currents are decomposed
into the contributions of the set of simple circuits in the graph representing the master equation. Each
circuit is associated with a mechanism in the device operation and the system performance can be
described by a small number of circuit representatives of those mechanisms. Although in the limit of
weak coupling between the device and the wire the new irreversible contributions can become small,
they prevent the system from reaching the Carnot efficiency.
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1. Introduction

Continuous quantum thermal devices are quantum systems connected to several baths at different
temperatures and to work sources [1]. Their operation is necessarily irreversible when the heat currents
are non-negligible. One of the possible irreversible processes is the ubiquitous finite-rate heat transfer
effect considered in endoreversible models. In these models, the control parameters can be tunned
to reach the reversible limit but at vanishing energy flows. Examples are the three-level and the
two-qubit absorption refrigerators [2–5]. In other models, as the power-driven three-level maser [1,6]
and the three-qubit absorption refrigerators [3,7], additional irreversible processes appear such as
heat leaks and internal dissipation [1,8], which are detrimental to the device performance. Several
experimental realizations of these continuous quantum thermal devices have been proposed—for
example, nano-mechanical oscillators or atoms interacting with optical resonators [9,10], atoms
interacting with nonequilibrium electromagnetic fields [11], superconducting quantum interference
devices [12], and quantum dots [13]. Furthermore, the coupling between artificial atoms and harmonic
oscillators is experimentally feasible nowadays [14], opening the possibility of connecting thermal
devices to environments through quantum systems.

Although the most general design of a quantum thermal network is composed of thermal devices
and wires [15], the device performance has been usually analyzed assuming a direct contact with
the environments. The coupling between the device and a quantum probe has been suggested to
characterize the device irreversible processes [16]. In this paper, we adopt a different perspective and
study the additional irreversible processes induced by the coupling between the device and the wire. In
particular, we will analyze in detail the performance of a system composed of a three-level device and a
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two-level wire connected to a work bath or source. When the system is weakly coupled to the baths, its
evolution is described by a quantum master equation in which the dynamics of the populations can be
decoupled from the coherences choosing an appropriate basis [17]. This property implies the positivity
of the entropy production along the system evolution [18,19], and is broken when some uncontrolled
approximations are considered in the derivation of the quantum master equation [20]. The Pauli master
equation for the populations (in the following simply the master equation) is a particular example
of the general master equations considered in stochastic thermodynamics for systems connected to
multiple reservoirs [21]. For a long enough amount of time, the system reaches a non-equilibrium
steady state where the heat currents Q̇α describe the energy transfer between the system and the baths,
and the power P characterizes the energy exchange with the work source [15]. Although the heat
currents can be obtained directly from the steady solution of the master equation, identifying the
different irreversible processes contributing to them is in general a very complicated task.

An alternative approach to analyze non-equilibrium processes is the decomposition of the
steady state fluxes and the entropy production in the contribution due to simple circuits [22–24],
fundamental circuits [25–27] or cycles [28] of the graph representation of the master equation. We
will consider a decomposition in the full set of simple circuits that combined with the all minors
matrix-tree theorem [29], which leads to very simple expressions for the steady state heat currents.
More importantly, each circuit can be interpreted as a thermodynamically consistent unit and its
contribution to the different irreversible processes can be easily identified [30]. Although the number
of circuits may be very large, we will show that the system performance can be described by means of
a reduced number of circuit representatives [31].

The paper is organized as follows: Section 2 presents a brief review of the derivation of the
quantum master equation for a device coupled to a heat bath through a quantum wire. Next, the
graph representation of the master equation and the decomposition in simple circuits is discussed,
with special emphasis on the characterization of the steady state heat currents. Some procedures to
determine the set of simple circuits are described in Appendix A. The absorption refrigerator composed
of a three-level device connected to a work bath through a two-level wire is studied in Section 3 and
some circuit representatives are suggested to describe the system performance. The same analysis is
applied to a system driven by a periodic classical field in Section 4, which includes a brief discussion of
the derivation of the master equation for the time dependent Hamiltonian. In this case, we study the
performance operating as a refrigerator or as an engine. Finally, we draw our conclusions in Section 5.

2. Circuit Decomposition of the Steady State Heat Currents and Entropy Production

2.1. The Master Equation

We consider a system composed of a quantum thermal device with Hamiltonian ĤD directly
coupled with a cold bath and a hot bath, at temperatures Tc and Th, and a quantum wire with
Hamiltonian Ĥwire which connects the device to an additional bath at temperature Tw (work bath). The
situation in which the system is driven instead by a work source will be discussed in Section 4. The
total Hamiltonian reads

Ĥ = ĤD + ĤD,wire + Ĥwire + Ĥwire,w + Ĥw + ∑
α=c,h

(
ĤD,α + Ĥα

)
, (1)

where ĤD,wire is the coupling between the device and the wire, ĤD,α and Ĥwire,w the coupling terms of
the device and the wire with the baths, and Ĥα the bath Hamiltonians. We assume that the coupling
terms of the system with the baths are

√
γα h̄Ŝα ⊗ B̂α, where Ŝα is a device or wire Hermitian operator,

B̂α is a bath operator and γα characterizes the coupling strength.
If the system is weakly coupled with the baths and its relaxation time scale is slow compared

with the correlation times of the baths, the system evolution can be described by a Markovian
quantum master equation for its reduced density operator ρ̂. The procedure to obtain this quantum
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master equation is described, for example, in [17]. Here, we just comment on the final result.
Let ÛS(t) = exp(−iĤSt/h̄) denotes the evolution operator corresponding to the system Hamiltonian
ĤS = ĤD + ĤD,wire + Ĥwire. The essential elements in the quantum master equation can be identified
from the following decomposition of the operators Ŝα in interaction picture

Û†
S(t) Ŝα ÛS(t) = ∑

ω>0
Ŝα

ω exp(−iωt) + Ŝα†
ω exp(iωt) , (2)

where ∑ω>0 denote the summation over the positive transition frequencies ωij = ωj − ωi between
eigenstates of ĤS. The difference between the spectrum of ĤS and ĤD makes the frequencies and terms
in the previous decomposition different from the one corresponding to the device directly coupled with
the baths, and leads to new decay channels. This is the origin of the additional irreversible processes.

When system intrinsic dynamics are fast compared to the relaxation dynamics, the rotating wave
approximation applies and the Lindbland–Gorini–Kossakovsky–Sudarshan (LGKS) generators of the
irreversible dynamics associated with each bath can be written as:

Lα[ρ̂(t)] = ∑
ω>0

Γα
ω

(
Ŝα

ω ρ̂Ŝα†
ω −

1
2
{Ŝα†

ω Ŝα
ω, ρ̂}

)
+ Γα

−ω

(
Ŝα†

ω ρ̂Ŝα
ω −

1
2
{Ŝα

ω Ŝα†
ω , ρ̂}

)
. (3)

We have introduced the anticommutators {ŜŜ†, ρ̂} = ŜŜ†ρ̂ + ρ̂ŜŜ†. In the following, we will
consider bosonic baths of physical dimensions dα and coupling operators B̂α ∝ ∑µ

√
ωµ(b̂α

µ + b̂α†
µ ). The

summation is over all the bath modes of frequencies ωµ and annhilation operators b̂µ. With this choice,
the rates Γα

±ω are [17]

Γα
ω = γα (ω/ω0)

dα [Nα(ω) + 1] ,

Γα
−ω = Γα

ω exp(−ωh̄/kBTα) , (4)

with Nα(ω) = [exp(ωh̄/kBTα)− 1]−1 , kB, the Boltzmann constant, and the frequency, ω0, depending
on the physical realization of the coupling with the bath. Finally, assuming that the Lamb shift of
the unperturbed energy levels is small enough to be neglected, the quantum master equation in the
Shrödinger picture is given by:

d
dt

ρ̂(t) = − i
h̄
[ĤS, ρ̂(t)] + ∑

α=c,w,h
Lα[ρ̂(t)] . (5)

This quantum master equation is in the standard Lindblad form and defines a generator of a
dynamical semigroup. If the spectrum of ĤS is non-degenerated, Equation (5) for the populations of
the N eigenstates |i〉 of ĤS, pi = 〈i|ρ̂|i〉, reduces to [17]

d
dt

pi(t) =
N

∑
j=1

∑
α=c,w,h

Wα
ij pj(t) =

N

∑
j=1

Wij pj(t) , (6)

where Wα
ij is the transition rate from the state j to the state i due to the coupling with the bath α. In the

following, W will denote the matrix with elements Wij = ∑α=c,w,h Wα
ij . The diagonal elements satisfy

Wα
ii = −∑

j 6=i
Wα

ji , (7)

implying the conservation of the normalization. Furthermore, as a consequence of the Kubo–Martin–Schwinger
condition in Equation (4), the forward and backward transition rates are related by

Wα
ji

Wα
ij

= exp
(
−

ωij h̄
kBTα

)
. (8)
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Equation (6) is the starting point of our analysis. When the system is driven by a work source, we
will arrive to an equation with a similar structure, and the results described below will also apply to
that case.

2.2. Circuit Fluxes and Affinities

Here, we describe how to determine the heat currents Q̇α and the entropy production Ṡ in the
steady state. In the following, we assume that the currents are positive when the energy flows towards
the system. The method is based on the representation of the master Equation (6) by a connected graph
G(V, E), being |V| = N the number of vertices, representing the system states, and |E| the number of
undirected edges, representing the transitions between different states. A simple circuit Cν of G is a
closed path with no repetition of vertices or edges. Some procedures to determine the set of circuits in
a graph are discussed in Appendix A. Each one of the two possible different orientations of a simple
circuit, denoted by ~Cν and −~Cν, is a cycle. A cycle then consists of a sequence of directed edges with
transition rates Wα

ij , and it has an associated algebraic value [25]:

A(~Cν) = ∏
α=c,w,h

Aα(~Cν) , (9)

with

Aα(~Cν) = ∏
ij∈ν

Wα
ij , (10)

where ∏ij∈ν denotes the product of all the transition rates due to the bath α in the cycle ~Cν. If the cycle
does not involve the bath α, Aα(~Cν) = 1 for consistency.

The cycle affinity [25] is defined by:

X(~Cν) = ∑
α=c,w,h

Xα(~Cν) = kB ln

(
A(~Cν)

A(−~Cν)

)
, (11)

where the affinity associated with each bath is Xα(~Cν) = kB ln[Aα(~Cν)/Aα(−~Cν)]. When the system
is only coupled with thermal baths, the same amount of energy is taken and transferred to them in
a complete cycle, implying ∑α TαXα(~Cν) = 0. However, when the system is in addition coupled to a
work source, the summation may differ from zero, indicating the net exchange of energy between the
work source and the baths. The cycle flux is defined by [30]:

I(~Cν) = D−1 det(−W|Cν)[A(~Cν) − A(−~Cν)] , (12)

where D = |det(W̃)|. The matrix W̃ is obtained from the rate matrix W replacing the elements of
an arbitrary row by ones, and (−W|Cν) denotes the matrix resulting from removing from −W all the
rows and columns corresponding to the vertices of the circuit Cν. Considering the relation between
the diagonal and non-diagonal elements of W, the determinant of (−W|Cν) is always positive. The
opposite cycle affinities and flux change according to X(α)(−~Cν) = −X(α)(~Cν) and I(−~Cν) = −I(~Cν).

Using these definitions, the steady state heat current between the system and a bath associated
with a simple circuit is:

Q̇α(Cν) = − Tα I(~Cν) Xα(~Cν) , (13)

and the steady state entropy production is given by Ṡ(Cν) = I(~Cν) X(~Cν). At this point, it is important
to notice that, although the affinity and the flux are defined for each cycle, the steady state heat currents
and entropy production are independent of the cycle orientation and can then be assigned to the
circuit without any ambiguity. In addition, each circuit is consistent with the first and second law of
thermodynamics as ∑α=c,w,h Q̇α(Cν) = 0 and Ṡ(Cν) ≥ 0 [22–24,30]. Finally, the heat currents and the
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entropy production in the steady state can be obtained by adding the contribution of all the simple
circuits of the graph, Q̇α = ∑ν Q̇α(Cν) and Ṡ = ∑ν Ṡ(Cν).

The relative importance of the contribution due to a simple circuit to the heat current Equation (13)
is determined by both its affinity Xα(~Cν) and flux I(~Cν) Equation (12). When the system is coupled
with thermal baths, the circuits can be classified as trivial circuits (all the affinities Xα = 0), circuits
associated with heat leaks (one of the affinities is zero) and tricycles (the three affinities are different
from zero) [30]. Trivial circuits do not contribute to the steady state heat currents or entropy production.
Circuits associated with heat leaks only connect two baths, and the heat always flows from the higher
to the lower temperature bath. Tricycles [15] are circuits connecting the three baths, independently of
the number of edges involved. When the system is coupled instead with a work source, the circuits
associated with heat leaks are identified from the condition TcXc + ThXh = 0 (as there is not net energy
exchange with the source), and the tricycles from TcXc + ThXh 6= 0 [30].

The analysis of the circuit flux is more complicated as the termA(~Cν) − A(−~Cν) strongly depends
on the system parameters. In any case, the number of terms in the determinant of the matrix (−W|Cν)

decreases when the number of edges in the circuit increases. Then, the non-trivial circuits with a lower
number of edges are the dominant contribution to the heat currents in a large range of the parameters,
and the system operation as a thermal machine is mainly determined by tricycles with a low number
of edges.

3. Quantum Three-Level Device Coupled through a Two-Level System to a Work Bath

An absorption refrigerator is a thermal device extracting heat from a cold bath and rejecting it
to a hot bath at rates Q̇c and Q̇h, respectively. This process is assisted by the heat Q̇w extracted from
a work bath at higher temperature. Its coefficient of performance (COP) is given by ε = Q̇c/Q̇w.
The simplest model of quantum absorption refrigerator is a three-level system directly coupled
with the heat baths [2,3]. When Tc < Th < Tw, the refrigerator operates in the cooling window
ωc < ωc,rev = ωhTc(Tw − Th)/[Th(Tw − Tc)], with ωc, ωh and ωw = ωh − ωc the frequencies of the
transitions coupled with the cold, hot and work baths, respectively. In the limit of ωc approaching
from below to ωc,rev, the COP reaches the Carnot limit εC = Tc(Tw − Th)/[Tw(Th − Tc)], as the only
source of irreversibility is the finite heat transfer rate through the thermal contacts. To analyze the
effect of the indirect coupling, we consider a system consisting of the three-level device now connected
through a two-level wire to the work bath, schematically shown in Figure 1a. The device and wire
Hamiltonians read:

ĤD = ωc h̄|2D〉〈2D|+ ωh h̄|3D〉〈3D| , (14)

and

Ĥwire = ωw h̄|2W〉〈2W | . (15)

The operators in the coupling terms with the baths are taken as Ŝα = (Ŝα
− + Ŝα

+), with
Ŝα
+ = Ŝα†

− and

Ŝc
− = |1D〉〈2D|; Ŝh

− = |1D〉〈3D|; Ŝw
− = |1W〉〈2W | . (16)

The interaction between the device and the wire is described by:

ĤD,wire = gh̄(|3D1W〉〈2D2W |+ |2D2W〉〈3D1W |) , (17)

where the parameter g is the coupling strength. The eigenfrequencies of ĤS = ĤD + ĤD,wire + Ĥwire
are ω1 = 0, ω2 = ωw, ω3 = ωc, ω4 = [2ωh − ∆− (∆2 + 4g2)1/2]/2, ω5 = [2ωh − ∆ + (∆2 + 4g2)1/2]/2
and ω6 = ωw + ωh. We have introduced the detuning ∆ = ωh − ωc − ωw. Using the procedure of



Entropy 2016, 18, 166 6 of 15

Section 2 to determine the master Equation (6), we obtain the following non-zero transition rates Wα
ij

with indexes j > i,

Wc
13 = Γc

ωc , Wc
24 = |c−|2 Γc

ω4−ωw
, Wc

25 = |c+|2 Γc
ω5−ωw

,
Wh

14 = |c′−|2 Γh
ω4

, Wh
15 = |c′+|2 Γh

ω5
, Wh

26 = Γh
ωh

,
Ww

12 = Γw
ωw , Ww

34 = |c−|2 Γw
ω4−ωc

, Ww
35 = |c+|2 Γw

ω5−ωc
,

Ww
46 = |c′−|2 Γw

ωw+ωh−ω4
, Ww

56 = |c′+|2 Γw
ωw+ωh−ω5

,

(18)

where the coefficients are given by

c± =
[−∆± (∆2 + 4g2)1/2] d±

4g(∆2 + 4g2)1/2 ,

c′± =
d±

2(∆2 + 4g2)1/2 , (19)

with d2
± = 4g2 + [∆± (∆2 + 4g2)1/2]2. The remaining elements can be obtained using Equations (7)

and (8). The graph representation of the master equation is shown in Figure 1b where we identified
38 simple circuits using the methods described in Appendix A. As each pair of vertices is connected
by only one edge, the sequence of E ≤ 6 vertices {i1, i2, . . . , iE, i1} will denote in the following both a
circuit containing these vertices and the corresponding cycle with orientation i1 → i2 · · · → iE → i1.
As we are interested in the system operating as a refrigerator, we will focus our analysis on the steady
state heat current with the cold bath. Now, we will assume ∆ = 0, for which ω4 = ωh− g, ω5 = ωh + g
and |c±| = |c′±|2 = 1

2 . The non-resonant case will be discussed later.

Figure 1. (a) schematic illustration of a three-level device coupled to a work bath or source through a
two-level wire; (b) graph representation of the master equation when the wire connects a work bath.
The six vertices represent the eigenstates of ĤS and the eleven edges the transitions assisted by the cold
(blue lines), work (green lines) and hot (dashed red lines) baths, labeled by c, w and h respectively; (c) graph
representation of the master equation when the system is driven by a periodic classical field. Now the
vertices correspond to the eigenstates of Ĥ2, and there are eight pairs of parallel edges associated with
the cold (solid lines) and hot (dashed lines) baths.

The simplest circuits in the graph are the three-edge tricycles C1 = {1, 3, 4, 1}, C2 = {1, 3, 5, 1},
C3 = {1, 2, 5, 1}, C4 = {1, 2, 4, 1}, C5 = {2, 5, 6, 2} and C6 = {2, 4, 6, 2}, with affinities
Xc(~C1,2) = −ωc h̄/Tc, Xc(~C3,5) = −(ωc + g)h̄/Tc and Xc(~C4,6) = −(ωc − g)h̄/Tc. In all cases, the

leading term of the affinity is proportional to the frequency of the transition coupled with the cold
bath when g � ωc. From (13), we find that the upper limit of the cooling window (Q̇c > 0) for the
circuits C1 and C2 is given by:

ωc,rev(Cν) = ωc,rev + (−1)νg
Tc(Tw − Th)

Th(Tw − Tc)
. (20)
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A similar analysis gives ωc,rev(Cν) = ωc,rev + (−1)νgTw(Th − Tc)/Th(Tw − Tc) for ν = 3, 4 and
ωc,rev(Cν) = ωc,rev + (−1)ν g for ν = 5, 6. The tricycles reach the Carnot COP when approaching
ωc,rev(Cν), but with vanishing circuit heat currents.

We identify 10 four-edge circuits associated with heat leaks, four involving the cold and work
baths, four the work and hot baths and two the cold and hot baths. In all cases, the two non-zero
affinities Xα are proportional to the coupling strengh g. An example is the circuit C7 ≡ {1, 4, 6, 5, 1}
shown in Figure 2a. In this case, the affinities are Xh(~C7) = 2gh̄/Th and Xw(~C7) = −2gh̄/Tw. From
the circuit heat currents (13), the condition Th < Tw and the relation (8), one can easily determine
that Q̇h(C7) < 0 and Q̇w(C7) > 0, resulting in a direct energy transfer from the work bath to the hot
bath. There is also a trivial four-edge circuit involving only the edges associated with the work
bath. We found 14 five-edge tricycles, as for example C8 = {1, 4, 6, 2, 5, 1} shown in Figure 2b.
In this case, Xc(~C8) = −(ωc + g)h̄/Tc and the circuit cooling window is given by the condition
ωc < ωc,rev(C8) = ωc,rev + g(2TcTw − TcTh − TwTh)/(TwTh − ThTc). Finally, there are seven six-edge
circuits, two tricycles and five associated to heat leaks. All the tricycles have affinities Xc with a
leading term proportional to ωc and cooling windows in the interval ωc − g ≤ ωc,rev(Cλ) ≤ ωc + g,
whereas the non-zero affinities Xα of circuits associated with heat leaks are proportional to the coupling
constant g.

For a given choice of the system parameters, the cooling power is determined by the positive
contribution of the tricycles operating in their cooling window and the negative contribution of the
other tricycles and the circuits associated with heat leaks. The optimal coupling constant g satisfies
γα � g � ωc, a regime where the contribution of the heat leaks is very small, the tricycles cooling
windows approximately coincide and the rotating wave approximation is still valid. An example is
shown in Figure 2c. As expected, the larger contributions correspond to the tricycles with a lower
number of edges. The maximum cooling rate is slightly greater and displaced to higher frequencies
when the device is connected through the two-level wire. This effect is the result of the evaluation
of the rate functions Equation (4) at the displaced frequencies ωα ± g, and increases with the bath
physical dimension dα. However, it cannot be further exploited, as a larger g would increase the heat
leaks, and, in any case, the COP would not improve.

If we examine the system performance characteristic (see Figure 2d) a closed curve is found for
the indirectly-coupled three-level device indicating the existence of additional irreversible processes:
heat leaks, with small influence for small g, and the internal dissipation appearing when approaching
the upper limit of the cooling window. The internal dissipation results from the competition of positive
and negative heat currents associated with tricycles having slightly different values of ωc,rev(Cν) [8]
and only works for very small ωc (where the finite heat transfer rate effects dominate) and in the
interval ωc,rev − g < ωc < ωc,rev − g. These irreversible contributions can be reduced decreasing the
coupling strength g, but cannot be avoided, making the reversible limit unattainable for the device
connected through a quantum wire.

For optimal coupling constant g, the main features of the system performance results from
the tricycle contributions and can be described with a small number of circuit representatives. We
choose as circuit representatives C1 and C2, with ωc,rev(C1,2) below and above ωc,rev respectively, see
Equation (20). Their fluxes are given by

I(~C1) = D−1 det(−W|C1)
(

Wc
31Ww

43Wh
14 −Wc

13Ww
34Wh

41

)
,

I(~C2) = D−1 det(−W|C2)
(

Wc
31Ww

53Wh
15 −Wc

13Ww
35Wh

51

)
, (21)

from which the steady state heat currents of the circuit representatives Q̇R
α = Q̇α(C1) + Q̇α(C2) can be

easily obtained. The currents Q̇R
α incorporate the main features of the system performance such as the

frequency at which the maximum cooling rate is reached and the essential irreversible processes, and
might be renormalized to account for the total heat currents [31]. Figure 2d compares the performance
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characteristic of the system and its circuit representatives. For a more accurate description, or for
larger values of g, a larger number of circuit representatives, including, for example, heat leaks, might
be needed.
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Figure 2. Steady state heat currents as a function of the frequency ωc for (a) a circuit associated
with a heat leak and (b) a five-edge tricycle. The circuits are shown in the insets; (c) heat current
with the cold bath Q̇c for the three-level device connected through the two-level wire (solid line), the
three-level directly coupled with the baths (dashed-dotted line). The labeled thin dashed lines show the
contribution of tricycles with three, five and six edges. The vertical line indicates the frequency ωc,rev;
(d) performance characteristics obtained from (c) in the cooling range. The dashed line depicts the
performance characteristic of the circuit representatives C1 and C2. Each curve has been normalized
with respect to its maximum cooling rate. Parameters were chosen as Tc = 9, Th = 10, Tw = 20, ωh = 1,
g = 0.05, dα = 3 and γα = γ = 10−6 in units for which h̄ = kB = ω0 = 1.

The analysis of the non-resonant case leads to the same qualitative results, as the structure of
the graph representation of the master equation is not modified and the same simple circuits and
irreversible mechanisms are found. The main difference is the dependence of the transitions rates
Wα

ij on the detuning ∆. When γα � g � ∆, the coefficients c+ and c′− vanish and three circuits
associated with heat leaks dominate the heat currents: {1, 2, 4, 3, 1} (from the work bath to the cold
one) {1, 5, 6, 2, 1} (from the work to the hot) and {1, 3, 4, 2, 6, 5, 1} (from the hot to the cold).

4. Quantum Three-Level Device Coupled through a Two-Level System to a Work Source

The three-level device coupled with a work source modeled by a periodic classical field is the
simplest model of driven quantum thermal machines [1]. The engine efficiency is given by η = −P/Q̇h
and the refrigerator COP by ε = Q̇c/P . The operating mode of the device is determined by the
frequency of the transition coupled with the cold bath. When ωc < ωc,max − ληC, the device works
as a refrigerator, whereas for ωc > ωc,max + ληC, it works as an engine. Here, we have introduced
the coupling strength with the field λ and the engine Carnot efficiency ηC = 1− Tc/Th. At the limit
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frequency ωc,max = ωhTc/Th, an idealized device (λ = 0) would reach the engine Carnot efficiency or
the refrigerator Carnot COP, εC = Tc/(Th − Tc). However, when ωc,max − ληC < ωc < ωc,max + ληC
the operating mode of the three-level device is given by the competition between the heat currents
associated with the two manifold resulting from the splitting of the system energy levels due to the field
interaction. The competition of those heat currents is the origin of the internal dissipation preventing
the system to reach the Carnot performance in any of the two working modes [1]. In this section, we
will analyze the three-level device connected to a classical driving field through the two-level wire.
The system Hamiltonian is:

Ĥ = ĤD + ĤD,wire + Ĥwire + Ĥwire,w(t) + ∑
α=c,h

(
ĤD,α + Ĥα

)
. (22)

All these terms were already introduced in the previous section except for Ĥwire,w(t), which
describes the coupling of the two-level system with the classical field,

Ĥwire,w(t) = λh̄ [|2W〉〈1W | exp(−iωwt) + |1W〉〈2W | exp(iωwt)] . (23)

We will assume the resonant case in which the field frequency is equal to ωw = ωh − ωc. As
the Hamiltonian (22) depends on time, the derivation of the quantum master equation described in
Section 2 requires some modifications [4,32,33]. Let us define the operators Ĥ1 = ĤD + Ĥwire and

Ĥ2 = ĤD,wire + λh̄ (|1D2W〉〈1D1W |+ |2D2W〉〈2D1W |+ |3D2W〉〈3D1W | + h.c.) , (24)

where h.c. stands for the Hermitian conjugate of the preceding terms. The eigenfrequencies of Ĥ2,
Ĥ2|i〉 = ωi h̄|i〉, are ω1 = −λ, ω2 = λ, ω3 = −[g + (4λ2 + g2)1/2]/2, ω4 = [g − (4λ2 + g2)1/2]/2,
ω5 = [−g + (4λ2 + g2)1/2]/2 and ω6 = [g + (4λ2 + g2)1/2]/2. One can easily probe [33]
that the propagator associated with ĤS(t) = ĤD + ĤD,wire + Ĥwire + Ĥwire,w(t) is given by
ÛS(t) = Û1(t)Û2(t) . In the following, we assume that the Lamb shifts of the energy levels of HS can
be neglected. The coupling operators with the cold and hot baths (16) are then decomposed into

Û†
S(t) Ŝα ÛS(t) =

5

∑
i=1

∑
j>i

Ŝα
ij exp[−i (ωα + ωij) t] + Ŝα†

ij exp[i (ωα + ωij) t] , (25)

where Ŝα
ij = cα

ij|i〉〈j| and cα
ij = 〈i|Ŝα

−|j〉. With these ingredients, the Lindbland–Gorini–Kossakovsky–Sudarshan
(LGKS) generators for each bath (3) can be obtained as the summation of the terms corresponding to
the frequencies ωα +ωij, leading to the following quantum master equation in the interaction picture
under the unitary transformation associated with Û†

S,

d
dt

ρ̂I(t) = ∑
α=c,h
Lα[ρ̂I(t)] . (26)

The steady state properties can then be derived from the diagonal part of the Equation (26) in
the eigenbasis of Ĥ2 , which resembles Equation (6). Now, the steady state populations pi and energy
currents must be interpreted as the corresponding time-averaged quantities over a period τ = 2π/ωw

of the driving. The transition rates with indexes j > i are given by:

Wα
ij = |cij|2 Γα

ωα+ωij
, (27)

where the non-zero coefficients are

|c13|2 = |c26|2 =
(1− u−)2

4(1+ u2
−)

; |c23|2 = |c16|2 =
(1+ u−)2

4(1+ u2
−)

;

|c14|2 = |c25|2 =
(1+ u+)2

4(1+ u2
+)

; |c24|2 = |c15|2 =
(1− u+)2

4(1+ u2
+)

, (28)
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with u± = 2λ/[g ± (4λ2 + g2)1/2]. The remaining transition rates can be obtained using
Equations (7) and (8).

The graph representation of the master equation is shown in Figure 1c. Each pair of vertices is
simultaneously connected by two edges, one associated with the cold bath and the other with the
hot bath. The topological structure of the graph is very simple as the states 1 and 2 are only coupled
with 3, 4, 5 and 6. With this structure, only simple circuits with two or four edges can be found. We
have identified 104 circuits, 12 of them being trivial circuits and 92 contributing to the steady state heat
currents. The energy exchange between the system and the work source is described by the power
P = ∑νP(Cν), being P(Cν) = −Q̇c(Cν)−Q̇h(Cν) the contribution of each circuit.

The simplest circuits are eight two-edge tricycles Ci,j = {i, j, i}, where i = 1,2 and
j = 3, 4, 5, 6. In the following we will assume that the two-edge circuits are oriented choosing
i → j as the edge corresponding to the cold bath. The affinities can be easily calculated to yield
Xc(~Ci,j) = −h̄(ωc +ωj−ωi)/Tc and Xh(~Ci,j) = h̄(ωh +ωj−ωi)/Th. When g, λ� ωc,h, the leading term
in the affinities is proportional to the transition frequencies. The circuit fluxes (12) are given by:

I(~Ci,j) = D−1 det(−W|Cij)
(

Wc
jiW

h
ij −Wc

ijW
h
ji

)
. (29)

With this expression, the limit frequency of each circuit can be obtained imposing I(~Ci,j) = 0
to yield

ωc,max(Ci,j) = ωc,max− (ωj−ωi)ηC . (30)

When ωc,max(Ci,j) is approached from below, the circuit reaches the refrigerator Carnot COP εC,
and from above the engine Carnot efficiency ηC.

We have also identified 96 four-edge circuits {i, j, i′, j′, i}: 12 trivial circuits, 60 tricycles
(TcXc + ThXh 6= 0) and 24 four-edge circuits associated with heat leaks (TcXc + ThXh = 0). The tricycles
can be classified into two different groups, one involving circuits with two edges associated with
each bath, for which the affinities are proportional to 2ωα + (ωj + ωj′), and the other with three
edges associated to one of the baths, for which ωα + ωj − ωi. The limit frequencies for the first
group are ωc,max(C) = ωc,max− (ωj +ωj′)ηC/2 and for the second are given by Equation (30). The
circuits associated with heat leaks have affinities proportional to ωi−ωi′ or ωj−ωj′ . An example is
the circuit C9 = {1,3, 2,5, 1} shown in Figure 3a for which the affinities are Xc(~C3) = −2λh̄/Tc and
Xh(~C3) = 2λh̄/Th.

The optimal coupling constants now satisfy γα � g, λ� ωc, as the heat leaks are minimized and
the energy flows are mainly determined by the contribution due to the two-edge tricycles. Figure 3b
shows the heat current with the cold bath for a significant value of g, where the contribution of the
four-edge tricycles becomes relevant. As explained before, for the absorption refrigerator, the device
coupled through the wire reaches a larger maximum cooling rate. Although each tricycle can reach
the reversible limit, their combination lead again to internal dissipation, now working in the interval
ωc,max− f (λ, g)ηC < ωc < ωc,max + f (λ, g)ηC, with f (λ, g) = [λ+ g+(4λ2 + g2)1/2]/2, that depends also
on g.

We have found that the best choice of circuit representatives between the two-edge tricycles is
determined by the ratio g/λ: C1,4, C2,5, when g/λ < 1 and C1,6, C2,3 when g/λ > 1. For g � λ, the
system performance is well described by the uncoupled device. The performance characteristics of the
system and its circuit representatives are compared in Figure 3c,d for the two operating modes. Notice
that the engine maximum power output is reached at the minimum value of P . As expected, the circuit
representatives provide a more accurate description of the performance than the directly-coupled
device. This approximation can be further improved by including a larger number of circuits.
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Figure 3. (a) steady state heat currents as a function of the frequency ωc for the circuit shown in the
inset; (b) heat current with the cold bath Q̇c for the three-level device connected through the two-level
wire (solid line) and directly coupled to the classical field (dashed-dotted line). The labeled thin dashed
lines show the contribution due to tricycles with two and four edges. The vertical line indicates
the frequency ωc,max; (c) performance characteristics for the system when working as a refrigerator
(ωc < ωc,max) and (d) as an engine (ωc > ωc,max) for the case in (b). The dashed lines depict the
performance characteristics of the circuit representatives C1,6 and C2,3. We have fixed g = 0.25, λ = 0.05
and the other parameters are those in Figure 2.

5. Conclusions

In this paper, we have analyzed the irreversible processes in a three-level thermal device coupled
with a two-level wire connecting the system to a work bath. The coupling induces heat leaks and
internal dissipation that prevents the system from reaching the reversible limit. In addition, if the
detuning between the transitions of the three-level device and the two-level wire is too large, the
system stops working as an absorption refrigerator as the heat leaks dominate. We found similar
results in the analysis of systems in which the wire connects either the cold or the hot bath. The
additional irreversible mechanisms are proportional to the coupling constant between the device and
the wire. When the wire connects the system with a work source, the coupling induces heat leaks and
modifies the frequency interval where internal dissipation appears. The optimal values of the coupling
constants are such that γα � g, λ � ωα, which minimize the heat leaks and the interval where
the internal dissipation works. The system performance can be well described by just considering
two circuit representatives. This description may be improved incorporating additional circuits and
renormalizing their contribution to the heat currents [31].

Our results can be generalized to wires composed of a chain of two-level systems. The graph
representation of the master equation will have a larger number of vertices and edges, exponentially
increasing the number of simple circuits. However, the graph topological structure will be similar. For
example, let us consider a chain of n two-level systems connecting the device with a classical periodic
field. The corresponding graph resembles the one in Figure 1c, with 2n states connected to 2n+1 states
by two edges associated with the cold and the hot baths. Again, the most important contribution
to the heat currents comes from the 22n+1 two-edge circuits. Now, the transition rates will depend
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on the frequencies ωα + fij(λ, g, n) and the affinities Xα of circuits associated with heat leaks will be
proportional to fij. In general, the function fij, and, therefore, the frequency interval subjected to
internal dissipation, increases with n. However, for coupling constants g and λ small enough, the heat
leaks can be neglected. This same analysis applies when the system is coupled with a work bath. The
only limitation in both cases is that g must be much larger than the coupling constants with the bath
γα for the master equation to be valid.

The irreversible processes analyzed are the result of the new decay channels due to the additional
coupling term. Therefore, they are expected in any quantum device connected through quantum wires
to the environments. To avoid them would require reservoir engineering techniques [8] hindered
by the complicated system spectrum as the number of states is increased. In this work, we have
focused on the stationary regime. Although coherences and populations associated with the system
Hamiltonian become decoupled during the evolution, the wire may introduce new effects in the
transient regime [34], related to the time-dependent terms in the thermodynamic fluxes. These effects
could be explored in future work.
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Appendix A

In this appendix, we describe how to obtain all the circuits corresponding to a graph. This simple
procedure is illustrated with the three-level system in contact with a cold and a hot unstructured
bosonic baths and directly coupled with a periodic classical field. The total Hamiltonian is

Ĥ = ĤD(t) + ∑
α=c,h

ĤD,α + Ĥα , (A1)

where

ĤD(t) = ωc h̄|2D〉〈2D|+ ωh h̄|3D〉〈3D|+ λh̄(|3D〉〈2D| exp[−i(ωh −ωc)t] + h.c.) . (A2)

The bath Hamiltonians Ĥα and the coupling terms ĤD,α are described in Section 3. The quantum
master equation for this system can be obtained using the procedure described in Section 4 and the
result can be found for example in [1,35]. For convenience, we will use the eigenbasis |1〉 ≡ |1D〉,
|2〉 ≡ 2−1/2(3D〉 − |2D〉) and |3〉 ≡ 2−1/2(|3D〉+ |2D〉) of Ĥ2 = λh̄(|3D〉〈2D|+ |2D〉〈3D|). Figure A1a
shows an schematic representation of the system transitions assisted by the baths. The non-diagonal
elements of the rate matrix W are Wij = Wc

ij + Wh
ij with

Wα
12 =

Γα
ωα−λ

2
; Wα

13 =
Γc

ωα+λ

2
; Wα

21 =
Γα
−(ωα−λ)

2
; Wα

31 =
Γα
−(ωα+λ)

2
; Wα

23 = Wα
32 = 0 . (A3)

The functions Γα
±ω can be calculated using Equation (4). The graph G associated with this system

have |V| = 3 vertices and |E| = 4 edges (see Figure A1b).
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Figure A1. (a) schematic representation of the transitions due to the coupling with the cold and hot
baths, labeled by c and h respectively, in a driven three-level system; (b) in the graph G the vertices
represent the three states and the undirected edges the transitions connecting them. One of the graph
maximal trees T is shown in (c), for which the chords (dashed-dotted lines) are the edges corresponding
to the cold transitions; (d) a set of fundamental circuits {C1, C2} is then identified by adding each chord
to the maximal tree. These circuits are equivalent to the two manifolds operating in the three-level
amplifier [1].

The procedure to determine the simple circuits is based on the identification of a maximal tree of
G and its chords. A maximal tree T is a subgraph with |V| − 1 edges connecting all the vertices but
without forming any closed path. In principle, many different maximal trees can be found on a given
graph, but for this procedure it is sufficient to select any of them as the final result is independent
of this choice. A chord of a maximal tree is one of |E| − |V|+ 1 edges which are not part of it. An
example of a maximal tree and its chords is shown in Figure A1c.

A fundamental set of simple circuits [25] can be found adding each chord to the maximal tree, as
shown in Figure A1d. The number of fundamental circuits equals the number of chords, |E| − |V|+ 1.
Only for some systems, as our example, the fundamental set contains all the possible simple circuits.
Otherwise, the remaining circuits can be obtained by the linear combination of the elements of the
fundamental set

r1C1 ⊕ r2C2 ⊕ · · · ⊕ r|E|−|V|+1C|E|−|V|+1 , (A4)

with rλ = 0 or 1. The relation Cλ ⊕ Cλ′ gives a new subgraph that contains all the edges of Cλ and Cλ′

which do not simultaneously belong to Cλ and Cλ′ [25]. The result of each possible linear combination
Equation (A4) is considered only when it generates a new simple circuit.

In summary, a simple procedure to obtain the full set of circuits reads as

(i) Select a maximal tree T of G and identify its chords.
(ii) Find a fundamental set of circuits adding each chord to the maximal tree.
(iii) Obtain the remaining circuits by the linear combination of the circuits in the fundamental set.

An alternative procedure consists of identifying all the maximal trees of G and generating the
fundamental set of circuits associated with each one. The set of all simple circuits is then the union of
all the fundamental sets. For complex graphs, the number of circuits might be very large and more
efficient standard algorithms [36] can be used.
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