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Abstract: Influential users play an important role in online social networks since users tend to have
an impact on one other. Therefore, the proposed work analyzes users and their behavior in order
to identify influential users and predict user participation. Normally, the success of a social media
site is dependent on the activity level of the participating users. For both online social networking
sites and individual users, it is of interest to find out if a topic will be interesting or not. In this
article, we propose association learning to detect relationships between users. In order to verify the
findings, several experiments were executed based on social network analysis, in which the most
influential users identified from association rule learning were compared to the results from Degree
Centrality and Page Rank Centrality. The results clearly indicate that it is possible to identify the
most influential users using association rule learning. In addition, the results also indicate a lower
execution time compared to state-of-the-art methods.
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1. Introduction

Online social networks are playing an important role in our society and have created a platform
for people to communicate and express their thoughts. With the use of online social media, we have
created a way to mimic real human communication in an online environment. Facebook alone attracts
1.3 billion users with 640 million minutes spent each month on the site. Consequently, discovering
trending topics or influential users is of interest for many researchers interested in areas such as
marketing [1]. Several studies have tried to identify user influence; however, most have used Page
Rank Centrality [2,3] or Degree Centrality [3,4] based approaches to identify influential users. This
paper builds on the initial discoveries on association rule learning in social networking sites: [5].

In this article, we argue that users on Facebook groups are following each other and that it
is possible to detect influential users and predict user participation. For example, if users A, B, C
and D share common interests, there is a chance that if A, B, and C already have commented on a
topic, D will also comment on it. Therefore, this paper relates to how users perform actions (e.g.,
comments or likes) on posts in Facebook pages. In addition, we use association rule learning to
discover relationships between users in our dataset [6]. Given a list of posts from a specific domain,
we extract users’ actions, such as comments and likes. Using association rule learning on the data, we
argue that it is possible to predict if a particular user will or will not participate on a post discussion
based on the other users’ activity.

This article has three major contributions: firstly, possibilities to identify influential users using
association rule learning are presented; secondly, we present time performance of well-known
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methods for ranking users in social media together with our approach using association rule learning;
and finally, we show how association rule learning can be used to predict user participation.

For evaluation, several experiments are conducted, which include building association rules that
can be used to predict if a specific user will be active in a particular post. The prediction is done based
on the activeness of users within current posts. In addition, an extended social network analysis is
conducted to verify the findings of influential users.

The paper is organized as follows: in Section 2, related work is discussed; in Section 3, association
rule learning and the evaluation metrics are discussed; in Section 4, the dataset is presented; and
finally, the results are presented in Section 5 and discussed in Section 6.

2. Related Work

Online social networks and social media analysis are popular research areas in contemporary
network science. The main focus in social network research is on link prediction [7] and social
connection prediction [8]. Different teams around the world also work on: (i) personality prediction
for micro blog users [9], (ii) churn prediction and its influence on the network [10,11], (iii) community
evolution prediction [12,13], (iv) using social media to predict real-world outcomes [14], (v) predicting
friendship intensity [15,16], (vi) affiliation recommendations [17,18], and (vii) sentiment analysis and
opinion mining [19] .

Other popular areas of research focus on popularity prediction in social media based on
comment mining [20], predicting information cascade on social media [21], and predicting patterns of
diffusion processes in social network [22]. An important factor is often the user’s role in the different
processes. As such, identifying influential users are of interest to understand and/or affect the spread
of information, e.g., viral marketing. The ability to identify influential users might also affect the
research into other areas of related work (e.g., ii or iii).

Research into detecting influential users on Twitter indicates that, while a large amount of
followers seem to be present among influential users, predictions of which particular user will be
influential is unreliable [23]. Depending on the social network, how to define influence differs, e.g.,
influence on Twitter might be defined by retweets or mentions, while, on Digg, votes generated are
used to measure influence [1,24,25]. While some initial research has been done using clustering
algorithms to identify top users, based on influence features, e.g., likes and replies, evaluation is
lacking [26]. Similarly, linear regression has been used to identify influential (categorical) users based
on influence features [25].

While some research on identifying influential users use learning based approaches, another
popular approach to identifying influential users is the Page Rank algorithm or adaptions of the Page
Rank algorithm [27–29].

Nancy et al. [30] explore the association rule between a course and gender in the Facebook 100
university dataset. This was performed to discover the influence of gender in studying a specific
course. Yu et al. [31] introduce the scheme for association rule learning of personal hobbies in social
networks, while Schmitz et al. [32] tackle the problem of mining association rules in folksonomies and
try to find out how association rule learning can be applied to analyze and structure folksonomies.

Initial research used association rule learning to identify influential users and predict user
participation in online social networks [5]. Association rule learning has been previously used in
social network and social media analysis.

While online social network analysis is popular, there is, according to our review, a
lack of research on using association rules for predicting user participation in online social
media discussions.

3. Association Rule Learning

Association rule learning is a machine learning technique that aims to find out how one item
affects another by analyzing how frequently certain items appear together in a specific dataset. This
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is done by using two criteria, namely, support and confidence. Support indicates the frequency of such
items, while confidence indicates how many times those rules in the whole dataset are correct. An
example of an association rule is the following: “Ninety-percent of transactions that purchase bread
and butter also purchase milk” [33].

As stated in Section 1, we are trying to assess user participation in a post based on previous
interactions with other users on common posts within one page. We assume that if user A participates
in most of the posts where user B is participating as well, there is a high chance of A participating
in a new post where B is already active, either because participation of B influences A to participate
and/or they both have similar interests. The method of matching items in different transactions is
called association rule learning. We apply association rule learning to the domain of social media
where we model the data as follows. Items correspond to users on Facebook and transactions
correspond to posts. A user is considered to be active and part of the transaction as an item if the
user comments on a post.

From the selected dataset described in Section 4, we firstly count the frequency of all posts where
A and B are active, respectively. Secondly, we count all posts where A∪ B both participate. This gives
us two measures, length (the number of participating users in the set) and frequency (the sum of all
posts where the users are participating). These two steps can be summarized as building frequent
item-sets ({I}). Finally, all possible rules from the computed {I}s are generated. In this step, we also
compute the evaluation metrics described below.

3.1. Evaluation Metrics

Several metrics exist that will help understand the learned association rules. The first measure,
Support, shows how big of a portion of {D} the item-set covers. It is calculated by dividing the
frequency of a given item-set, {I}, with the total number of transactions (posts) in our dataset,
{D}, or the number occurrences of {A, B} divided by the number of items in {D}. As shown in
Equation (1):

support
(
{A, B}

)
=
{A, B}
|D| . (1)

The second measure, Confidence, indicates the proportions of transactions that contain {A, B}
that also will contain C in the set of transactions in {D}, given the following rule {A, B} ⇒ C.
Confidence is calculated as shown in Equation (2). Say that {A, B, C} participates in four common
posts and {A, B} participates in eight posts in total. This leads to 4/8 = 0.5, or the confidence that C
will participate on a post where A and B already are active is 50 %:

confidence
(
{A, B} ⇒ C

)
=

support({A, B, C})
support(A, B)

. (2)

The third measure, lift, shows the ratio of interdependence of the observed values. As we see
from Equation (3), if lift is 1, it implies that the rule and the items are independent from each other.
However, if lift is > 1, the lift indicates the dependency of our item-sets:

lift
(
{A, B} ⇒ C

)
=

support({A, B, C})
support({A, B})× support({C}) . (3)

Finally, conviction is the ratio of the expected support that {A, B} occurs without C as shown
in Equation (4). Notably, conviction is infinite (due to division with zero) when the confidence is 1:

conviction
(
{A, B} ⇒ C

)
=

1− support({A, B})
1− confidence

(
{A, B} ⇒ C

) . (4)

The described measures enable understanding of the learned rules in {D}, where higher
numbers of all four measures indicate that the learned rule has relevance for prediction.
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3.2. Usage of the Eclat Algorithm

To build association rules from our dataset, we evaluated several implementations. Agrawal
and Srikant [34] presented the Aprori algorithm, which was proven to be an efficient method for
association rule learning. However, this algorithm is proven to have efficiency issues in large
datasets [35], and the identified implementation for Python is very slow (considering that in our
dataset it was not possible to get a result within a reasonable time). Hence, other algorithms were
tested, in particular, the Eclat algorithm [36]. The Eclat algorithm quickly discards items with low
frequency by considering a minimum number of associations as input parameters. We have found
that a reasonable trade-off between resolution and speed is four, in our dataset, where a lower
frequency of items is ignored. The use of four as a lower bound was identified empirically by starting
at the number of comments divided by the number of users and then calculating the item-sets with
decreasing threshold until the execution speed reached 10 s. At 10 s, all available RAM memory in our
experiment environment was exhausted, and we stopped the execution. For one of the investigated
pages, we saw that with a threshold of five, we can generate 4230 item-sets in 350 ms, and with a
threshold of four, we can generate 9117 item-sets in 600 ms. A threshold of three fills up available
resources and never completes the calculations.

4. Data Model

The data used in this study have been obtained from the crawler described by
Erlandsson et al. [37]. This crawler gathers complete posts from Facebook. In this context, the term
complete, stands for posts that contain all likes and comments created up to the crawling time as
well as the data about the users who have created them. Our current dataset, captured from public
pages and groups on Facebook, consists of over 56 million posts, 560 million comments and 7.3 billion
likes made by 820 million Facebook users. The crawled data was parsed and made available from an
SQL database, structured as described in [38], making all fields needed for our task available. In
this study, we assume that the investigated posts will not get any new comments. We simplify the
dynamics of social media by saying that the posts we are investigating were “dead” when the data
was collected, in which the term of dead posts refers to posts that no longer attract attention, new
comments, or likes.

This study is limited to only active users. Thus, we exclude posts with less than 20 comments
and users who had less than five comments, as they are considered to be occasional visitors and not
real page participants.

Data Selection

We have sampled 195 pages from our dataset, varying in terms of the number of users, posts,
comments and user activity to make the sample of Facebook data as broad and as diverse as possible.
Despite the fact that we have calculated the rules using a server with 144 GB of RAM memory and a
24 core processor, we could not calculate the rules for the biggest pages (44 of them), thus we had to
remove them from our dataset. An example of such a page is Fox News with 837,176 users 4485 posts,
6,967,304 comments, and a lifetime of 2034 days (almost six years). An additional 43 pages had to
be removed because they were too small, i.e., having less than 10 posts with more than 20 comments
and/or less than 10 users with more than five comments. After the preprocessing, we still had 108
pages ranging from 152 to 675,200 active users, from 18 to 161,264 posts, and from 577 to 1,340,730
comments. Table 1 presents the descriptive statistics of this dataset.

For the initial results, the page [39] has been selected. This page was selected based on the
following properties: it is active, it has a high number of users, and it is political with a biased user
group (most of the users have positive perceptions of the Occupy movement). It was also selected as
it is a page in the median range of the complete dataset with respect to the number of active users,
2443, and active posts, 610.
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Table 1. Filtered descriptive statistics of the dataset of 108 pages.

Type Mean Std. Min Q1 Median Q3 Max

Users 69,678 130,564 152 4282 17,995 62,194 675,200
Posts 7431 19,329 18 784 2157 5758 161,264
Comments 147,721 264,711 577 7886 33,437 133,421 1,340,730

5. Experiments and Results

To verify the findings, several experiments were executed. These experiments were firstly
performed on the page OccupyTogether, and were extended to the whole dataset described in
Section 4 for verification of the results. First, a comprehensive experiment of association rule learning
was conducted. Secondly, the learned rules were evaluated with respect to prediction accuracy of
user participation using a training test split (80/20). Finally, social network analyses for each page
were performed to verify and evaluate ranked users identified as influential by the first experiment.

5.1. Item-Sets and Rules

Using the methods described in Section 3.2, an experiment was performed to create frequent
item-sets and build association rules for these sets. The resulting frequent item-sets are depicted in
Figure 1 for the page OccupyTogether. This figure illustrates frequency, or the number of occurrences
for each item-set, with respect to the length of elements, or the number of collaborating users. The
main scatter-plot illustrates how the frequency decreases when the number of users (length) increases,
a natural feature of frequent item-sets. Figure 1 also depicts the distribution as histograms. The top
histogram, in green, shows the distribution of frequency and, the histogram on the right hand side, in
red, shows the distribution of the length of the learned item-sets. The histogram to the right (in green)
illustrates a significant density of user collaboration that occurs at a low frequency, between 1 and 10.
This is natural as the frequency of user participation decreases for most of the users. Noticeable on
the length distribution (in red) is the fact that the density is higher for two and three participating
users than for just one. This is because there exist more combinations of users than the number of
single users.
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Figure 1. Combined plot of number of occurrence of each item-set (Frequency) with respect to
number of users in the rule (Length). The upper and right axis illustrates histograms of the
respective distributions.
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Association rules supporting the hypothesis of user participation based on other users’ activities
were computed from the calculated frequency item-sets. This resulted in 55, 166 rules for the
page [39]. Table 2 shows descriptive statistics for all the computed rules. It can be noted that although
the confidence median and mean is low, the high level of lift indicates a high dependency of the
learned rules, i.e., the computed rules show that our hypothesis is valid and users tend to follow each
other. Since our dataset is big, with many users and many posts, a low support mean and median is
expected. Moreover, it is noticeable that users are not active in all posts but more on a subset of them.

Table 2. Descriptive statistics of 55, 166 computed rules.

Evaluation Metric Mean Median Std.

Support 0.05 0.02 0.07
Confidence 0.43 0.33 0.33
Lift 18.97 9.38 24.64
Conviction 1.83 1.32 1.18

Figure 2 depicts the distribution, Confidence, Lift, Conviction and Frequency respectively in our
learned model. The figures are violin-plots, which illustrate the kernel density (shown as height and
depth) in addition to normal box-plots with outer quartiles as thin lines, inner quartiles as bold lines
and the mean as a white dot.

Figure 2a shows a dense distribution of support at 0.025 and, interestingly, a higher density at
0.20. The confidence distribution is illustrated in Figure 2b, in which we obtained a dense distribution
around 1.0, i.e., there are a significant number of learned rules with high confidence, thus, the rule is
accurate. Figure 2c shows that the lift measure has a heavy tail distribution. In addition, Figure 2d
illustrates a distribution of conviction to be concentrated between zero and five.

0.05 0.00 0.05 0.10 0.15 0.20 0.25 0.30

(a)

0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

(b)

50 0 50 100 150 200

(c)

5 0 5 10 15 20

(d)

Figure 2. Distribution of values in learned association rules. (a) support distribution; (b) confidence
distribution; (c) lift distribution; (d) conviction distribution.

Table 3 presents learned rules in three sections. Each section is sorted firstly, by Confidence,
Lift and Conviction, respectively, and secondly by the number of supporting users. The rule
{u429, u578} ⇒ {u19} should be interpreted as user 429 together with user 578 influencing the
participation of user 19. Notably, when sorting by confidence and lift, the conviction is infinite (this is
due to the confidence of 1.0) which is shown in how conviction is calculated in Equation (4). All of the
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rules in Table 3 have high confidence and show high dependency (via the lift metric), i.e., the top five
rules sorted by either Confidence, Lift or Conviction are relevant for predicting user participation.

The rule, {u580, u861, u1352, u1466} ⇒ {u896, u1291} presented in Table 3 with a confidence of
1.0 and a lift of 152.5, strongly indicates that the left-hand-side user set influences the right-hand-side
user set, i.e., when the left-hand-side user set is active on a post, the right-hand-side user set also will
be active. A confidence of 1.0 means that 100% of the posts where the left-hand-side user set is active,
the right-hand-side user set also will be active. A lift value of 152.5, in this specific rule, shows that
the right-hand-side user set is dependent on the left.

Table 3. Top 5 rules sorted by different metrics for the Facebook page OccupyTogether.

Rule Confidence Lift Conviction

Confidence
{u179, u538, u580, u938, u992, u1090} ⇒ {u11} 1.00 10.17 ∞
{u11, u31, u80, u179, u992, u1093} ⇒ {u580} 1.00 4.80 ∞
{u11, u31, u179, u580, u992, u1093} ⇒ {u80} 1.00 9.53 ∞
{u11, u179, u538, u580, u938, u953} ⇒ {u429} 1.00 4.84 ∞
{u179, u1094, u1096, u1113, u1171, u1352} ⇒ {u1378} 1.00 101.67 ∞

Lift
{u580, u861, u1352, u1466} ⇒ {u896, u1291} 1.00 152.50 ∞
{u580, u861, u1291, u1352} ⇒ {u896, u1466} 1.00 152.50 ∞
{u31, u80, u179, u580} ⇒ {u11, u992, u1093} 1.00 152.50 ∞
{u19, u64, u673, u685} ⇒ {u54, u581} 1.00 152.50 ∞
{u580, u861, u1291, u1466} ⇒ {u896, u1352} 1.00 152.50 ∞

Conviction
{u429, u578} ⇒ {u19} 0.95 3.93 16.66
{u920} ⇒ {u179} 0.95 4.27 16.32
{u929} ⇒ {u179} 0.95 4.26 15.54
{u580, u1093} ⇒ {u179} 0.94 4.22 13.21
{u580, u938} ⇒ {u179} 0.94 4.22 13.21

Considering rules where at least two separate users affect another user with a confidence of
> 95%, we can reduce the 55, 166 rules to 4959 rules, which have a median lift of 4.80 and a median
support of 0.21. In other words, we have close to 5000 rules that strongly indicate that users are
affected by each other when it comes to participating in online social networks. From learned rules,
we can also identify influential users, or the users that exists on the left side of multiple rules as
presented in Section 5.3.

The learned rules of the complete dataset are presented in Table 4, after filtering out rules with
Confidence > 95%.

Table 4. Descriptive statistics of learned rules with of Confidence > 95% from the complete dataset.

Evaluation Metric Mean Std. Min Q1 Median Q4 Max

No. of rules 33,426.89 87,457.39 2.00 151.00 2351.00 32,053.50 724,510.00
Confidence 1.00 0.00 0.97 1.00 1.00 1.00 1.00
Lift 38.06 42.14 1.41 10.86 25.34 47.91 217.53
Conviction 19.39 4.61 5.88 18.07 19.79 20.70 29.46

5.2. Verification of Learned Rules

To test how well association rule learning works for predicting user participation, a split, learn
and test pattern have been used. For the page in question, we sort all comments based on creation
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time and use the first 80 % for learning and the last 20 % of the posts for testing. The learning part
is performed as described in Section 3.2, and the testing part is carried out as follows: for each post
with comments in the testing set, the active users are considered by finding rules that affect the users
with respect to temporal order. Say that user D is commenting on a post (in the testing set), and there
exists a rule saying that A, B & C affect user D, this rule will only be considered to be valid if all of
A, B & C have made at least one comment each before D makes a comment. Of the 787 intersecting
users between the learning and test sets, it is possible to predict 113 (14.36 %) users, making use of
5310 (9.63 %) of the original 55,166 rules.

To calculate accuracy and precision of learned rules, we have defined true/false positive/negatives as
follows: A true positive is a rule that predicts user activeness, and the user is active. A false positive
is when a rule predicts user activeness, but the user is not active. A true negative is when no user is
active, and there is no rule. A false negative is when a user is active, but there is no rule. An example
of all four classes are shown in Table 5.

Table 5. Example of false positives and false negatives. Capital letters indicates users and P1−4

corresponds to different posts.

Example rule: {A, B, C} ⇒ {D}
P1 = {A, B, C, D} −→ true positive
P2 = {A, B, C} −→ false positive
P3 = {F, G, H} −→ true negative
P4 = {D, E} −→ false negative

For the page OccupyTogether, an accuracy of 0.886, precision of 0.291, and recall of 0.071 was
calculated, with a testing time of 9175 s. This result is quite low since all learned rules are being
considered. To portray a more realistic view of user influence, the rules were limited to only consider
rules with confidence > 95 % and rules affecting a single user. Rules affecting more than one user are
already covered by the rules affecting a single user, reducing the number of learned rules from 46,170
to 4469 and the execution time down to 890 s. Showing an accuracy of 0.927, precision of 0.794, and
recall of 0.017. The testing was also performed on the rest of the pages and the results are reported
in Table 6. The recall is low because there are many false negatives (calculated with TP/(TP+FN)).
The relatively high accuracy is then achieved with a relatively high number of true negatives used
in (TN+TP)/(TP+FP+TN+FN). In general, the unfiltered rules show a lower accuracy, precision, and
recall compared to the filtered rules. Furthermore, the complexity of the rule set is reduced by filtering
the rules, indicating the beneficial use of rule filtering. The rules set was on average reduced by
approximately 93%. A less complex rules set could be easier to test and also to understand.

Table 6. Testing of learned rules based on a 80/20 % learn and test split. SD stands for standard deviation.

Evaluation Metric OccupyTogether OccupyTogether a All pages (SD) All pages a (SD)

No. of rules 46,170 4469 99,237 (248,968) 7092 (14,965)
Accuracy 0.886 0.927 0.858 (0.135) 0.906 (0.128)
Precision 0.291 0.794 0.286 (0.287) 0.633 (0.343)
Recall 0.071 0.017 0.138 (0.193) 0.165 (0.258)

a Reduced set of rules limited by having Confidence > 95% and only affected one user.

5.3. Identifying and Verifying Influential Users Using Social Network Analysis

The state-of-the-art method for identifying influential users is social networks analysis (SNA),
using the methods Page Rank Centrality [3] or Degree Centrality [40] for ranking users. It is of
interest to see how well influential users identified using association rule learning (ARL) match
the state-of-the-art techniques. Therefore, we have conducted an SNA of our pages as follows: for
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each page, we have created social networks in such a way that two users are linked together if they
commented on the same post: next, for all social networks, Page Rank [3] and Degree [40] measures
have been calculated; and, based on those measures, two ordered (descending) user lists were created,
one for each of them.

We have created a similar list for the most influential users from association rule learning. Most
influential users are defined as the top-k users from the left side of the rules, with a confidence level of
greater than 95 %, that affect other users to comment on posts. In the most influential users list, users
are ranked based on how often they appear on the left side of the rule, e.g., if user A has appeared
three times in all rules and users B, C and D have appeared one, five and four times, respectively, and
the list will look as follows: [C, D, A, B].

Finally, we compared the most influential users identified from association rule learning with
top users according to the degree and Page Rank. Comparison between association rule learning,
Degree and Page Rank are considered the top 1 %, 5 %, 10 %, 25 %, 50 %, 75 %, and 100 % of the most
influential users identified by association rule learning, respectively. The comparison was made as
an intersection of two sets created from two lists. For example, if the top four users are [A, B, C, D]

for Degree and [F, A, C, D] for association rule learning, the intersection of those two sets will be
[A, C, D] and the size of that set is three, and, in this case, the similarity is 75 %.

The example of the SNA analysis for one of the pages [39] is presented in Table 7. The table
shows that for the top 209 users on the page OccupyTogether (the 50 % most influential users from
association rule learning), there is a similarity of 95 % between the users ranked by Page Rank and
Degree. When considering users ranked from association rule learning, there is a similarity of 51 %
compared to Degree and 53 % compared to Page Rank.

Table 7. Comparison of similarity of influential users for the page OccupyTogether.

Percent of Top Users Users Degree ∩ ASR Page Rank ∩ ASR Page Rank ∩ Degree

1 % 4 0.75 0.75 0.75
5 % 20 0.45 0.45 0.95
10 % 41 0.488 0.512 0.927
25 % 104 0.462 0.49 0.923
50 % 209 0.512 0.526 0.947
75 % 313 0.502 0.556 0.92
100 % 418 0.517 0.565 0.928

From the SNA analysis, we detected yet another interesting insight into users’ behavior in social
media pages. We noticed that 10 % of users with the highest value of degree measure, created an
average of 82.64 % posts, and an additional 10 % of the most important users add only four more
percentage points of posts, i.e., 20 % of users with the highest value of the degree measure, create
86.84 % posts on average. In Figure 3, the distribution of that phenomena is depicted for all pages.

As described above, the three different approaches were used to detect the most influential
users. The intersection between the different user lists were then calculated to evaluate how much
each method differs from the others. To detect whether any statistical significant difference exists,
Friedman’s test was used with the Nemenyi post hoc test. Friedman’s test is a non-parametric
statistical test that ranks the methods over datasets [41]. When a normal distribution cannot be
assumed and several datasets are used, Friedman’s test has been suggested as preferable when
comparing algorithms [42]. The Nemenyi post hoc test evaluates between which intersections a
significant difference exists. The means and standard deviation for the intersections of several
posts are presented in Table 8. A low standard deviation indicates that the expected value, i.e., the
intersection between two sets, is close to the mean. However, there might still exist results which are
not close to the mean, e.g., as seen in Table 7.
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Figure 3. Distribution of posts created by top users over 108 sampled pages.

The average shows that, regardless of the size of the intersection, Page Rank ∩ Degree has
more users in common than the other intersections, while Page Rank and Degree, considered
state-of-the-art, have a high amount of users in common (see Page Rank ∩ Degree in Table 8), the
rule based learner has fewer users in common with both the Page Rank (Page Rank ∩ ARL) method
and the Degree method (Page Rank ∩ Degree).

Table 8. Average intersection measurement and average rank using Friedman’s test.

Percent of Top Users Degree ∩ ASR (SD) Page Rank ∩ ASR (SD) Page Rank ∩ Degree (SD)

1 % 0.092 (0.173) 0.131 (0.227) 0.822 (0.238)
5 % 0.081 (0.145) 0.095 (0.158) 0.805 (0.251)
10 % 0.115 (0.158) 0.133 (0.173) 0.830 (0.219)
25 % 0.181 (0.188) 0.194 (0.198) 0.836 (0.167)
50 % 0.231 (0.212) 0.257 (0.228) 0.848 (0.129)
75 % 0.266 (0.243) 0.286 (0.249) 0.868 (0.119)
100 % 0.286 (0.261) 0.304 (0.264) 0.886 (0.114)

Average Rank 3 2 1

Friedman’s test shows that there are some significant differences between the intersects,
χ2 = 9.210, d f = 2, p = 0.01. The Nemenyi test result (see Table 9) demonstrates that the Page
Rank ∩ Degree set performs significantly better than the Degree ∩ ARL set at a confidence level of both
0.95 and 0.99.

Table 9. Paired rank comparison of intersections using the Nemenyi post hoc test. The upper triangle
shows difference between intersections. Lower triangle shows pairs with statistical significance.

Compared Measures Degree ∩ ARL Page Rank ∩ ARL Page Rank ∩ Degree

Degree ∩ ARL - 1.00 2.00
Page Rank ∩ ARL - - 1.00
Page Rank ∩ Degree ∗, ∗∗ - -

∗ significant at p < 0.05, CD: 1.253; ∗∗ significant at p < 0.01, CD: 1.557.
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The three different methods were investigated to identify influential users. The amount of time
needed to identify influential users differs between the methods. This is shown in Table 10. Rule
based learning is suggested to be the fastest method, and Page Rank the slowest. This might be
explained by Page Rank being a global measure compared to the Degree, which is a local measure.
The execution time of the different methods with the confidence intervals are also presented in
Figure 4, where intuitively it would seem that the rule based learner has a significantly lower
execution time than the other methods.

Table 10. Mean execution time for ranking users.

Method Mean Std.

Degree 329.135 (2345.996)
Page Rank 633.152 (4602.607)
ASR 9.033 (22.497)
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Figure 4. Execution time for different social network analysis methods.

Whether there is any statistical significant difference is evaluated using a Kruskal–Wallis test
followed by a pair-wise Wilcoxon post hoc test [41]. The Kruskal–Wallis test is used to see if there is
a significant difference between any of the methods, and the post hoc test is used to detect between
which methods the differences exist. The Kruskal–Wallis test detected a significant difference between
the methods (χ2 = 6.626, d f = 2, p < 0.05). The Wilcoxon post hoc tests showed a significant difference
between Rule based and Degree (p < 0.05, w = 14130). No other statistical significant differences
were found. While there exists a large difference in mean, there is no detectable significant difference
between the Association Rule based method and Page Rank(p = 0.054, w = 13704). This might be
due to the high standard deviation.

6. Discussion

Users within online social networks create a large amount of generated data in the form of
interactions (comments and likes). Not enough attention has been put on the analysis of how users
influence each other and how to predict the behavior of users within Facebook groups. In this paper,
we have collected a significant amount of user data and then by using association rule learning,
implemented and examined how users influence each other. Based on the results and analysis, we are
able to determine to what extent users influence other users to participate and interact in new groups.

To verify the results from the page OccupyTogether, an additional 195 pages were sampled to
verify our assumptions. These pages were reduced to 108 due to size constraints. Arguably, pages
that were too large could have been processed by limiting the time span, i.e., instead of considering
all six years of the page, a time span of the latest six months could have been considered. Association
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rules were computed for each page in our dataset. For association rules with confidence > 95%, the
mean was 33, 426.89 (sd = 87, 457.39), and a median of 2351 was found for the number of rules.

The computed rules were tested resulting in an average of 0.913 (sd = 0.115) for accuracy,
0.614 (sd = 0.340) for precision, and 0.141 (sd = 0.256) for recall when predicting user activity
on a post. In other words, it is possible to predict a subset of users’ future participation with
high correctness.

The results also indicate that influential users can be identified using association rule learning.
That is, users on the left-hand-side, in a rule with high confidence and high lift, are influencing
users on the right-hand-side to participate in the conversation. These results have been verified
and compared with the traditional network analysis methods, Page Rank Centrality and Degree
Centrality. Showing that at best ∼30% of the users ranked using association rule learning overlap
with the users ranked using traditional methods.

Interestingly, association rule learning are magnitudes faster in execution time for ranking users
than other methods. Another finding related to the ranking of users is that we see no significant
difference between ranked influential users based on Page Rank or Degree. However, we show that
Page Rank is a more time consuming algorithm.

The main disadvantage of association rule learning is the fact that we cannot extract rules for
the biggest pages in our dataset. We have not shown in this paper that association rule learning is
better/or worse than other approaches. However, it was not the point of our research. Since there
is no ground truth, it is not possible to say which approach is better (or worse). Our objective was
to present a different approach for identifying influential users and leave the final decision of which
approach to use to the researcher.

Furthermore, from the list of influential users, presented in Section 5.3, it is also possible to
limit the size of the item-set. This will result in an increasing speed when building rules without a
significant decrease in quality of the rules. As a validation threat, information on Facebook is filtered
by a secret algorithm. This poses a potential validity threat to our results as users are presented posts
filtered by the algorithm. For example, a reason for a user not commenting on a post might be due to
visibility (the filtering algorithm is not presenting the post to the user) rather than by topic.

7. Conclusions

This article presents four contributions. Firstly, insights on user behavior on public pages on
Facebook indicates that the top 10% and top 20% of users corresponds to a vast majority of the content.
Secondly, it is possible to identify influential users using association rule learning. The results indicate
no statistically significant difference between our rule based method compared to Page Rank. Thirdly,
execution times of well known methods for ranking users in social media together with our approach
using association rule learning are investigated. The results suggest that rule based ranking of users
has lower execution time compared to state-of-the-art methods, 9.0 vs. 633.1 and 329.1 seconds
on average. Finally, the article verifies how association rule learning can be used to predict user
participation in social media pages on Facebook. The results indicate an average prediction accuracy
of 0.913 (sd = 0.115) for the association rule learning approach.

For future work, it would be interesting to investigate rule creation with a time series perspective
of the data e.g., using a sliding window approach. Additionally, methods to investigate a subset of
users for rule creation need to be investigated.
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