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Abstract: As a measure of randomness or uncertainty, the Boltzmann–Shannon entropy H has
become one of the most widely used summary measures of a variety of attributes (characteristics) in
different disciplines. This paper points out an often overlooked limitation of H: comparisons between
differences in H-values are not valid. An alternative entropy HK is introduced as a preferred member
of a new family of entropies for which difference comparisons are proved to be valid by satisfying a
given value-validity condition. The HK is shown to have the appropriate properties for a randomness
(uncertainty) measure, including a close linear relationship to a measurement criterion based on
the Euclidean distance between probability distributions. This last point is demonstrated by means
of computer generated random distributions. The results are also compared with those of another
member of the entropy family. A statistical inference procedure for the entropy HK is formulated.
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1. Introduction

For some probability distribution Pn “ pp1, ..., pnq, with pi ě 0 for i = 1, . . . , n and
n
ř

i“1
pi “ 1, the

entropy HpPnq, or simply H, is defined by:

H “ ´

n
ÿ

i“1

pi log pi P r0, log ns (1)

where the logarithm is the natural (base-e) logarithm. The probabilities pipi “ 1, ..., nq may be
associated with a set of quantum states of a physical system in statistical mechanics or physics,
a set of symbols or messages in a communication system, or, most generally, a set of mutually exclusive
and exhaustive events. First used by Boltzmann [1] in statistical mechanics (as kH with k being the
so-called Boltzmann constant) and later introduced by Shannon [2] as the basis for information theory
(with base-2 logarithm and bits as the unit of measurement), this entropy H can appropriately be called
the Boltzmann–Shannon entropy.

Although interpreted in a number of different ways, the most common and general
interpretation of H is as a measure of randomness or uncertainty of a set of random events
(e.g., [3] (pp. 67–97), [4], [5] (Chapter 2), [6] (pp. 12, 13, 90)). A number of alternative entropy
formulations have been proposed as parameterized generalizations of H in Equation (1) (see, e.g., [7–9]),
but with limited success or impact. The most notable exception is the following one-parameter family
of entropies by Rényi [10]:

HR “
1

1´ α
log2

n
ÿ

i“1

pα
i , α ą 0, α ‰ 1
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which reduces to Equation (1), with base-2 logarithm, when α Ñ 1 . This entropy family has, for
instance, been used as a fractal dimension [11] (pp. 686–688). Another such family of entropies is that
of Tsallis [12] defined as:

HT “
1

α´ 1

˜

1´
n
ÿ

i“1

pα
i

¸

, ´8 ă α ă 8

which includes the H in Equation (1) as the limiting case when α Ñ 1 .
Since its origins in statistical physics and information theory, the entropy H in Equation (1) has

proved to be remarkably versatile as a summary measure of a wide variety of attributes (characteristics)
within diverse fields of study, ranging from psychology (e.g., [13]) to fractal geometry [11] (pp. 678–687).
However, such widespread use of H has led to misuse, improper applications, and misleading results
due to the fact that, although H has a number of desirable properties [14] (Chapter 1), it does suffer
from one serious limitation: comparisons between differences in H-values are not valid. The basis for
this limitation is explained in the next section of this paper.

As a clarification of such comparisons in general, consider some summary measure M and
probability distributions Pn, Qm, Rt, Su. The various types of potential comparisons can then be
defined as follows:

Size porderq comparisons : MpPnq ą MpQmq (2a)

Di f f erence comparisons : MpPnq ´MpQmq ą MpRtq ´MpSuq (2b)

Proportional di f f erence comparisons : MpPnq ´MpQmq “ crMpRtq ´MpSuqs (2c)

where c is a constant. While, because of the properties of H in Equation (1), there is no particular reason
to doubt the validity of the size comparison in Equation (2a) involving H, the difference comparisons
in Equations (2b) and (2c) are not valid for H as discussed below.

In this paper, an alternative and equally simple entropy is introduced as:

HK “

¨

˚

˝

n
ÿ

i“1
i‰m

?
pi

˛

‹

‚

2

`

n
ÿ

i“1
i‰m

pi, pm “ max
i
tpiu (3)

The term entropy is used for this measure of randomness or uncertainty since (a) it has many of
the same properties as H in Equation (1) and (b) the entropy term has been used in such a variety of
measurement situations for which HK can similarly be used. As is established in this paper, HK has
the important advantage of being more informative than H in the sense that HK meets the conditions
for valid difference comparisons as in Equations (2b) and (2c). It will also be argued that the HK is the
preferred member of a family of entropies with similar properties. Statistical inference procedure for
HK will also be outlined.

2. Conditions for Valid Difference Comparisons

Consider that M is a measure of randomness (uncertainty) such that its value MpPnq for any
probability distribution Pn “ pp1, ..., pnq is bounded as:

MpP0
nq ď MpPnq ď MpP1

nq (4)

where P0
n and P1

n are the degenerate and uniform distributions

P0
n “ p1, 0, ..., 0q, P1

n “ p1{n, ..., 1{nq (5)

and where one can set MpP0
nq “ 0. In order for the difference comparisons in Equations (2b) and

(2c) to be permissible or valid, some condition needs to be imposed on M (see [15]). Specifically,
all intermediate values MpPnq in Equation (4) have to provide numerical representations of the
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extent of randomness (uncertainty) that are true or realistic with respect to some acceptable criterion.
While different types of validity are used in measurement theory [16] (pp. 129–134), value validity will
be used here for this required property of M. In order to establish specific requirements for M to have
value validity, a particular probability distribution proves useful and Euclidean distances will be used
as a criterion.

Therefore, consider the recently introduced lambda distribution:

Pλ
n “

ˆ

1´ λ`
λ

n
,

λ

n
, ...,

λ

n

˙

, λ P r0, 1s (6)

where λ is a uniformity (evenness) parameter and with P0
n and P1

n in Equation (5) being special
(extreme) cases [17]. This Pλ

n is simply the following weighted mean of P0
n and P1

n :

Pλ
n “ λP1

n ` p1´ λqP0
n (7)

From Equations (4) and (6), it follows that, for any given Pn:

MpPnq “ MpPλ
n q for one unique λ (8)

so that validity conditions on MpPnq can equivalently be determined in terms of MpPλ
n q. With

probability distributions considered as points (vectors) in n-dimensional space and with the Euclidean
distance function d being the basis for a validity criterion, the following requirement seems most
natural and obvious [17]:

MpP1
nq ´MpPλ

n q

MpP1
nq ´MpP0

nq
“

dpPλ
n , P1

nq

dpP0
n , P1

nq
“ 1´ λ (9)

Since MpP0
nq “ 0, i.e., there is no randomness when one pi “ 1, it follows from Equation (9) that:

MpPλ
n q “ λMpP1

nq (10)

as a value-validity condition. This condition also follows immediately from Equation (7) as:

MpPλ
n q “ MrλP1

n ` p1´ λqP0
ns “ λMpP1

nq ` p1´ λqMpP0
nq (11)

which equals Equation (10) for MpP0
nq “ 0.

For the case when λ “ 0.5, P0.5
n is the midpoint of P0

n and P1
n with coordinates

p1{2` 1{2n, 1{2n, ..., 1{2nq. Then:

MpP0.5
n q “ M

ˆ

P0
n ` P1

n
2

˙

“
MpP0

nq `MpP1
nq

2
(12)

“
MpP1

nq

2
for MpP0

nq “ 0 (13)

which is exactly as stated in Equations (10) and (11) with λ “ 0.5. Of course, Equations (12) and
(13) represent a weaker value-validity condition than Equations (10) and (11). Note also that it is not
assumed a priori that M is a linear function of λ. This linearity is a consequence of Equations (7)–(9).

The entropy H in Equation (1) with HpP0
nq “ 0 and HpP1

nq “ log n does not meet these validity
conditions. For example, for n = 2 and λ “ 0.5, HpP0.5

2 q “ Hp0.75, 0.25q “ 0.56, which far exceeds
the requirement log2/2 = 0.35 in Equation (13). Similarly, HpP0.5

4 q “ Hp0.625, 0.125, 0.125, 0.125q “
1.07 ąą log 4{2 “ 0.69 and HpP0.5

20 q “ 2.09 ąą log 20{2 “ 1.50. It can similarly be verified that HpPλ
n q

for all n and 0 ă λ ă 1, and hence HpPnq for all Pn from Equation (8), overstates the true or realistic
extent of the randomness (uncertainty) that H is supposed to measure. Consequently, difference
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comparisons as in Equations (2b) and (2c) based on H are invalid. An alternative measure that meets
the validity conditions for such comparisons will be introduced next.

3. The New Entropy

3.1. Derivation of HK

The logic or reasoning behind the HK in Equation (3) as a measure of randomness or uncertainty
may be outlined as follows:

(1) As a matter of convenience and as used throughout the rest of the paper, all individual
probabilities will be considered ordered such that:

p1 ě p2 ě ¨ ¨ ¨ ě pn (14)

(2) Due to the constraint that
n
ř

i“1
pi “ 1, there is no loss of generality or information by focusing on

p2, ..., pn.

(3) Instead of considering
n
ř

i“2
f ppiq or a weighted mean or sum of f pp2q, ..., f ppnq for some function f

of the individual pi’s, one could consider the sum of the means of all pairs of the pipi “ 2, ..., nq.
Since an entropy measure needs to be zero-indifferent (expansible), i.e., unaffected by the addition
of events with zero probabilities (e.g., [14] (Chapter 1)), a logical choice of pairwise means would
be the geometric means ?pi pj for all i, j = 2, . . . , n (since obviously

a

pi0 “ 0). Therefore, the
measure consisting of the means?pi pj, including those for i = j, can be expressed as:

HK “ 2
ÿ

2ďi

ÿ

ďjďn

a

pi pj “

n
ÿ

i“2

n
ÿ

j“2

a

pi pj `

n
ÿ

i“2

pi (15)

where the multiplication factor 2 is included so that HKpP1
nq = H(1/n, . . . ,1/n) = n ´ 1 instead of

(n´1)/2. With p1 being the modal (largest) probability, this HK in Equation (15) is twice the sum
of the pairwise geometric means of all the non-modal probabilities. Furthermore, from the fact

that, for a set of numbers txiu ,
ˆ n
ř

i“2
xi

˙2
“

n
ř

i“2

n
ř

j“2
xixj and then setting xi “

?pi, it follows from

the second expression in Equation (15) that:

HK “

˜

n
ÿ

i“2

?
pi

¸2

`

n
ÿ

i“2

pi (16)

which is the same as the formula in Equation (3).
As an alternative approach, one could begin by considering the power sum, or sum of order α,

Sα “

ˆ

ř

i
pα

i

˙1{α
(e.g., [18] (pp. 138–139). Strict Schur-concavity, which is discussed below as an

important property of an entropy and one that H in Equation (1) has, requires that the parameter
α ă 1 [18] (pp. 138–139). Since pi ě 0 (i = 1, . . . , n), a further restriction is that α be positive and
hence 0 ă α ă 1 for the power sum Sα. In order for Sα to comply with the value-validity condition in
Equation (11), it is clear that Sα can only be the power sum of the non-modal probabilities so that:

Sαpp2, ..., pnq “

˜

n
ÿ

i“2

pα
i

¸1{α

, 0 ă α ă 1 (17)
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with SαpP0
nq “ 0 and SαpP1

nq “ pn´ 1q1{α{n for the probability distributions in Equation (5).
A reasonable upper bound would be Sαpp1

nq “ n ´ 1. This requirement is met for α “ 1{2 in

Equation (17) and by the addition of
n
ř

i“2
pi, resulting in:

S1{2pp2, ..., pnq ` S1pp2, ..., pnq “

˜

n
ÿ

i“2

?
pi

¸2

`

n
ÿ

i“2

pi (18)

which is the same as Equation (16) and for which HKpP1
nq “ n´ 1.

3.2. Properties of HK

The properties of HK in Equation (16), some of which are readily apparent from its definition, can
be outlined as follows:

Property 1. HK is a continuous function of all its individual arguments p1, ..., pn.

Property 2. HK is (permutation) symmetric in the pipi “ 1, ..., nq.

Property 3. HK is zero-indifferent (expansible), i.e.,

HKpp1, ..., pn, 0, ..., 0q “ HKpp1, ..., pnq

Property 4. For any given Pn “ pp1, ..., pnq and the P0
n and P1

n in Equation (5):

HKpP0
nq ď HKpPnq ď HKpP1

nq; HKpP0
nq “ 0, HKpP1

nq “ n´ 1 (19)

Property 5. From Equation (19), HKpP1
nq is strictly increasing in n.

Property 6. HK is strictly Schur-concave so that, if Pn “ pp1, ..., pnq is majorized by Qn “ pq1, ..., qnq

(denoted by ă):
Pn ă Qn ñ HKpPnq ě HKpQnq (20)

with strict inequality unless Pn is simply a permutation of Qn.

Property 7. HK is concave, but not strictly concave.

Property 8. HK meets the value-validity condition in Equation (10) with HKpPλ
n q “ λpn´ 1q.

Proof of Property 6. The strict Schur-concavity of HK “

ˆ n
ř

i“2

?pi

˙2
` 1´ p1 follows immediately

from the partial derivatives:

BHK
Bp1

“ ´1;
BHK
Bpi

“ p´1{2
i

n
ÿ

j“2

a

pj, i “ 2, ..., n

and the fact that BHK{Bpi is strictly increasing in i = 1, . . . , n (unless pi “ pi`1) ([18] (p. 84)).
The majorization Pn ă Qn in Equation (20) is a more precise statement than the vague notion that the
components of Pn are “more nearly equal” or “less spread out” than are those of Qn. By definition, if

n
ř

i“1
pi “

n
ř

i“1
qi (and with the ordering in Equation (14) for Pn and Qn):

Pn ă Qn if
j
ÿ

i“1

pi ď

j
ÿ

i“1

qi, j “ 1, ..., n´ 1

([18] (p. 8)). 2
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Proof of Property 7. From Equation (16) and for the probability distributions Pn and Qn and all
λ P r0, 1s:

HK rλPn ` p1´ λqQns “

«

n
ÿ

i“2

pλpi ` p1´ λqqiq
1{2

ff2

` λ
n
ÿ

i“2

pi ` p1´ λq
n
ÿ

i“1

qi (21)

From Minkowski’s inequality (e.g., [19] (p. 175)):

«

n
ÿ

i“2

pλpi ` p1´ λqqiq
1{2

ff2

ě

«

n
ÿ

i“2

pλpiq
1{2

ff2

`

«

n
ÿ

i“2

pp1´ λqqiq
1{2

ff2

(22)

so that, from Equations (21) and (22):

HKrλPn ` p1´ λqQns ě λ

«

ˆ n
ř

i“2

?pi

˙2
`

n
ř

i“2
pi

ff

` p1´ λq

«

ˆ n
ř

i“2

?qi

˙2
`

n
ř

i“2
qi

ff

“

“ λHKpPnq ` p1´ λqHKpQnq

(23)

proving that HK is concave. However, and importantly, HK is not strictly concave since the inequality
in Equation (23) is not strict for all Pn and Qn such as for Pn “ P1

n and Qn “ P0
n in Equation (5) when

HKpPλ
n q “ HKrλP1

n ` p1´ λqP0
ns “ λHKpP1

nq ` p1´ λqHKpP0
nq “ λpn´ 1q (24)

as required by the value-validity conditions in Equations (10) and (11). 2

‚ Note 1: If a measure (function) M is strictly concave so that, instead of Equation (23), the inequality
MrλPn ` p1´ λqQns ą λMpPnq ` p1´ λqMpQnq is strict for all Pn, Qn, and λ P p0, 1q, then the
condition in Equation (11) cannot be met. The H in Equation (1) is one such measure.

‚ Note 2: The extremal values HK
`

P1
n
˘

“ HK p1{n, . . . , 1{nq “ n´ 1 for a measure of randomness or
uncertainty is also a logical requirement for valid difference comparisons. As a particular case of
the proportional difference comparisons in Equation (2c), and for any integer m < n:

HKpP1
n`mq ´ HKpP1

nq “ HKpP1
nq ´ HKpP1

n´mq (25)

i.e., adding an amount m to n results in the same absolute change in the value of HK as does
subtracting m from n in the equiprobable case. Or, in terms of the function f where HKpP1

nq “ f pnq,
Equation (25) can be expressed more conveniently as:

f pn`mq ´ f pnq “ f pnq ´ f pn´mq (26)

The general solution of the functional equation in Equation (26) is f pnq “ an` b with real constants
a and b [20] (p. 82), which equals HKpP1

nq for a = 1 and b = ´1.
‚ Note 3: For the binary case of n = 2, HKpP1

2 q “ HKp0.5, 0.5q “ 1, which equals H(0.5, 0.5) in
Equation (1) if the base-2 logarithm is used. In fact, H(0.5, 0.5) = 1 is an axiom or required property,
the normalization axiom, frequently used in information theory to justify the use of the base-2
logarithm in Equation (1) and bits as the unit of measurement [14] (Chapter 1). The binary entropy
HKp1´ p, pq “ 2p for p ď 0.5 or:

HKp1´ p, pq “ 1´|1´ 2p| for all p P r0, 1s
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4. Generalization of HK

Instead of the pairwise geometric means in Equation (15), one could consider power means, or
arithmetic means of order α, and hence the following parameterized family of entropies:

HKα “

n
ÿ

i“2

n
ÿ

j“2

Mαppi, pjq `

n
ÿ

i“2

pi; Mαppi, pjq “

˜

pα
i ` pα

j

2

¸1{α

, ´8 ă α ď 0 (27)

of which HK in Equations (15) and (16) is the particular member HK0 as α Ñ 0 . Since a measure
of randomness (uncertainty) should be zero-indifferent (see Property 3 of HK), it is clear from the
formula in Equation (27) that α cannot be positive, i.e., α ď 0 where α “ 0 means the limit when α Ñ 0 .
If pi “ 0, pj “ 0, or pi “ pj “ 0, Mαppi, pjq is taken to be 0 for α ď 0 (see, e.g., [21] (Chapter 2) for
the properties of such power means). One of the important properties of Mαppi, pjq is that it is a
non-decreasing function of α pfor ´8 ă α ă 8q and is strictly increasing unless pi “ pj. Besides this
Mα, there are other types of means that could be considered (e.g., [18] (pp. 139–145), [22]).

Since Mαppi, pjq is strictly increasing in α pif pi ‰ pjq, it follows from Equation (27) that, for any
probability distribution Pn “ pp1, ..., pnq:

HLpPnq ď HKαpPnq ď HKpPnq for all α P p´8, 0q (28)

where the lower limit HLpPnq “ HKp´8qpPnq is the limit of HKα as α Ñ ´8 and HKpPnq is defined in
Equations (15) and (16) and is the limit of HKαpPnq as α Ñ 0 . The inequalities in Equation (28) are strict
unless Pn equals P0

n or P1
n in Equation (5).

Each member of HKα has the same types of properties as those of HK discussed above. The strict
Schur-concavity of HKα follows from the fact that (a) HKα is (permutation) symmetric in the

pi pi “ 1, ..., nq and (b) the partial derivatives, after setting
n
ř

i“2
pi “ 1´ p1 in Equation (27):

BHKα

Bp1
“ ´1,

BHKα

Bpi
“

n
ÿ

j“2

˜

pα
j p´α

i ` 1

2

¸p1´αq{α

, i “ 2, ..., n

are clearly strictly increasing in i = 1, . . . , n (for pi ą pi` 1) for all α P p´8, 1q. The case when α Ñ 0
was proved in the preceding subsection.

As with any reasonable measure of randomness or uncertainty, each member of HKα in
Equation (27) is a compound measure consisting of two components: the dimension of the distribution
or vector Pn and the uniformity (evenness) with which the elements of Pn are distributed. For any
probability distribution Pn “ pp1, ..., pnq, this fact can be most simply represented by:

HKαpPnq “ HKαpP1
nqH

˚
KαpPnq, H˚KαpPnq P r0, 1s (29)

where HKαpP1
nq “ n ´ 1 for the uniform distribution P1

n in Equation (5) and where
H˚KαpPnq “ HKαpPnq{pn´ 1q reflects the uniformity (evenness) of Pn. The H˚Kα basically controls for n.
For the distribution in Equation (6), H˚KαpP

λ
n q “ λ.

The limiting member of HL in Equation (28) as α Ñ ´8 is defined by:

HL “

n
ÿ

i“2

n
ÿ

j“2

min
 

pi, pj
(

`

n
ÿ

i“2

pi “

n
ÿ

i“1

n
ÿ

j“1

min
 

pi, pj
(

´ 1 (30a)

“ 2
n
ÿ

i“2

pi´ 1qpi (30b)
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where the expression in Equation (30b) can easily be seen to follow directly from Equation (30a)
(remembering again the order in Equation (14)). The second expression in Equation (30a) has been
briefly mentioned by Morales et al. [23] and the form in Equation (30b), divided by 2, has been
suggested by Patil and Taillie [24] as one potential measure of diversity.

5. Comparative Analysis

5.1. Why the Preference for HK

From a practical point of view, what sets HK in Equation (3) or Equation (16) apart from any other
member of the family HKα in Equation (27) is its ease of computation. Its values can easily be computed
on a hand calculator for any probability distribution Pn even when the dimension n is quite large.
For other members of HKα, pn´ 1q2 pairwise means have to be computed, which becomes practically
impossible without the use of a computer program even when n is not large. The computational effort
for the member HL (when α Ñ ´8 ) is somewhat less than for other members. Nevertheless, the
apparently simpler formula for HL in Equation (30b) requires that all pi be ordered as in Equation (14),
which can be very tedious if done manually and nearly impossible if n is large.

The HK is also favored over other members of HKα when considering the agreement with some
other measure based on Euclidean distance and the familiar standard deviation. Specifically, for
any probability distribution Pn “ pp1, ..., pnq and P1

n “ p1{n, ..., 1{nq, consider the following linearly
decreasing function of the distance dpPn, P1

nq:

DpPnq “ pn´ 1q
„

1´
c

n
n´ 1

dpPn, P1
nq



“ pn´ 1q
ˆ

1´
n

?
n´ 1

sn

˙

“ pn´ 1qCNV (31)

where sn is the standard deviation of p1, ..., pn (with devisor n rather than n – 1) and CNV is the coefficient
of nominal variation [25,26]. It is clear from Equation (31) that, for P0

n and P1
n in Equation (5), DpP0

nq “ 0
and DpP1

nq “ n´ 1. Also, for the lambda distribution in Equation (6), DpPλ
n q “ λDpP1

nq “ λpn´ 1q, so
that D satisfies the value-validity condition in Equation (10). Of course, D is not zero-indifferent (see
Property 3 for HK).

Since the Euclidean distance and the standard deviation are such universally used measures, it is
to be expected that an acceptable measure of randomness (uncertainty) should not differ substantially
from D in Equation (31). From numerical examples, it is seen that values of HK in Equation (16) tend
to be closer to those of D in Equation (31) than are the values of any other member of the HKα family in
Equation (27). In order to demonstrate this fact, a computer simulation was used to generate a number
of random distributions using the following algorithm. For each randomly generated probability
distribution Pn “ pp1, ..., pnq, n was first generated as a random integer between 3 and 20, inclusive.
Then, with the ordering in Equation (14), each pi was generated as a random number (to 5 decimal
places) within the following intervals:

1
n
ď pi ď 1

1´
i´1
ř

j“1
pj

n´ pi´ 1q
ď pi ď min

$

&

%

pi´1, 1´
i´1
ÿ

j“1

pj

,

.

-

, i “ 2, . . . , n´ 1

and finally

pn “ 1´
n´1
ÿ

i“1

pi

For each such generated distribution, the values of HK, HL, and D were computed according
to the formulas in Equations (16), (30b) and (31) as were their corresponding uniformity (evenness)
indices from Equation (29). After excluding some (five) distributions Pn that were nearly equal to
P0

n or P1
n in Equation (5), the results for 30 different distributions are summarized in Table 1.
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Table 1. Values of HK , HL, and D in Equations (16), (30b), and (31) and of their corresponding uniformity
(evenness) indices from Equation (29) based on 30 randomly generated probability distributions.

Data Set n HK HL D H˚K H˚L D˚

1 16 2.17 1.28 3.89 0.14 0.09 0.26
2 19 11.14 10.32 11.22 0.62 0.57 0.62
3 3 0.96 0.82 0.97 0.48 0.41 0.49
4 18 4.28 3.21 5.05 0.25 0.19 0.15
5 15 1.84 1.40 2.08 0.13 0.10 0.15
6 15 12.65 11.42 12.57 0.90 0.82 0.90
7 13 10.37 9.93 10.34 0.86 0.83 0.86
8 15 4.13 3.01 3.76 0.30 0.22 0.27
9 7 5.38 4.83 5.25 0.90 0.81 0.88

10 4 0.78 0.65 0.86 0.26 0.22 0.29
11 12 1.67 1.23 3.83 0.15 0.11 0.35
12 17 14.71 14.56 14.71 0.92 0.91 0.92
13 14 4.09 3.88 4.10 0.31 0.30 0.32
14 8 6.04 5.39 5.95 0.86 0.77 0.85
15 17 10.01 9.03 10.13 0.63 0.56 0.63
16 5 0.57 0.41 0.74 0.14 0.10 0.19
17 10 4.85 3.82 5.10 0.54 0.42 0.57
18 5 1.00 0.73 1.27 0.25 0.18 0.32
19 5 2.05 1.16 2.09 0.51 0.40 0.52
20 19 12.00 11.05 12.06 0.67 0.61 0.67
21 19 13.78 13.64 13.78 0.77 0.76 0.77
22 17 6.93 6.33 7.40 0.43 0.40 0.46
23 12 8.16 7.71 8.17 0.74 0.70 0.74
24 20 13.56 11.98 13.83 0.71 0.63 0.73
25 17 3.47 3.07 3.58 0.22 0.19 0.22
26 13 1.15 0.72 2.29 0.10 0.06 0.19
27 14 10.69 9.66 10.65 0.82 0.74 0.82
28 12 1.68 1.66 1.68 0.15 0.15 0.15
29 20 9.72 6.88 11.09 0.51 0.36 0.58
30 9 5.23 4.20 5.36 0.65 0.53 0.67

It is apparent from the data in Table 1 that HK agrees quite closely with D and clearly more so than
does HL. Exceptions are Data Sets 1, 11, and 26 when the HK-values differ considerably from those of
D, but still less so than do the HL-values. If D is used to predict HK (i.e., for the fitted model ĤK “ D),
it is found for the 30 data sets in Table 1 that the coefficient of determination, when properly computed
as R2 “ 1´

ř

pHK ´Dq2{
ř

pHK ´ HKq
2 [27], becomes R2 “ 0.98 (i.e., 98% of the variation of HK is

explained by the fitted model ĤK “ D) as compared to R2 “ 0.91 in the case of HL. Also, the root mean
square (RMS) of the differences between the values of HK and D is found to be 0.64 as compared to 1.33
for HL and D. Similarly, when comparing the values of the indices H˚K, H˚L , and D˚, the H˚K-values
are considerably closer to the D˚-values than are the H˚L -values, with RMSpH˚K, D˚q “ 0.05 and
RMSpH˚L , D˚q “ 0.10.

No other member of HKα in Equation (27) is generally in as close agreement with D as is HK, but
more so than HL. This can be explained by the fact that (a) whenever there is a notable difference
between the values of HK and D, those of HK tend to be less than those of D as seen from Table 1; and
(b) HKαpPnq is a strictly increasing function of α for any given Pn other than P0

n and P1
n in Equation (5).

5.2. Comparative Weights on p1, ..., pn

The difference between values of HK and HL as demonstrated in Table 1, or between any of the
members of the HKα family, is due to the fact that HKα places different weights or emphases on the pi
(i = 1, . . . , n) depending upon α. When considering each pairwise mean Mαppi, pjq in Equation (27),
pi and pj are weighted equally only when α “ 1. Then, since (a) Mαppi, pjq is strictly increasing in
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α pfor pi ‰ pjq and (b) HKα is zero-indifferent (Property 3 of HK) only for α ď 0, the HK0 “ HK in
Equations (15) and (16) is the zero-indifferent member of HKα that is always closest in value to HK1

and whose pairwise means M0ppi, pjq are always closest to M1ppi, pjq for all i and j.
Besides the weights placed on each component of all pairs ppi, pjq, the weights given to each

individual pi pi “ 2, ..., nq can also be examined by expressing the HKα in Equation (27) as the following
weighted sum:

HKα “

n
ÿ

i“2

»

–

n
ÿ

j“2

˜

pα
i ` pα

j

2

¸1{α
ˆ

1
pi

˙

` 1

fi

flpi “

n
ÿ

i“2

wαi pi (32)

which shows that the weights wαi pi “ 2, ..., nq are increasing in both α and i. In the case of

HK, with α Ñ 0 in Equation (32), w0i “
n
ř

j“2

b

pj{pi ` 1 for i = 2, . . . , n whereas, for HL when

α Ñ ´8, w´8i “
n
ř

j“2
mintpi, pjup´1

i ` 1 for i = 2, . . . , n. These weights for HK are basically a

compromise between the weights for HL and those for HK1. Note also that these weights for HL
from Equation (32) can differ substantially from those in Equation (30b) as can the weights for HK1

from Equation (32) when compared with the weights from the expression HK1 “ n
n
ř

i“2
pi.

When comparing HK and HL, small pi’s are given more weight by HK than by HL and the
addition of low probability components to a set of events has more effect on HK than on HL. However,
when weighting the pros and cons of such relative sensitivity to small pi’s, it is important to keep
in mind the relationship in Equation (29) and not jump to conclusion. For example, when going
from P4 “ p0.40, 0.30, 0.20, 0.10q to Q6 “ p0.40, 0.30, 0.20, 0.05, 0.04, 0.01q, HK increases from
HKpP4q “ 2.32 to HKpQ6q “ 2.91, a 25% increase, while HLpP4q “ 2.00 and HLpQ6q “ 2.12, a 6%
increase. However, from Equation (29), the dimensional component of both HK and HL increased by
67% (from n ´ 1 = 3 to n ´ 1 = 5) whereas the uniformity (evenness) components decreased by 25% in
the case of HK (from 2.32/3 to 2.91/5) and 37% for HL (from 2.00/3 to 2.12/5). In this regard the 25%
increase in randomness (uncertainty) as measured by HK does not appear unreasonable.

5.3. Inconsistent Orderings

Although all members of the family HKα in Equation (27) have the same types of properties,
including the value-validity property in Equation (10), this does not necessarily imply that different
members will always produce the same results for the comparisons in Equation (2). Such lack of
consistency is inevitable whenever measures are used to summarize data sets into a single number.
However, as stated by Patil and Taillie [24] (p. 551), “Inconsistent measures . . . are a familiar problem
and should not be a cause for undue pessimism”, pointing out the fact that, for instance, the arithmetic
mean and the median are not consistent measures of average (central tendency) and the standard
deviation and the mean absolute deviation are inconsistent measures of variability (spread). One type
of consistent results for all members of HKα is the size (order) comparison HKαpPnq ą HKαpQnq in
Equation (2a) whenever Pn is majorized by Qn and Pn is not a permutation of Qn. This is the result of
Equation (20) and the fact, as proved above, that HKα is strictly Schur-concave for all α P p´8, 1q.

It is only when two measures M1 and M2 have a perfect linear relationship that (a) the comparison
results from Equation (2) will always be consistent and (b) the compliance by M1 with the value-validity
conditions in Equations (10) and (11) also implies compliance by M2. In the case of HK and HL, and
from the simulation results in Table 1, Pearson’s correlation coefficient between HK and HL is found
to be r = 0.993, indicating a near perfect linear relationship between HK and HL. However, since
the linearity is not truly perfect or exact, HK and HL will not always give the same results for the
comparisons in Equation (2) as is evident from some of the data in Table 1.
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6. Discussion

The value-validity condition in Equation (10) as a necessary requirement for valid difference
comparisons as in Equation (2) is based on Euclidean distances. Such distances are also being used as a
basis for the preference of HK over other potential members of the family of entropies in Equation (27).
This distance metric is the standard one in engineering and science. The use of any other “distance”
measures, such as directed divergencies discussed below, would seem to require particular justification
in the context of value-validity assessment.

As a simple numerical example illustrating the reasoning behind the value-validity arguments in
Equations (6)–(13) and the use of Euclidean distances, consider the following probability distributions
based on Pλ

n in Equation (6):
P0

5 “
!

pp0qi

)

“ p1, 0, 0, 0, 0q

P0.5
5 “

!

pp0.5q
i

)

“ p0.6, 0.1, 0.1, 0.1, 0.1q

P1
5 “

!

pp1qi

)

“ p0.2, 0.2, 0.2, 0.2, 0.2q

The Euclidean distances d
`

P0.5
5 , P0

5
˘

“ d
`

P0.5
5 , P1

5
˘

and
ˇ

ˇ

ˇ
pp0.5q

i ´ pp0qi

ˇ

ˇ

ˇ
“

ˇ

ˇ

ˇ
pp0.5q

i ´ pp1qi

ˇ

ˇ

ˇ
for

i “ 1, ..., 5. A measure of uncertainty (randomness) M that takes on reasonable numerical
values within the general bounds MpP0

nq and MpP1
nq should in this example satisfy the equality

ˇ

ˇMpP0.5
5 q ´MpP0

5 q
ˇ

ˇ “
ˇ

ˇMpP0.5
5 q ´MpP1

5 q
ˇ

ˇ so that, with MpP0
5 q “ 0, MpP0.5

5 q “ MpP1
5 q{2. That is,

since P0.5
5 is the same distance from P0

5 as it is from P1
5 and each element of P0.5

5 is the same
distance from the corresponding element of P0

n as it is from that of P1
5 , M would reflect this fact

by taking on the value MpP0.5
5 q “ MpP1

5 q{2. The HK in Equation (3) or Equation (16) meets this
requirement with HKpP0.5

5 q “ HKpP1
5 q{2 “ p5´ 1q{2 “ 2. However, in the case of H in Equation (1),

HpP0.5
5 q “ 1.23 ąą HpP1

5 q{2 “ 0.80, a substantial overstatement of the extent of the uncertainty
or randomness.

A similar comparison between HK and H for Pλ
5 with λ “ 0.25 and λ “ 0.75 is given in Table 2

together with the results from some other probability distributions. The results are also given in
terms of the normalized measures H˚KpPnq “ HKpPnq{pn´ 1q and H˚pPnq “ HpPnq{log n as well as
D˚pPnq “ DpPnq{pn´ 1q for D in Equation (31). As seen from Table 2, while H˚KpP

λ
5 q “ D˚pPλ

5 q “ λ,
H˚pPλ

5 q ąą λ for both λ-values. For all distributions in Table 2, the values of H˚K are quite comparable
to those of D˚, but those of H˚ are all considerably greater.

Table 2. Comparative results for H in Equation (1) and HK in Equation (16) and their normalized forms
as well as D˚ from Equation (31) for various probability distributions.

Ppiqn HK H˚K H H˚ D˚

Pp1q5 “ P0.75
5 “ p0.40, 0.15, 0.15, 0.15, 0.15q 3.00 0.75 1.50 0.93 0.75

Pp2q5 “ P0.25
5 “ p0.80, 0.05, 0.05, 0.05, 0.05q 1.00 0.25 0.78 0.48 0.25

Pp3q10 “ p0.26, 0.15, 0.15, 0.10, ..., 0.03q 6.87 0.76 2.09 0.91 0.77

Pp4q14 “ p0.27, 0.25, 0.15, 0.07, ..., 0.01q 8.22 0.63 2.10 0.80 0.67

Pp5q4 “ p0.40, 0.30, 0.20, 0.10q 2.32 0.77 1.28 0.92 0.74

Pp6q5 “ p0.50, 0.20, 0.10, 0.10, 0.10q 2.45 0.61 1.36 0.84 0.61

Pp7q5 “ p0.70, 0.10, 0.10, 0.05, 0.05q 1.47 0.37 1.01 0.63 0.37

Pp8q5 “ p0.30, 0.20, 0.20, 0.20, 0.10q 3.45 0.86 1.56 0.97 0.84

The distributions Pp3q10 –Pp8q5 are included in Table 2 to exemplify the types of contradictory results
that may be obtained when making the difference comparisons in Equation (2) based on HK versus
H. The distributions Pp3q10 and Pp4q14 in Table 2 are real data for the market shares (proportions) of
the carbonated soft drinks industry in the U.S. and the world-wide market shares of cell phones,
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respectively (obtained by Googling “market shares” by industries). Some of the smaller market shares
are not given in Table 2 because of space limitation, but were included in the computations. The H,
which has been used as a measure of market concentration or rather of its converse, deconcentration
(e.g., [28]), would indicate that these two industries have nearly the same market deconcentration.
By contrast, when considered in terms of HK for which such comparison is valid because of the
value-validity property of HK, the results in Table 2 show that the cell-phone industry is about 20%
more deconcentrated than the soft-drink industry. Similarly, for the fictitious distributions Pp5q4 –Pp8q5

in Table 2, the type of difference comparison in Equation (2b) shows that HK

´

Pp8q5

¯

´ HK

´

Pp5q4

¯

“

1.13 ą HK

´

Pp6q5

¯

´ HK

´

Pp7q5

¯

“ 0.98 whereas the result would have been the reverse had H been

used for this comparison, with H
´

Pp8q5

¯

´ H
´

Pp5q4

¯

“ 0.28 ă H
´

Pp6q5

¯

´ H
´

Pp7q5

¯

“ 0.35.
Instead of using the Euclidean metric to formulate the value-validity conditions in Section 2,

one could perhaps consider other potential “distance” measures such as divergencies, also referred
to as “statistical distances”. The best known such measure of the divergence of the distribution
Pn “ pp1, ..., pnq from the distribution Qn “ pq1, ..., qnq is the Kullback-Leibler divergence [29]
defined as:

KLDpPn : Qnq “

n
ÿ

i“1

pi log
ˆ

pi
qi

˙

This measure is directional or asymmetric in Pn and Qn. A symmetric measure is the
so-called Jensen–Shannon divergence (JSD) (e.g., [30–33]), which can be expressed in terms of the
Kullback–Leibler divergence (KLD) as:

JSDpPn, Qnq “
1
2

KLDpPn : Mnq `
1
2

KLDpQn : Mnq

where Mn “ pPn `Qnq{2. Neither KLD nor JSD are metrics, but
a

JSD is [34].
Consider now the family of distributions Pλ

n in Equation (6) and the extreme members of P0
n and P1

n
in Equation (5). For the case of n = 5, for example, it is found that KLDpP0

5 : P0.5
5 q “ 0.51 (KLDpP0.5

5 : P0
5 q

is undefined) and KLDpP1
5 : P0.5

5 q “ 0.33. In the case of JSD, M5pP0.5
5 , P0

5 q “ p0.8, 0.05, ..., 0.05q so
that JSDpP0.5

5 , P0
5 q “ 0.16. Similarly, M5pP0.5

5 , P1
5 q “ p0.40, 0.15, ..., 0.15q and JSDpP0.5

5 , P1
5 q “ 0.09.

These results differ greatly from those based on Euclidean distances for which d
`

P0.5
5 , P0

5
˘

“ d
`

P0.5
5 , P1

5
˘

.
The fact that d

`

P0.5
n , P0

n
˘

“ d
`

P0.5
n , P1

n
˘

for all n, which is also reflected by the normalized H˚KpP
0.5
n q “ 0.5,

corresponds to the fact that each component of P0.5
n is of equal distance from the corresponding

components of P0
n and P1

n . However, no such correspondence exists for the divergence measures KLD
and JSD.

The derivation of HK in Equation (3) or Equation (16) is based on the exclusion of the modal

probability p1. Of course, p1 can enter the expression for HK since
n
ř

i“2
pi “ 1´ p1. One may wonder

what the result would be if a different pi were to be excluded. If the smallest pi is excluded, the measure
would not be zero-indifferent (expansible). If any pi other than p1 is excluded, then the measure would
not be strictly Schur-concave as can be verified from the proof of Property 6 of HK. This property is
essential for any measure of uncertainty (randomness). In fact, the exclusion of p1 makes HK unique in
this regard.

It should also be emphasized that even though the entropy H in Equation (1) lacks
the value-validity property, it has many of the same properties as HK and has undoubtedly
numerous useful and appropriate applications as demonstrated in the extensive published literature.
The problems with H arise when it is used uncritically and indiscriminately in fields far from its origin:
a statistical concept of communication theory. Both Shannon [35] and Wiener [36] cautioned against
such uncritical applications. It is when H or its normalized form H˚ is used as a summary measure
(statistic) of various attributes (characteristics) and when its values are interpreted and compared that
its lack of the value-validity property can lead to incorrect and misleading results and conclusions.
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This is the motivation for introducing the new entropy HK as a measure that overcomes the lack of
value validity by H.

7. Statistical Inference about HK

Consider now the case when each pi “ ni{N is the multinomial sample estimate of the unknown

population probability πi for i = 1, . . . , n and based on sample size N “
n
ř

i“1
ni. It may then be of

interest to investigate the potential statistical bias of HKpPnq and to construct confidence intervals for
the population measure HKpΠnq for the population probability distribution Πn “ pπ1, ..., πnq.

7.1. Bias

Using bold letters to distinguish random variables from their sample values and expanding
HKpPnq in Equation (16) into a Taylor series about pi “ πi for i “ 2, ..., n, the following result
is obtained:

HKpPnq “ HKpΠnq `
n
ř

i“2

ˆ

1?
πi

n
ř

i“2

?
πi ` 1

˙

ppi ´ πiq

` 1
4

n
ř

i“2

ˆ

´π
´3{2
i

n
ř

i“2

?
πi ` π´1

i

˙

`

pi ´ πi
˘2

` 1
4

n
ř

i“2

n
ř

j“2
i‰j

´

1?
πiπj

¯

`

pi ´ πi
˘

´

pj ´ πj

¯

` ...

(33)

Taking the expected value of each side of Equation (33) and using the well-known expectations
Eppi ´ πiq “ 0, Eppi ´ πiq

2
“ πip1´ πiq{N, and Erppi ´ πiqppj ´ πjqs “ ´πiπj{N for i, j “ 2, ..., n, it is

found that:

ErHKpPnqs “ HKpΠnq `
1

4N

«

´

˜

n
ÿ

i“2

?
πi

¸

n
ÿ

i“2

1
?

πi
` n´ 1

ff

`OpN´3{2q (34)

Equation (34) shows that the estimator HKpPnq, while asymptotically unbiased, does have a small
bias for finite sample size N. However, unless N is small, this bias can effectively be ignored for all
practical purposes.

7.2. Confidence Interval Construction

Under multinomial sampling and based on the delta method of large sample theory (e.g., [37]
(Chapter 14)), the following convergence to the normal distribution holds:

?
NrHKpPnq ´ HKpΠnqs

d
Ñ Normalp0, σ2q (35)

where, in terms of partial derivatives:

σ2 “

n
ÿ

i“1

πi

ˆ

BHKpΠnq

Bπi

˙2
´

«

n
ÿ

i“1

πi

ˆ

BHKpΠnq

Bπi

˙

ff2

(36)

That is, for large N, HKpPnq is approximately normally distributed with mean HKpΠnq and
variance VarrHKpPnqs “ σ2{N or standard error SE “ σ{

?
N. The limiting normal distribution in

Equation (35) also holds when, as is necessary in practice, the σ2 is replaced with the estimated
variance σ̂2 by substituting the sample estimates (proportions) pi for the population probabilities πi
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for i = 1, . . . , n, resulting in the estimated standard error
^

SE “ σ̂{
?

N. It then readily follows from
Equations (16) and (36) that:

^

SE “ N´1{2

#

n

«

HKpPnq ´

n
ÿ

i“2

pi

ff

` HKpPnq r1´ HKpPnqs

+1{2

(37)

As a simple numerical example, consider the sample distribution P4 “ p0.4, 0.3, 0.25, 0.05q
based on sample size N = 100. From Equation (16), HKpP4q “ 2.22 and, from Equation (37),
^

SE “ 0.19. Therefore, because of Equation (35), an approximate 95% confidence interval for the
population measure HKpΠnq becomes 2.22˘ 1.96p0.19q, or [1.85, 2.59]. Statistical hypotheses such as
H0 : HKpΠnq “ HKpΠmq versus H1 : HKpΠnq ą HKpΠmq can also be tested based on Equations (35)
and (37).

8. Conclusions

Since the ubiquitous Boltzmann–Shannon entropy H is only valid for making size (order or “larger
than”) comparisons, the entropy HK is being introduced as an alternative measure of randomness
(uncertainty) that is more informative than H in the sense that HK can also be used for making valid
difference comparisons as in Equations (2b) and (2c). The HK, which is a particular member of the
family of entropies HKα and is basically a compromise between the members HK1 and HL “ HKp´8q,
has the types of desirable properties one would reasonably expect of a randomness (uncertainty)
measure. One of the differences between HK and HL is that small probabilities have a greater influence
on HK than on HL. The addition of some small probability events causes a larger increase in HK than
in HL, but causes a smaller decrease in the uniformity (evenness) index H˚K than in H˚L as defined in
Equation (29).

Besides being computationally most simple, which is certainly a practical advantage, HK is also
that member of HKα that appears to be most nearly linearly (and decreasingly) related to the Euclidean
distance between the points Pn “ pp1, ..., pnq and P1

n “ p1{n, ..., 1{nq or to the standard deviation sn

of p1, ..., pn. The sn is the usual measure of variability (spread) for a set of data, although it is not
resistant against “outliers” (extreme and suspect data points). However, “outliers” are not a concern
when dealing with probabilities pipi “ 1, ..., nq. Therefore, sn cannot justifiably be criticized for being
excessively influenced by large or small pi’s, with the same argument extending to HK.
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