
entropy

Article

Fractal Information by Means of Harmonic Mappings
and Some Physical Implications
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Abstract: Considering that the motions of the complex system structural units take place on
continuous, but non-differentiable curves, in the frame of the extended scale relativity model
(in its Schrödinger-type variant), it is proven that the imaginary part of a scalar potential of
velocities can be correlated with the fractal information and, implicitly, with a tensor of “tensions”,
which is fundamental in the construction of the constitutive laws of material. In this way, a specific
differential geometry based on a Poincaré-type metric of the Lobachevsky plane (which is invariant
to the homographic group of transformations) and also a specific variational principle (whose field
equations represent an harmonic map from the usual space into the Lobachevsky plane) are generated.
Moreover, fractal information (which is made explicit at any scale resolution) is produced, so that the
field variables define a gravitational field. This latter situation is specific to a variational principle in
the sense of Matzner–Misner and to certain Ernst-type field equations, the fractal information being
contained in the material structure and, thus, in its own space associated with it.

Keywords: fractal information; fractal entropy; variational principle; mapping; economy;
econometrics; management; economic statistics

1. Introduction

Complex systems are a very favorable medium for the appearance of instabilities [1,2].
These instabilities imply both chaos through different routes (intermittencies, quasi-periodicity,
cascade of period-doubling bifurcations, sub-harmonic bifurcations, torus breakdown) and self-structuring
through the generation of complex structures [3–5]. According to the classical concepts, all theoretical
complex systems models (fluid models, kinetic models, etc.) assume that the dynamics of the
complex system structural units occur on continuous and differentiable curves, so that they can be
described in terms of continuous and differentiable motion variables (energy, momentum, density, etc.).
These motion variables are exclusively dependent on the spatial coordinates and time. In reality,
the complex systems dynamics proves to be much more complex, and the above simplifications cannot
be expected to explain all of the aspects of the complex systems dynamics. However, this situation
can still be standardized if we consider that the complexity of complex system interaction processes
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imposes different time resolution scales, while the evolution complex systems patterns lead to different
degrees of freedom.

From the above-mentioned arguments, it results that the explanation of the complex systems
dynamics can be based on the assumption that the motions of the complex system structural
units take place on continuous, but non-differentiable curves (fractal curves), since, according to the
procedures [6–9], only a fractal curve is dependent on the scale resolution. Moreover, according to the
methodology from [10], through the dynamics of special topologies, which can implement evolution
patterns in complex systems, it can lead to various degrees of freedom. Such an assumption can
be sustained by a typical example, related to the collision processes in complex systems: between
two successive collisions, the trajectory of the complex systems structural units is a straight line that
becomes non-differentiable at the impact point. Considering that all of the collision impact points form
an uncountable set of points, it results that the trajectories of the complex systems’ structural units
become continuous, but non-differentiable curves.

Since the non-differentiability (fractality) appears as a fundamental property of the complex
systems dynamics, it seems necessary to construct a corresponding non-differentiable complex systems
physics. We assume that the complexity of interactions in the complex system dynamics is replaced by
non-differentiability (fractality). This topic (fractal motion) was systematically developed using either
the scale relativity theory [6,7] or the extended scale relativity theory, i.e., the scale relativity theory in
an arbitrary constant fractal dimension [8,9,11].

Some important consequences result [8,9,11]:

(i) The fractal curves (the trajectories of the complex system structural units) are explicitly scale
resolution dependent, i.e., their lengths tend to infinity when the scale resolution tends to zero.

(ii) The complex system dynamics is described through fractal variables, i.e., mathematical functions
depending on both the space-time coordinates and the scale resolution, since the differential time
reflection invariance is broken.

(iii) The differential of the spatial coordinate field is expressed as a sum of two differentials, one
of them being scale resolution independent (differential part) and the other one being scale
resolution dependent (fractal part).

(iv) The non-differentiable part of the spatial coordinate satisfies a fractal equation.
(v) The differential time reflection invariance is recovered by means of a complex operator

(non-differentiable operator). In particular, by applying this operator to the spatial
coordinate field, it results a complex velocity field, the real part being differentiable and scale
resolution independent, and the imaginary one is fractal and scale resolution dependent.

(vi) The explanation of the complex operator by means of a generalized statistical fluid-like description
(fractal fluid) and its implementation as a covariant derivative (with the status of motion operator
in the analysis of complex system dynamics) are given.

The following results are obtained [8,9,11,12]:

(a) The acceptance of a scale covariance principle implies, by applying the covariant derivative to
the complex velocity field, the equations of the structural unit geodesics of the complex system.

(b) For irrotational motions of the fractal fluid, a case in which the complex velocity field is generated
by a complex scalar field, the geodesics equation reduces to a fractal Schrödinger-type equation.
Then, the deterministic trajectories are replaced by a “collection of potential routes”, so that both
the concept of “definite position” is replaced by that of an ensemble of positions having a definite
probability density, and the concept of “particle” (structural units of the complex system) is
substituted with the geodesics of the Schrödinger-type themselves.

In such a frame, concepts, such as fractal entropy, fractal information, informational fractal
entropy, etc., and some implications of these concepts are given [11,12].

In this paper, the role of the fractal information in the generation of constitutive laws of material,
of its own differential geometry, of a variational principle, etc., at any resolution scale are analyzed in
the extended scale relativity theory framework [8,9,11,12].
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2. Constitutive Laws of Material by Means of Fractal Information

Let us consider, for now, from an abstract position of view, a complex system that is described
by a probability density as a function of position r, time t and scale resolution dt, ρ(r, t, dt), normal to
a unit as required: ∫

D
ρ(r, t, dt)dr = 1 (1)

where D is the spatial expansion domain of the considered complex system.
The extended scale relativity theory formalism states that there is usually a complex wave

function, Ψ(r, t, dt), which describes the complex system dynamics. Specifically, the function Ψ is
a solution of the Schrödinger-type equation (see Appendixes A, B and C, in particular from Appendix
C and [8,9,11]):

− 2mA2∆Ψ + V(r, t)Ψ = 2imA
∂Ψ
∂t

, A = λ(dt)(2/DF)−1 (2)

where V(r, t) is a potential of the forces that act on the complex system, m is the rest mass of the
”structural unit”, λ is a coefficient associated with the fractal-non-fractal transition and DF is the fractal
dimension of the motion curve. For DF, any definition can be accepted (Kolmogorov fractal dimension,
Hausdorff–Besikovici fractal dimension [10,13], etc.), but once such a definition is accepted for DF,
it has to be constant over the entire dynamics analysis. Let us note that both Equation (2) and the
potential are largely working assumptions that result, on the one hand, from the normal development
of the dynamic systems [6,7] description and, on the other, from comparing the results obtained
through them with the experiment.

The wave function Ψ is related to the probability density ρ through:

ρ(r, t, dt) =| Ψ(r, t, dt) |2 (3)

We note that in [11], we have defined through Equation (3) both the fractal entropy concept in
the form:

SQ = ln ρ(r, t, dt)

and also that of fractal information:
IQ = − ln ρ(r, t, dt)

We ask the following: taking into consideration the probability density ρ(r, t, dt) and the fractal
setup given by Equations (2) and (3), what conditions must ρ(r, t, dt) meet in order to satisfy the latter?

In order to define this conditions, let us observe that from Equation (3), the most general form of
the function can be deduced, in such a way that Equation (3) is always satisfied:

Ψ(r, t, dt) = R(r, t, dt) · eiS(r,t) (4)

where R =
√

ρ is an amplitude, admitting for the square root the arithmetical (positive) determination
and S is a phase. Starting from Equations (2) and (4), differential relations and easily recognizable
quantities from a hydrodynamical position of view will be highlighted, their defining being the
necessary condition for the viability of the setup given by Equations (1)–(4).

To start, let us replace Equation (4) in the Schrödinger-type Equation (2). A complex equation with
partial derivatives will be obtained. Its advantage is just this: it can be split into a two equations with
partial derivatives system that has only real quantities. The mathematical approach largely follows [7].

By replacing Equation (4) in Equation (2), we obtain the following:

∂R
∂t

= −A(R∇2S + 2∇R · ∇S); −2mAR
∂S
∂t

= VR− 2mA2[∇2R− R(∇S)2] (5)
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The first equation from Equation (5) offers an interpretation for the time evolution of the function
ρ(r, t, dt): taking into consideration that R =

√
ρ, it becomes:

1
√

ρ

∂ρ

∂t
= −2A(

√
ρ∇2S +

1
√

ρ
∇ρ∇S) (6)

Now, we must observe the following, in order to legitimize the upcoming calculus, Equations (3)
and (4) clearly show that, when Ψ is null, ρ is also null, and vice versa. Therefore, when ρ is null
and S must be null, the gradients from the right side of the equation are not present. This would
be a trivial case, but it shows that the probability density ρ is inherently related to the microscopic
phenomena described by the Schrödinger-type equation. Therefore, in order for the above written
equations to make sense, it is sufficient to admit that ρ 6= 0. In this context, the multiplication by

√
ρ of

the right side of Equation (6) is legitimate. Following this, we can observe the divergence of the vector
ρ∇S. We obtain the continuity equation:

∂ρ

∂t
+ 2A∇(ρ∇S) = 0 (7)

for a “fluid” of density ρ that flows by a velocity field specified by the time and position
vectorial function:

v = 2A∇S (8)

This is the so-called “probability fluid”, and Equation (7) provides the probabilistic interpretation
of extended scale relativity [8,9,11,12]: it shows that the time variation of the probability density is the
source of the vectorial field ρv. In relation to the wave function Ψ, ρv has the known expression:

ρv = iA(Ψ∇Ψ∗ −Ψ∗∇Ψ) (9)

and Equation (7) makes certain the fact that the unitary normalization of the wave function Equation (1),
once chosen, is kept indefinite of time if it evolves according to the Schrödinger-type equation.

These equations do not bring forward anything new about the probabilistic interpretation of
extended scale relativity. However, they show that all of the further deductions will not contradict
the usual scale relativity setup [6,7]. The novelty appears when the second equation of Equation (5)
is explicated. It can be written that:

−2mA
∂S
∂t

= V + 2mA2(∇S)2 − 2mA2∇2√ρ
√

ρ

or, by separating terms,

2mA
∂S
∂t

+ 2mA2(∇S)2 = −(V − 2mA2∇2√ρ
√

ρ
) (10)

The fact that the potential of the forces acting in the system is “altered” by the following term can
be observed:

Q(r, t, dt) = −2mA2∇2√ρ
√

ρ
(11)

which, as such, must itself play the role of a potential. Because Q derives from the probability density
as a position function, it means that its source must be the spatial variation of the probability density.
The emergence of this term, which accounts for the local spatial irregularities of the probability
density, is something entirely new related to the usual extended scale relativity setup, and it requires
an adequate interpretation.
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By applying the operator ∇ (grad) to Equation (10), taking into account Equation (8) and by
multiplying after by ρ, we obtain:

ρ
∂(mv)

∂t
=

∂(mρv)
∂t

−mv
∂ρ

∂t

and:
ρv∇(mv) = ∇(mρv · v)−mv∇(ρv) (12)

where we wrote v · v instead of v2 in order to highlight the fact that this is not the simple scalar product,
but the dyadic one, i.e., the tensor composed of vµvν. By replacing these in Equation (12) and taking
into account Equations (7) and (8), we will finally obtain:

∂(mρv)
∂t

+∇(mρv · v) = −ρ∇(V − 2mA2∇2√ρ
√

ρ
) = −ρ∇(V + Q) (13)

Equation (13) is an inhomogeneous continuity equation, its inhomogeneity being given by the
right side of the equation. It refers to the impulse current, and it is known in the field of hydrodynamics
as the Navier–Stokes equation (for details, see [14]). In its usual interpretation, Equation (13) shows
that the time variation of the momentum density is the source of the “kinetic energy” current density,
i.e., the mρv · v tensor, to which one more term is being added, the one that accounts for the force
density ρ∇V and for a “hidden”, for now, force density ρ∇Q, that is to be interpreted later on.

Normally, ρ∇V must be responsible for those forces that derive from a “central” potential
of the system. As we mentioned before, the central potential is largely an assumption, and in
many physics problems, if not in the majority of them, it is necessary to admit a “non-centrality”
(non-localization) of the potential. It is therefore easy to understand that we will describe the
“non-centrality” to the term Q from Equation (13). Thus, the force ρ∇Q must be responsible for
the local “non-centrality” caused by the random fluctuations of the probability density. Indeed, we
will show that the term Q is more likely due to some velocities, deriving from a “kinetic” energy and
not from a potential energy. In order to do this, let us notice that Equation (11) can be written:

Q = −2mA2[
∇2ρ

ρ
− 1

2
(
∇ρ

ρ
)] (14)

Furthermore, taking into account that:

∇(∇ρ

ρ
) =
∇2ρ

ρ
− (
∇ρ

ρ
)2

the expression from the right parenthesis of relation Equation (14) becomes:

∇∇ ln ρ +
1
2
(∇ ln ρ)2

and Equation (14) itself becomes:

Q = −2mA2[∇∇ ln ρ +
1
2
(∇ ln ρ)2] (15)

Let us note that through Equation (15), both the fractal entropy and the fractal information make
explicit their functionality.

The vectorial meaning of the differential calculus from Equation (15), as well as from earlier
relations, is to be understood from right to left in each monom, starting from the fact that ρ and ln ρ are
scalar functions of position and time. For example, ∇ ln ρ, (grad (ln ρ)), is a vector, while ∇∇ ln ρ is a
scalar (∆ ln ρ), (div. grad (ln ρ)). Therefore, by applying the∇ (grad) operator to Q from Equation (15),
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a vector will result, which, due to the derivatives transposition, will finally be not the gradient of a
scalar, but the divergence of a tensor.

Indeed, by applying the ∇ (grad) operator to Q from Equation (15), it results:

∇Q = −2mA2[∇∇∇ ln ρ +
∇ρ

ρ
∇∇ ln ρ] =

= −2mρ−1 A2[ρ∇∇∇ ln ρ +∇ρ∇∇ ln ρ] = (16)

= −2mρ−1 A2∇(ρ∇∇ ln ρ)

or:
ρ∇Q = −2mA2∇ · (ρ∇∇ ln ρ) (17)

This time, in Equation (17), the tensor (dyadic) appears:

∇µ∇ν ln ρ (18)

so that the right side of Equation (17) must be the divergence of a tensor. This tensor, which can be
written as:

τµν = 2mA2ρ∇µ∇ν ln ρ = 2mA2(∇µ∇ν ln ρ−
∇µρ · ∇νρ

ρ
) (19)

is, as it can be seen, symmetric, and Equation (17) has the form:

∇ · τ + ρ∇Q = 0 (20)

This equation can be interpreted not in the confines of hydrodynamics, but in the framework of
the solid deformation theory for any scale: it represents the equilibrium equation for the “stress” tensor
τ, for a fractal body that possesses volumetric forces continuously distributed within the density ρ∇Q,
as a function of position and time. For now, this analogy is purely a formal one. In the following, we
will see that it can represent the real situation in a microstructured solid for any scale.

Let us note that Equation (19) written in the form:

τµν = 2mA2 exp(SQ)∇µ∇νSQ = −2mA2 exp(−IQ)∇µ∇ν IQ

highlights the important role of the fractal entropy, but also that of the fractal information in defining
the “stress” tensor.

Taking into account Equation (20), we note that the impulse conservation Equation (13) becomes:

∂(mρv)
∂t

+∇Π = −ρ∇V (21)

where Π is the tensor composed by:

Πµν = mρvµvν − τµν (22)

with τµν being given by Equation (19). It results that the effective momentum flux density Πµν is given
by the momentum flux density caused by a particles current, i.e., mρvµvν, from which a tensor acting
in the system, responsible for the volumetric forces density ρ∇Q, is extracted. Because usually it can
be assumed that the energy current density is diminished due to dissipations in the system, this means
that τµν must represent a dissipated energy density. We will show that this is indeed the case and that
the tensor τ can be associated with a dynamic viscosity. If we define a velocity u in the form:

u = A∇ ln ρ (23)
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it results:

τµν = η(
∂uµ

∂xν
+

∂uν

∂xµ ) (24)

Taking into account the symmetry of the tensor τ,

η =
1
2

Aρ (25)

has the role of a dynamic viscosity coefficient [8,9]. These analogies offer an adequate image for the
description of the fractal solid deformation. Indeed, because the solid’s particles are characterized by
relatively stable positions in the crystalline lattice or, in instability cases, by low movements of isolated
or grouped particles, then the current velocity is null in all of the body’s spatial domain positions, and
in this case, Equation (21) simply becomes an equilibrium equation:

∇τ = ρ∇V (26)

which shows that, for a body in equilibrium, the attractive forces (repulsive) are balanced by the
“dissipative” forces, the latter having here the role of repulsive forces if the potential V is attractive, or
the role of attractive forces if the potential V is repulsive. The above equation could correspond to a
“constitutive law of material”, which is valid at any scale resolution.

In the usual formalism of extended scale relativity, we would not get this result, because in
that case, only the vectorial field given by the current velocity is the base variable, its annulment
equaling the annulment of the function Ψ and, thus, the annulment of the probability density. In our
interpretation, the annulment of the current velocity v has no effect other than the fact that the wave
function is a complex number with a constant phase factor, but of modulus

√
ρ that varies only with

position, but not with time, because Equation (7) with v = 0 shows that ∂ρ/∂t = 0 or ρ is constant
in time.

Therefore, if we want to describe the microscopic behavior of the solid starting from its
microstructure, it is necessary to begin with relations, such as Equations (23) and (24), for which
we must introduce new supplementary assumptions:

(i) The η coefficient from Equation (24) must be a tensor, which accounts for the crystalline
lattice symmetry.

(ii) Then, let us observe that the moving velocity of the solid’s particles is not determined as being
the temporal derivative of the movement in itself, but as deriving from a potential given by the
probability density. This results in the intrinsic movements in the solid being only “sub-products”
of the theory, looking like

∫
udt, but raising a question about the deformation as a symmetric

gradient of these movements.
(iii) These facts bring forward the time problem. According to the previous observations, the density

probability is constant in time and so is the velocity field. Experience contradicts however this
deduction, which compels us to change our view of the solid. We conceive thusly the solid as a
proper system of particles that are correctly defined by harmonic oscillators, spatially ordered
in the crystalline lattice. This means that the harmonic oscillators vibrate around equilibrium
positions, i.e., the points of the crystalline lattice. They can be considered identical with respect
to vibrational properties, the difference being made only by their position in the crystalline
lattice. These oscillators’ ensemble can be described by a probability function ρ, which is constant
in time, because the oscillators do not move from their positions. The “time constant” is too
an exact term for what we intend to present: due to chaotically-distributed instant spacial states
around the equilibrium positions and due to external constraints, of course related to the position
they occupy, the oscillators might accidentally interact, low movements and thus repositioning
occurring. This repositioning comes as an accommodation of the oscillators to the given conditions
or, better put, an accommodation of the crystalline lattice to the internal and external constraints.
This information must be present in an equation like Equation (25).
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Thus, the probability density itself varies in time, but it does so slowly, that it is practically
insignificant, or in other words, it significantly varies only on another time scale. The cause of this
variation is therefore the ensemble, singular oscillator coupling, or else put the “oscillator, lattice
coupling”, a complex phenomenon that relates the local disordered and ordered movements to
the ensemble.

The idea of the existence of a time scale determined by the deformable solid intrinsic phenomena
is not a novelty [15]. It is also present in statistical thermodynamics [15–17], due to the necessity of
correlating the irreversible phenomena to the second law of thermodynamics, which stipulates the
time growth of entropy. Only in our opinion, this idea does not reflect a practical reality if we only limit
ourselves to describing the deformable body as a continuum, description in which geometry, mechanics
and thermodynamics come together only at the exterior and, therefore, in a totally artificial way.

As a consequence, the fractal entropy and the fractal information, respectively, prove to be
fundamental in establishing constitutive laws of material, which are valid at any scale resolution.
Moreover, the problem of time and that of its relationship with thermodynamics can be thus discussed.

3. Differential Geometry by Means of Fractal Information

The results from the previous section impose two velocities fields: the standard velocity Equation (8),
which is differentiable and scale resolution independent, and the fractal velocity Equation (23), which is
non-differentiable and scale resolution dependent. Let us note that the fractal velocity can be directly
related through Equation (23) with the fractal entropy or the fractal information, respectively.

Since the two real velocities simultaneously act, we can introduce through the relation (for details,
see [11]):

V̂ = −2iA∇ ln Ψ(r, t, dt) (27)

the complex velocities field:

V̂ = v− iu, v = 2A∇S, u = A∇ ln ρ (28)

generated by the complex scalar potential:

Φ = −2iA[ln R(r, t, dt) + iS(r, t)] (29)

From here, by means of the differential one-forms:

ω1 = dΦ = 2A(dS + i
dR
R

), ω2 = dΦ = 2A(dS− i
dR
R

) (30)

we can introduce the differential two-form:

ds2 = ω1ω2 = dΦdΦ = 4A2[dS2 + (
dR
R

)2]. (31)

For the condition:
dS = dϕ =

du
v

(32)

and with the notations:
h = u + iv, h = u− iv, R ≡ v, k2

0 = 4A2 (33)

the differential two-form, Equation (31), represents the metric of the Lobachevsky plane in the Poincaré
representation [15,18–21]:

ds2

k2
0

=
dhdh

(h− h)2
=

du2 + dv2

v2 (34)

We shall come back later on the condition, Equation (32).
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The metric, Equation (34), is invariant with respect to the group of homographies, a continuous
group with three essential parameters [15,21].

Consider, therefore, a real homographic transformation on the variable h:

h′ =
ah + b
ch + d

, a, b, c, d ∈ R, ad− bc 6= 0 (35)

The conjugates of the two complex quantities h and h′ are connected, obviously, by the
same transformation:

h′ =
ah + b
ch + d

(36)

Transformation (35) and (36) form a group of two variables with three parameters (one of the
quantities a, b, c, d is not essential), as can easily be verified. This group leaves invariant the differential
quadratic form:

− 4
dhdh

(h− h)2
(37)

Indeed, in view of transformation (35) and (36), we have:

dh′ =
(ad− bc)dh
(ch + d)2 , dh′ =

(ad− bc)dh
(ch + d)2

, h′ − h′ =
(ad− bc)(h− h)
(ch + d)(ch + d)

which immediately yields:
dh′dh′

(h′ − h′)2
=

dhdh
(h− h)2

The metric of the Lobachevsky plane can be produced as a Calylean metric of an Euclidean plane,
for which the absoluteness is a circle with unit radius [22]. This way, the Lobachevsky plane can
be put into biunivocal correspondence with the interior side of this circle. The general procedure of
metrization of a Calylean space starts with the definition of the metric as an anharmonic ratio, being
extensively described in many classical volumes (see, for example, [23–25]), so that we shall skip the
details and give only the final results, which are necessary in our following investigation. Let us
suppose that the absoluteness of the space is represented by the quadratic form Ω(X, Y), where X
denotes any vector. The Calylean metric is then given by the differential quadratic form:

ds2

k2
0

=
Ω(dX, dX)

Ω(X, X)
− Ω2(dX, dX)

Ω2(X, X)
(38)

where Ω(X, Y) is the duplication of Ω(X, X) and k0 a constant connected to the space curvature.
In case of the Lobachevsky plane, we have:

Ω(X, X) = 1− x2 − y2, Ω(X, dX) = −xdx− ydy, Ω(dX, dX) = −dx2 − dy2 (39)

which yields:
ds2

k2
0

=
(1− y2)dx2 + 2xydxdy + (1− x2)dy2

(1− x2 − y2)2 (40)

Performing now the coordinate transformation:

x =
hh− 1
hh + 1

, y =
h + h
hh + 1

(41)
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the metric Equation (40) becomes identical to Equation (34):

ds2

k2
0

= −4
dhdh

(h− h)2
(42)

As is easily seen, the absoluteness 1− x2 − y2 = 0 goes to the straight line Im h = 0, while straight
lines of the Euclidean plane go to circles with centers on the real axis of the complex plane (h).

The previous theory is applicable to any case of the existence of a real conic, being easy
to demonstrate that the Calylean metric attached to this conic is the metric generated by the
transformation group, which leaves it invariant.

As we have mentioned, the group Equation (35) is a group in two variables with three parameters.
Writing explicitly its transformations, so that the identical transformation corresponds to the null
values of parameters, we can conveniently write them as:

h′ =
h + a1

a3h + a2 + 1
(43)

where a1, a2, a3 are the real group parameters. Next, let us express its infinitesimal transformation [21],
i.e., those transformations characterized by infinitesimal values of parameters, and expand
Equation (43) together with its complex conjugate about the parameters origin (a1 = a2 = a3 = 0). The
result is:

h′ = h + a1 − ha2 − h2a3, h′ = h + a1 − ha2 − h2a3 (44)

where, this time, a1, a2, a3 are infinitely small quantities of the first order, while their higher powers
have been neglected.

According to Equation (44), one and the same transformation h→ h′ corresponds to an infinite
number of values of parameters a1, a2, a3. This result can be easily verified: solving the system
Equation (44) with respect to a1, we realize that it is compatible undetermined. It is said that the group
is multiply transitive; there is an infinity of its homographies, which makes its possible transition h→ h′.

Recalling the significance of h variables as being field potentials from the physical point of view
would be desirable for the group to be simply transitive: to a given system of parameters a1, a2, a3

corresponds one transition (h→ h′), and only one. This desire is purely classical, and corresponds, for
example, to the construction of Maxwell’s equations, under given initial conditions.

A necessary condition for a group to be simply transitive is, obviously, that the number of
variables equals the number of parameters. In this case, Equation (44) should contain three equations,
instead of two. If, in addition, the matrix of coefficients of a1, a2, a3 would be of rank three, then certainly
the group would be simply transitive.

Keeping in mind the origin of this group, the only possibility is to add a new field variable (whose
significance shall be explained later on). This operation can be done in many ways, under condition
of keeping the structure of the starting group. As one can observe by examining Equation (44),
this condition is given by the infinitesimal operators:

B̂1 =
∂

∂h
+

∂

∂h
, B̂2 = −h

∂

∂h
− h

∂

∂h
, B̂3 = −h2 ∂

∂h
− h

2 ∂

∂h
(45)

through the equations:

[B̂1, B̂2] = −B̂1, [B̂2, B̂3] = −B̂3, [B̂3, B̂1] = −2B̂2 (46)

Rewriting the infinitesimal transformation Equations (44)–(46) in three variables as:

h′ = h + a1 − ha2 − h2a3, h′ = h + a1 − ha2 − h2a3, k′ = k + γ(h, h, k)a3 (47)
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where k is the new variable introduced due to already mentioned reasons; the first two differential
operators of Equation (45) do not change, while the third becomes:

L̂3 = B̂3 + γ
∂

∂k
(48)

Imposing on the new operators the same structural relations as those given in Equation (46),
it follows that γ is defined up to a multiplicative function of the new variable:

γ(h, h, k) = ψ(k)(h− h) (49)

Choosing, for reasons that soon shall become obvious, ψ(k) = −k, it follows that the infinitesimal
operators of the new simply transitive group (it can be easily verified that the system Equation (47)
has a unique solution in a1, a2, a3 under condition h− h 6= 0, k 6= 0) are given by:

L̂1 ≡ B̂1, L̂2 ≡ B̂2, L̂3 ≡ −B̂3 − (h− h)k
∂

∂k
(50)

As can be observed, k has to be a unimodular complex variable. This can be proven by solving
the equation:

X3 f = 0

It is satisfied if and only if:

k = constant
h
h

If the constant is adequately adjusted, we can limit ourselves, indeed, to considering k as
a unimodular factor, but without being the ratio between h and h. This was the reason for choosing
ψ = −k in Equation (49): if we set k = eiϕ’, then we shall have k ∂

∂k = ∂
∂ϕ , which means the derivative

with respect to the phase of k.
As can easily be verified, the infinitesimal relations Equation (49) correspond to the finite transformations:

h′ =
h + a1

a3h + a2 + 1
, k′ =

a3h + a2 + 1
a3h + a2 + 1

k (51)

and this is the Barbilian group, named after Romanian mathematician Dan Barbilian [23–25]. Here are
some properties of this group.

Its structure is given by Equation (49), and consequently, the structure constants are:

C1
12 = C3

23 = −1, C2
31 = −2 (52)

the rest of them being zero. Therefore, the invariant quadratic form is given by the quadratic tensor of
the group [26], that is:

Cαβ = Cµ
ανCυ

βµ (53)

where summation over repeated indices is understood. Using Equations (52) and (53), the tensor
Cαβ writes:

Cαβ =

 0 0 − 4
0 2 0
−4 0 0

 (54)

meaning that the invariant metric of the group has the form:

ds2

k2
0

= ω2
0 − 4ω1ω2 (55)
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where k0 is an arbitrary factor and (ωα) three differential one-forms, absolutely invariant through the
group. These one-forms have the form:

ω0 = i(
dk
k
− dh + dh

h− h
), ω1 = ω2 =

dh
k(h− h)

(56)

and the metric becomes:
ds2

k2
0

= −(dk
k
− dh + dh

h− h
)2 + 4

dhdh
k(h− h)2

(57)

It is worthwhile to mention a property connected to the integral geometry: the Barbilian group
Equation (51) is measurable. Indeed, it is simply transitive, and since its structure vector [26]:

Cα = Cυ
να (58)

is identically null, as can be seen from Equation (52), this means that it possess an invariant function
given by:

F(h, h, k) = − 1
(h− h)2k

(59)

which is the inverse of the modulus of determinant of the linear system Equation (47) in unknowns (ai).
As a result, in the space of the field variables (h, h, k) can a priori be constructed a probabilistic

theory [15,21], based on the elementary probability:

dP(h, h, k) = −dhΛdhΛdk
(h− h)2k

(60)

where Λ denotes the exterior product of the one-forms.
Let us note that the complex variable h (being given with the fractal information; see the

substitutions Equation (33)) can become fundamental in obtaining a Jeans-type physical theory;
for details, see [15,21].

Finally, it is notable to observe that the Barbilian group is “latently” contained in the group of
homographic transformations Equation (43). Indeed, let us focus our attention on metric Equation (57):
it reduces to metric Equation (42) for ω0 = 0. By means of the usual relations:

h = u + iv, k = eiϕ (61)

relation Equation (56) yields

ω0 = −(dϕ +
du
v
) (62)

and therefore, condition ω0 = 0 becomes:

dϕ = −du
v

(63)

which is the definition Equation (55) of the Levi–Civita parallelism angle. Therefore, ω0 = 0 represents
the Levi–Civita parallelism of the Lobachevsky plane (for details, see [22]).

In this way, the fractal information becomes fundamental in the construction of the metrics of
Lobachevsky’s plane in the Poincaré representation, at any scale resolution.

4. A Variational Principle by Means of Fractal Information

Let us suppose that the field is described by the variables (yl) for which we have obtained
the metric:

hildyidyl (64)
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in an ambient space of the metric:
γαβdxαdxβ (65)

In this situation, the field equations are derived from the variational principle:

δ
∫

Lγ1/2d3x = 0 (66)

connected to the Lagrangian:

L = γαβhil
∂yi∂yl

∂xα∂xβ
(67)

In our case, the metric (64) is given by Equation (34), the field variables being h and h or,
equivalently, the real and the imaginary parts of h. Then, the Lagrangian Equation (67) takes the form:

L = γαβ
∂h

∂xα
∂h

∂xβ

(h− h)2
=
∇h∇h
(h− h)2

(68)

so that through the variational principle Equation (66), the field equations become:

(h− h)∇2h = 2∇h∇h, (h− h)∇2h = 2∇h∇h (69)

A solution of this equation has the form:

h = −i
cosh ψ− e−iα sinh ψ

cosh ψ + e−iα sinh ψ
, h = i

cosh ψ− eiα sinh ψ

cosh ψ + eiα sinh ψ
(70)

∇2ψ = 0 (71)

with α real. The Equation (71) represents an harmonic map from the usual space into the Lobachevsky
plane having the metric Equation (34), provided ψ is a solution of the Laplace equation in free space.
Therefore, if this variational principle is accepted as a starting point, the main purpose of the field
research would be the produced metrics of Lobachevsky (or related to them).

In consequence, by means of the variational principle Equation (66) of Lagrangian Equation (67)
or in particular Equation (68), the fractal information becomes a fundamental component in the
construction of a field theory, at any scale resolution.

5. Conclusions

The main conclusions of this paper are the following:

(i) Starting from a Schrödinger-type equation as geodesics of a fractal space in the frame of the
extended scale relativity theory, it is proven that the velocities’ field is complex. Its real part is the
standard velocity, which is differentiable and scale resolution independent, while its imaginary
part is the fractal velocity, which is non-differentiable and scale resolution dependent.

(ii) Through a Madelung-type choice of the wavefunction in the Schrödinger geodesic, the following
two parts are separated: the real one (which implies the impulse conservation law) and the
imaginary one (which implies the states density conservation law). The two conservation laws
constitute the fractal hydrodynamic equations system.

(iii) The differential velocity is put in correspondence with the wavefunction phase, while the fractal
velocity is put in correspondence with the wavefunction amplitude and, thus, with the states
density, through the square amplitude. By such a procedure, the proportionality between the
fractal velocity and the fractal information gradient is highlighted.

(iv) The fractal velocity and, thus, the fractal information gradient are responsible (through the fractal
potential gradient) for the presence of a force-type term (fractal force) in the impulse conservation law.
At equilibrium, this term can be put in correspondence with the divergence of the tensor of
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“stresses”, and this imposes a constitutive law of material. In other words, the tensor of “stresses”
becomes a measure of the fractal information “fluctuations”.

(v) From the perspective of a two-form of a complex scalar potential of velocities (potential, which
contains explicitly the fractal information as its imaginary part), one obtains the correspondence
with the metric of the Lobachevsky plane in the Poincaré representation. It thus results in the
invariance of the two-form with respect to the homographic transformations group (the Barbilian
group), when one defines a parallel transport of vectors in the sense of Levi–Civita (the vector
origin moves on geodesics, the angle between the vector and the tangent to the geodesic at
the current point being permanently constant). The group is measurable (that is, it possesses
a function, which is integrally invariant), so that in the variables space of the group, one can
construct Jeans-type probabilistic physical theories based on an elementary probability (for details,
see [15,21]). Moreover, the fact that the metric of the Lobachevsky plane can be produced as a
Caylean metric of the Euclidean space (for which the absoluteness is a circle with unit radius)
proves that one can produce metrics and, thus, fractal information, at any scale resolution,
independently of the Einsteinian procedure.

(vi) A variational principle has been constructed. Then, if this variational principle is accepted as
a starting point, the main purpose of any field research would be to produce metrics of the
Lobachevsky plane, being apart from Einstein’s field equations. The field equations obtained
through this variational principle represent a harmonic map from the usual space into the
Lobachevsky plane having the metric in Poincaré’s representation. In other words, through this
variational principle, one can produce fractal informational that is explicit at any scale resolution.
In this sense, if the field variables define a gravitational field, then the variational principle
is reducible to a Matzner–Misner-type one, while the field equations are reducible to those of
Ernst-type (for details, see [15,21]). From such a perspective, the fractal information is generated
together with the material structure, that is together with the induction of the own space associated
with the material structure.

This paper could lead to some considerations both in fundamental scientific and other areas, such
as business management, marketing, etc. A special role could be given to the economic implications of
macroeconomic and microeconomic developments.
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Appendix A. Implications of Non-Differentiability in the Dynamics of Complex Systems

Assuming that the motions of the complex systems’ structural units take place on continuous, but
non-differentiable curves (fractal curves), the following consequences emerge:

1. Any continuous, but non-differentiable curve of the complex system structural units is explicitly
scale resolution δt dependent, i.e., its length tends to infinity when δt tends to zero.

We mention that, mathematically speaking, a curve is non-differentiable if it satisfies the
Lebesgue theorem, i.e., its length becomes infinite when the scale resolution goes to zero [13].
Consequently, in this limit, a curve is as zigzagged as one can imagine. Thus, it exhibits the
property of self-similarity in every one of its points, which can be translated into a property of
holography (every part reflects the whole) [6,7,10,13].

2. The physics of the complex phenomena is related to the behavior of a set of functions during the
zoom operation of the scale resolution δt. Then, through the substitution principle, δt will be
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identified with dt, i.e., δt ≡ dt, and consequently, it will be considered as an independent variable.
We reserve the notation dt for the usual time as in the Hamiltonian complex system dynamics.

3. The complex system dynamics is described through fractal variables, i.e., functions depending
on both the space-time coordinates and the scale resolution, since the differential time reflection
invariance of any dynamical variable is broken. Then, in any point of the fractal curve,
two derivatives of the variable field Q(t, dt) can be defined:

d+Q (t, dt)
dt

= lim
∆t→0+

Q (t + ∆t, ∆t)−Q (t, ∆t)
∆t

d−Q (t, dt)
dt

= lim
∆t→0−

Q (t, ∆t)−Q (t− ∆t, ∆t)
∆t

(A1)

The “+” sign corresponds to the forward process, while the “−“ sign correspond to the
backwards one.

4. The differential of the spatial coordinate field dXi (t, dt)is expressed as the sum of the
two differentials, one of them being scale resolution independent (differential part d±xi (t))
and the other one being scale resolution dependent (fractal part d±ξ i (t)) [6,7], i.e.,

d±Xi (t, dt) = d±xi (t) + d±ξ i (t, dt) (A2)

5. The non-differentiable part of the spatial coordinate field satisfies the fractal equation [6,7]:

d±ξ i (t, dt) = λi
± (dt)1/DF (A3)

where λi
± are constant coefficients through which the fractalization type is specified and DF

defines the fractal dimension of the fractal curve.

In our opinion, the processes in complex systems imply a dynamics on geodesics having various
fractal dimensions. Precisely, for DF = 2, quantum-type processes are generated. For DF < 2,
correlative-type processes are induced, while for DF > 2, non-correlative-type ones can be found
(for details, see [6–9,13]).

6. The differential time reflection invariance of any dynamical variable is recovered by combining
the derivatives d+

/
dt and d−

/
dt in the non-differentiable operator:

d̂
dt

=
1
2

(
d+ + d−

dt

)
− i

2

(
d+ − d−

dt

)
(A4)

This is a natural result of the complex prolongation procedure [7]. Applying now the
non-differentiable operator to the spatial coordinate field yields the complex velocity field:

V̂i =
d̂Xi

dt
= Vi

D −Vi
F (A5)

with:

Vi
D =

1
2

(
vi
+ + vi

−

)
, Vi

F =
1
2

(
vi
+ − vi

−

)
vi
+ =

d+xi + d+ξ i

dt
, vi

− =
d−xi + d−ξ i

dt
(A6)

The real part Vi
D is differentiable and scale resolution independent (differentiable velocity

field), while the imaginary one Vi
F is non-differentiable and scale resolution dependent (fractal

velocity field).
7. In the absence of any external constraint, an infinite number of fractal curves (geodesics) can

be found relating any pair of points, and this is true on all scales. Then, in the fractal space,



Entropy 2016, 18, 160 16 of 20

all complex system structural units are substituted with the geodesics themselves (for details,
see Appendix B), so that any external constraint is interpreted as a selection of geodesics by
the measuring device. The infinity of geodesics in the bundle, their non-differentiability and
the two values of the derivative imply a generalized statistical fluid-like description (fractal
fluid). Then, the average values of the fractal fluid variables must be considered in the
previously-mentioned sense, so the average of d±Xi is:〈

d±Xi
〉
≡ d±xi (A7)

with: 〈
d±ξ i

〉
= 0 (A8)

8. The complex system dynamics can be described through a covariant derivative, the explicit
form of which is obtained as follows. Let us consider that the non-differentiable curves are
immersed in a three-dimensional space and that Xi are the spatial coordinate field of a point on
the non-differentiable curve. We also consider a variable field Q

(
Xi, t

)
and the following Taylor

expansion up to the second order:

d±Q
(

Xi, t
)
= ∂tQdt + ∂iQd±Xi +

1
2

∂l∂kQd±Xld±Xk (A9)

These relations are valid in any point of the space and more for the points Xi on the
non-differentiable curve, which we have selected in Equation (A9). From here, forward and backward
values of Equation (A9) become:

〈d±Q〉 = 〈∂tQdt〉+
〈

∂iQd±Xi
〉
+

1
2

〈
∂l∂kQd±Xld±Xk

〉
(A10)

We suppose that the average values of the variable field Q and its derivatives coincide with
themselves, and the differentials d±Xi and dt are independent. Therefore, the average of their products
coincides with the product of averages. Consequently, Equation (A10) becomes:

d±Q = ∂tQdt + ∂iQ
〈

d±Xi
〉
+

1
2

∂l∂kQ
〈

d±Xld±Xk
〉

(A11)

Even the average value of d±ξ i is null for the higher order of d±ξ i, the situation can still be
different. Let us focus on the averages

〈
d±ξ ld±ξk

〉
. Using Equation (A3), we can write:

〈
d±ξ ld±ξk

〉
= ±λl

±λk
± (dt)(2/DF)−1 dt (A12)

where we accepted that the sign + corresponds to dt > 0 and the sign − corresponds to dt < 0.
Then, Equation (A11) takes the form:

d±Q = ∂tQdt + ∂iQ
〈

d±Xi
〉
+

1
2

∂l∂kQd±xld±xk ± 1
2

∂l∂kQ
[
λl
±λk
± (dt)(2/DF)−1 dt

]
(A13)

If we divide by dt and neglect the terms that contain differential factors (for details, see the method
from [6–9]), we obtain:

d±Q
dt

= ∂tQ + vi
±∂iQ±

1
2

λl
±λk
± (dt)(2/DF)−1 ∂l∂kQ (A14)
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These relations also allow us to define the operators:

d±
dt

= ∂t + vi
±∂i ±

1
2

λl
±λk
± (dt)(2/DF)−1 ∂l∂k (A15)

Under these circumstances, taking into account Equations (A4), (A5) and (A15), let us calculate
d̂/dt. It results:

d̂Q
dt

= ∂tQ + V̂i∂iQ +
1
4
(dt)(2/DF)−1 Dlk∂l∂kQ (A16)

where:

Dlk = dlk − id̄lk

dlk = λl
+λk

+ − λl
−λk
−, d̄lk = λl

+λk
+ + λl

−λk
− (A17)

The relation Equation (A16) also allows us to define the covariant derivative:

d̂
dt

= ∂t + V̂i∂i +
1
4
(dt)(2/DF)−1 Dlk∂l∂k (A18)

Appendix B. Geodesics of the Complex System Structural Units

Let us now consider the principle of scale covariance (the physics laws of the complex systems
dynamics are invariant with respect to scale transformations) and postulate that the passage from the
classical complex system physics of the complex systems to the non-differentiable (fractal) physics
of the complex systems can be implemented by replacing the standard time derivative d/dt by the
non-differentiable operator d̂/dt. Thus, this operator plays the role of the covariant derivative, namely
it is used to write the fundamental equations of complex system dynamics in the same form as in
the classic (differentiable) case. Under these conditions, applying the operator Equation (A18) to the
complex velocity field Equation (A5), in the absence of any external constraint, the geodesics of the
complex system structural units have the following form:

d̂V̂i

dt
= ∂tV̂i + V̂ l∂lV̂i +

1
4
(dt)(2/DF)−1 Dlk∂l∂kV̂i = 0 (B1)

This means that the local acceleration ∂tV̂i, the convection V̂ l∂lV̂i and the dissipation Dlk∂l∂kV̂i

make their balance in any point of the non-differentiable curve. Moreover, the presence of the complex
coefficient of viscosity-type 1

4 (dt)(2/DF)−1 Dlk specifies that the complex system can be assimilated
with a rheological medium, so it has memory, as a datum, by his own structure.

If the fractalization is achieved by Markov-type stochastic processes, which involve Lévy-type
movements of the complex system structural units [6,7,13], then:

λi
+λl

+ = λi
−λl
− = 2λδil (B2)

where δil is the Kronecker’s symbol, with the property:

δil =

{
1, i = l

0, i 6= l

Under these conditions, the equation of geodesics takes the simple form:

d̂V̂i

dt
= ∂tV̂i + V̂ l∂lV̂i − iλ (dt)(2/DF)−1 ∂l∂lV̂i = 0 (B3)
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or more, by separating the motions on differential and fractal scale resolutions,

d̂V̂i
D

dt
= ∂tVi

D + V l
D∂lVi

D −
[
V l

F − λ (dt)(2/DF)−1 ∂l
]

∂lVi
F = 0

d̂V̂i
F

dt
= ∂tVi

F + V l
D∂lVi

F −
[
V l

F − λ (dt)(2/DF)−1 ∂l
]

∂lVi
D = 0 (B4)

Appendix C. Geodesics of the Complex Systems Dynamics in the Schrödinger-Type Representation

For irrotational motions:

εikl∂
kV̂ l = 0 (C1)

where εikl is the Levi–Civita pseudo-tensor. Then, we choose V̂i in the form [6–9]:

V̂i = −2iλ (dt)(2/DF)−1 ∂i ln ψ (C2)

where, for the moment, ln ψ defines the scalar potential of the complex velocity field.
Substituting Equation (C2) in Equation (B3), we obtain:

d̂V̂i

dt
= −2iλ(dt)(2/DF)−1

{
∂t∂

i ln ψ− i
[
2λ(dt)(2/DF)−1

×(∂l ln ψ∂l)∂
i ln ψ + λ(dt)(2/DF)−1∂l∂l∂

i ln ψ
]}

= 0 (C3)

Using the identities:

∂l∂l ln ψ + ∂i ln ψ∂i ln ψ =
∂l∂

lψ

ψ

∂i

(
∂l∂lψ

ψ

)
= 2

(
∂l ln ψ∂l

)
∂i ln ψ + ∂l∂l∂

i ln ψ (C4)

the Equation (C3) becomes:

d̂V̂i

dt
= −2iλ (dt)(2/DF)−1 ∂i×

×
[

∂t ln ψ− 2iλ (dt)(2/DF)−1 ∂l∂l ln ψ

ψ

]
= 0 (C5)

This equation can be integrated up to an arbitrary phase factor, which may be set to zero by
a suitable choice of phase of ψ, and this yields:

λ2 (dt)(4/DF)−2 ∂l∂lψ + iλ (dt)(2/DF)−1 ∂tψ = 0 (C6)

For motions on Peano-type curves, DF = 2 [6,7,13], at Compton scale, λ = h̄
/

2m0, with h̄,
the reduced Planck’s constant and m0 the rest mass of the structural units, the relation Equation (C6)
becomes the usual Schrödinger equation. The relation Equation (C6) is a Schrödinger-type equation
(geodesics in the Schrödinger representation). We note that the presence of an external scalar potential
V modifies the Equation (C6) in the form:

λ2 (dt)(4/DF)−2 ∂l∂lψ + iλ (dt)(2/DF)−1 ∂tψ−
V
2

ψ = 0 (C7)
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The relation Equation (C7) corresponds to the equation of motion for the “one body problem” in
the Schrödinger-type representation of the non-differentiable model. The standard equation of motion
for the “one body problem” in the scale relativity theory [6,7]:

D2∂l∂lψ + iD∂tψ−
V
2

ψ = 0 (C8)

results from Equation (C7) for movements of the complex system structural units on Peano-type
curves, DF = 2 and the correspondence λ ≡ D, where D is the coefficient of the fractal, the non-fractal
transition from scale relativity theory [6,7].
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