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Abstract: Several reproducibility probability (RP)-estimators for the binomial, sign, Wilcoxon signed
rank and Kendall tests are studied. Their behavior in terms of MSE is investigated, as well as their
performances for RP-testing. Two classes of estimators are considered: the semi-parametric one,
where RP-estimators are derived from the expression of the exact or approximated power function,
and the non-parametric one, whose RP-estimators are obtained on the basis of the nonparametric
plug-in principle. In order to evaluate the precision of RP-estimators for each test, the MSE is
computed, and the best overall estimator turns out to belong to the semi-parametric class. Then,
in order to evaluate the RP-testing performances provided by RP estimators for each test, the
disagreement between the RP-testing decision rule, i.e., “accept H0 if the RP-estimate is lower than,
or equal to, 1/2, and reject H0 otherwise”, and the classical one (based on the critical value or on
the p-value) is obtained. It is shown that the RP-based testing decision for some semi-parametric RP
estimators exactly replicates the classical one. In many situations, the RP-estimator replicating the
classical decision rule also provides the best MSE.

Keywords: asymptotic power approximation; sign test; binomial test; Wilcoxon signed rank test;
Kendall test; stability of test outcomes; reproducibility of tests outcomes

1. Introduction

Statistical tests are usually applied in almost all fields of science to evaluate experimental
results. The reproducibility probability (RP) is the true power of a statistical test, and its estimation
provides useful information to evaluate the stability of statistical test results. Indeed, when
the Neyman–Pearson approach is adopted, that is the Type I error probability is fixed before
starting the experiment, the statistical test turns out to be a Bernoullian random variable (viz.
significant/non-significant), whose parameter is the RP. Therefore, looking at the RP estimate is the
natural perspective for evaluating the stability of test results: the higher the estimated RP, the more
stable the observed result is estimated to be; see [1]. RP estimation was applied, for example, in
the context of clinical trials [2–6]. Moreover, RP-testing, that is the adoption of the RP estimate to
evaluate the significance of statistical test results, can substitute the p-value testing [7,8]. In detail, the
RP-testing decision rule, which sounds very intuitive, states: “accept H0 if the RP-estimate is lower
than, or equal to, 1/2, and reject H0 otherwise”. We argue that the RP-testing rule can be adopted
in order to bypass the many, well-known criticisms raised by the p-value [9–13] In the context of
nonparametric tests, RP estimation has not yet been widely studied. The only works in this field
concern RP estimation and testing for the Wilcoxon rank sum test [14,15].

In this paper, some RP estimators for the most commonly-used nonparametric tests are
introduced and studied. Specifically, the sign test, the binomial test, the Kendall test and the
Wilcoxon signed rank test are considered. Both nonparametric and semi-parametric RP estimators
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are presented, for each test. Focus is placed on two features: (1) the behavior of different estimators
for a given test and their consequent comparison, for example in terms of MSE; (2) the validity, exact
or approximated, of the RP-testing rule based on the RP estimators presented here. For the first task,
we resort to some simulation studies, whereas appropriate theoretical results are developed for the
second one.

The theoretical framework of nonparametric RP estimation and testing is introduced in Section 2,
where the problems that can be encountered are explained in depth; then, the class of semi-parametric
estimators and that of nonparametric plug-in estimators are introduced, and some theoretical results
on RP-testing are provided. In Section 3, the sign test and the binomial test are considered:
semi-parametric RP estimation and testing for the binomial test are studied first; then, nonparametric
estimation techniques are studied for the same aim; finally, the sign test is considered, showing that
the results obtained for the binomial test hold true also for the sign test. RP estimation and testing
for the Wilcoxon signed rank test is studied in Section 4, where semi-parametric and nonparametric
plug-in estimators are considered and studied separately; then, the behavior of different estimators
is compared through simulation. The last test considered (Section 5) is the Kendall test of monotonic
association. As in the previous sections, semi-parametric and nonparametric estimators are studied
separately, then a simulation is run to compare the behavior of different estimators, in terms of
MSE and RP-testing performances. An example of the applications is shown in Section 6, and the
conclusions are reported in Section 7.

2. RP-Estimation and Testing in the Nonparametric Framework

2.1. The General Nonparametric Framework

Let tF be the true cumulative distribution function of a study variable X. This distribution
function is unknown and belongs to the class of distributions F . Assume that starting from a random
sample Xn = (X1, · · · , Xn) drawn from tF, it is of interest to solve the testing problem:

H0 : tF ∈ F0 vs H1 : tF ∈ F\F0 , (1)

where F0 ⊂ F . Let Tn = T (Xn) be the test statistic used to solve (1). There are two typical cases that
can be encountered when considering nonparametric tests:

(A) the exact and asymptotic distributions of Tn are known both under H0 and H1;
(B) the exact and asymptotic distributions of Tn are known under H0. Under H1, only the asymptotic

distribution can be derived.

Case (A) is rather an exception. The binomial and sign tests are examples of tests under
this case. Case (B) is the common situation: for almost all of the distribution-free tests, the exact
null-distribution of Tn can be derived by using permutations, combinatorics and ad hoc algorithms
(see, e.g., [16]). On the contrary, the non-null distribution can be derived only recurring to
large-sample approximations. A few examples include the Wilcoxon signed rank test, the Wilcoxon
rank sum test and the Kendall test.

Under both Cases (A) and (B), the knowledge of the exact null distribution of Tn allows the
definition of the exact test:

Ψα(Xn) =

{
1 if Tn ∈ Rn,α

0 if Tn /∈ Rn,α
, (2)

where, as usual, α denotes the Type I error probability and Rn,α is a level-α critical region
corresponding to the sample size n. For example, if the testing problem (1) is one-sided, the
critical region takes, without loss of generality, the form Rn,α = (tn,1−α, ∞), where tn,1−α is the
(1− α)-quantile of the null distribution G0 of Tn. Note that, if Tn is a discrete random variable, the
critical region Rn,α is exact, but conservative, i.e., its Type I error probability can be lower than α, since
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tn,1−α = inf {t : G0(t) ≥ 1− α)}. In practice, if the sample size n is sufficiently high, an asymptotic
test is usually preferred to avoid the computational effort needed to compute the exact distribution
of Tn. In particular, the following test is used:

Ψ̃α(Xn) =

{
1 if Tn ∈ R̃n,α

0 if Tn /∈ R̃n,α
, (3)

where R̃n,α is the level-α asymptotic critical region, which, considering the one-sided example
mentioned above, takes the form R̃n,α = (t̃n,1−α, ∞), where t̃n,1−α denotes the (1 − α)-quantile of
the large sample null distribution of Tn. Obviously, the tests Ψα and Ψ̃α become closer as the
sample size n increases, and they are asymptotically equivalent. However, whatever the sample
size is, there is a certain probability of disagreement between (2) and (3). To clearly explain
the definition of the probability of disagreement, consider sets A1, A2 and A defined as follows:
A1 =

{
xn : Ψα(xn) = 0 and Ψ̃α(xn) = 1

}
,A2 =

{
xn : Ψα(xn) = 1 and Ψ̃α(xn) = 0

}
, A = A1 ∪ A2.

Set A2 collects the realizations xn of Xn for which the null hypothesis is accepted by the asymptotic
test and rejected by the exact one. Conversely, set A1 collects the realizations xn of Xn for which
the null hypothesis is accepted by the exact test and rejected by the asymptotic one. Therefore, the
probability of disagreement between (2) and (3) is:

D(α, n, F) = PF(A) = PF(A2) + PF(A1). (4)

The differences between Cases (A) and (B) do not impact the definition of the statistical test to
solve (1), but they determine the way the power of the test and, therefore, the RP can be evaluated:
under Case (A), the power of the test can be exactly computed; under Case (B), the power can
be evaluated only approximately. In detail, under Case (A), the exact power Ψα corresponding
to the distribution F ∈ F can be computed as π(n, α, F) = PF(Tn ∈ Rn,α) = EF[Ψα(Xn)].
Consequently, the exact RP of the test (i.e., the exact “true power” of the test) coincides with
RP = π(n, α, tF) = Pt F(Tn ∈ Rn,α) = Et F[Ψα(Xn)]. Under Case (B), the exact power of Ψα can be
approximated by π̃(n, α, F) = P̃F(Tn ∈ Rn,α) = ẼF[Ψα(Xn)], where the symbols P̃F and Ẽ emphasize
that probability and expectation are computed according to the asymptotic distribution of Tn. In
this case, the approximated RP is R̃P = π̃(n, α, tF). Analogously, under Case (B), the power of Ψ̃α

can be approximated by πa(n, α, F) = P̃F(Tn ∈ R̃n,α) = ẼF[Ψ̃α(Xn)] and the approximate RP results
RPa = πa(n, α, tF). Obviously, the approximate power π̃(n, α, F) and πa(n, α, F) and the approximate
RP π̃(n, α, tF) and πa(n, α, tF), can be computed under Case (A), as well. Moreover, in this latter case,
it is also possible to compute the exact power of the approximate test. However, in practice, under
Case (A), if the computational burden is acceptable, the exact test and power are usually computed.
In the case of a huge computational cost, the asymptotic test and its approximate power are used. To
summarize, in Table 1, the possible approaches to compute the power of a test are represented under
the different scenarios that can arise under Cases (A) and (B). The background of the cell representing
the approaches commonly employed in practice are colored in gray.

Table 1. Possible approaches to compute the power of a test under the different scenarios related
to Cases (A) and (B). The cells with gray background represent the possible approaches commonly
employed in practice.

Case (A) Case (B)

Exact Test (Ψα) Asymptotic Test (Ψ̃α) Exact Test (Ψα) Asymptotic Test (Ψ̃α)

Computation of the Possible Possible Not Not
exact power Case (A.1) (not considered) Possible Possible
Computation of the Possible Possible Possible Possible
approximated power (not considered) Case (A.2) Case (B.1) Case (B.2)
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Under both Cases (A) and (B), it is possible to get an RP-estimator following several
methodologies. These methodologies can be divided into two main subgroups: semi-parametric
estimators and non-parametric estimators.

2.2. Semi-Parametric RP-Estimation and RP-Testing

As for the WRS test (see [14,15]), in common nonparametric tests, the asymptotic/exact
distribution of Tn depends on a vector θt of parameters defined as particular functionals of tF. In such
cases, the asymptotic/exact power can be interpreted as a function of θt instead of a functional of tF.
Now, a semi-parametric RP-estimator can be obtained by plugging an appropriate point estimator θ̂

of θt into the expression of the exact/asymptotic power:

• under Case (A.1), the semi-parametric RP-estimator is π̂ = π(n, α, θ̂);
• under Case (A.2) and Case (B.2), the semi-parametric RP-estimator is π̂a = πa(n, α, θ̂);
• under Case (B.1), the semi-parametric RP-estimator is ̂̃πa = π̃(n, α, θ̂).

As will be explained later, if the estimator θ̂ is appropriately chosen and the testing problem (1)
is one sided, the semi-parametric RP-estimator π̂ and π̂a can be used to replicate the tests Ψα and
Ψ̃α through the RP-testing technique: “accept H0 if the RP-estimate is lower or equal to 1/2 and
reject H0 otherwise”. For several non-parametric tests (see [8] for the general parametric case), if
the estimator θ̂ is appropriately chosen, it is possible to demonstrate that Tn ∈ Rn,α ⇔ π̂ > 1/2 or
Tn ∈ R̃n,α ⇔ π̂a > 1/2. Then, the exact and asymptotic tests can be rewritten as

Ψα(Xn) =

{
1 if π̂ > 1/2
0 if π̂ ≤ 1/2

and Ψ̃α(Xn) =

{
1 if π̂a > 1/2
0 if π̂a > 1/2

.

The above identities cover Cases (A.1), (A.2) and (B.2). In Case (B.1), the exact test cannot
generally be replicated through the RP-testing technique based on semi-parametric estimators.
However, the following lemma (proved in the Supplementary Material) describes a case in which
this is possible:

Lemma 1. Assume that the testing problem (1) is one sided and that the exact test based on the test statistic Tn

is Ψα(Xn) =

{
1 if Tn > tn,1−α

0 if Tn ≤ tn,1−α
. Moreover, assume that Tn−E[Tn ]√

Var[Tn ]

d→ N (0, 1), with E[Tn] = e(θt)

and Var[Tn] = v(θt). If θ̂ is such that Tn = e(θ̂), then:

1. the RP-based decision rule defined by ˆ̃πa = π̃(n, α, θ̂) = 1−Φ
(

tn,1−α−e(θ̂)√
v(θ̂)

)
exactly replicates the exact

test Ψα;

2. the RP-based decision rule defined by ˆ̃π∗a = 1−Φ
(

tn,1−α−e(θ̂)√
V̂

)
with V̂ any estimator for Var[Tn], exactly

replicates the exact test Ψα.

2.3. Non-Parametric RP-Estimation and RP-Testing: The Non-Parametric Plug-In Approach

As pointed out in [17] and in [3,18], it is possible to estimate the RP by using a non-parametric
plug-in estimator. Under Cases (A.1) and (B.1), it is possible to consider the plug-in estimators
π̂PI

e = PF̂n
(Tn > tn,1−α) = EF̂n

[Ψα(Xn)] where F̂n denotes the empirical cumulative distribution
function (ecdf). In practice, π̂PI

e coincides with the rejection rate computed performing test Ψα over

all nn possible samples of size n that can be drawn from the ecdf: π̂PI
e =

1
nn ∑

xi
n∈X (Xn)

Ψα(xi
n) where

X (Xn) denotes the set of all of the samples of size n that can be drawn with replacement from the
ecdf corresponding to Xn. Apart from some special cases, the analytical expression of π̂PI

e cannot be
derived. Consequently, it is usually approximated by the Monte-Carlo method: B samples of length
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n are drawn from the ecdf. The test Ψα is then performed over all of the B samples, and the plug-in
RP-estimate is computed as the rejection rate. In detail:

π̂PI =
1
B

B

∑
j=1

Ψα(X
j
n) (5)

where Xj
n denotes the j-th re-sample drawn from the ecdf. Similarly, under Case (A.2) and Case

(B.2), it is possible to define the plug-in RP-estimator starting from the asymptotic test obtaining

π̂PI
a,e =

1
nn ∑

xi
n∈X (Xn)

Ψ̃α(xi
n) and:

π̂PI
a =

1
B

B

∑
j=1

Ψ̃α(X
j
n) . (6)

The plug-in RP-estimators introduced above can be used to define the RP-based test

ΨPI,e
α (Xn) =

{
1 if π̂PI

e > 1/2
0 if π̂PI

e > 1/2
, Ψ̃PI,e

α (Xn) =

{
1 if π̂PI

a,e > 1/2
0 if π̂PI

a,e > 1/2
,

ΨPI
α (Xn) =

{
1 if π̂PI > 1/2
0 if π̂PI > 1/2

and Ψ̃PI
α (Xn) =

{
1 if π̂PI

a > 1/2
0 if π̂PI

a > 1/2
.

However, there are no general theoretical results assuring that ΨPI,e
α and Ψ̃PI,e

α or ΨPI
α and Ψ̃PI

α

are level-α tests equivalent to Ψα and Ψ̃α, respectively.

3. RP-Estimation and Testing for the Binomial and Sign Test

In this section, the performances of the semi-parametric and non-parametric RP estimators for
binomial and sign tests are evaluated. At first, the binomial test is considered. Let Xn = (X1, ..., Xn) be
a random sample drawn from the Bernoulli distribution with unknown parameter pt. The statistical
hypotheses of interest are:

H0 : pt ≤ p0 versus H1 : pt > p0 . (7)

The previous hypotheses can be tested by using the statistic P̂ = 1
n ∑n

i=1 Xi. The exact and
asymptotic distribution of P̂ is known both under H0 and under H1, and consequently, this test

falls under Case (A). Specifically, nP̂ ∼ Binomial(n, pt) and
√

n P̂−pt√
pt(1−pt)

d→ N (0, 1). The exact test

is then given by Ψα(Xn) =

{
1 if P̂ > cα

0 if P̂ ≤ cα
where cα =

b(1−α;n,p0)
n and b(q;n,p) is the q-quantile

of the binomial distribution with parameters n and p (the test so-defined is conservative). The

asymptotic test results Ψ̃α(Xn) =

{
1 if nP̂ > bnc̃αc
0 if nP̂ ≤ bnc̃αc

where c̃α = p0 + z1−α

√
p0(1−p0)

n , zq is

the q-quantile of the standard normal distribution and b·c denotes the floor function. Obviously, the
exact and the asymptotic critical regions are not equivalent. Their disagreement can be evaluated
using Expression (4), which, in this case,can be exactly evaluated. In Table S1 of the Supplementary
Material, the values of D(pt, n, α, p0) are computed by fixing α = 0.05 for some values of n, p0 and pt.
From this table, it emerges that the probability of disagreement between the tests Ψα(Xn) and Ψ̃α(Xn)

can be very high for some combinations of n, p0 and pt: it is often higher than 10% (up to 20%) with
sample size n = 15, and it remains higher than 10%, for just a few cases, even with n = 30.

3.1. Semi-Parametric RP-Estimation and Testing for the Binomial Test

The exact power function and the exact RP of Ψα (Case (A.1)) are π(n, α, p) = 1− B(ncα; n, p) and
RP = π(n, α, pt), where B(·; n, p) is the binomial cumulative distribution function with parameters
n and p. Following [8], the semi-parametric RP-estimator based on the exact power is obtained
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by plugging the median estimator for pt into the expression of π(n, α, p). The median estimator
P̂• is defined as the solution of the equation B(np̂; n, P̂•) = 1/2, and the resulting RP-estimator is
π̂ = 1 − B(ncα; n, P̂•). Similarly, the approximate power function of Ψ̃α (Case (A.2)) is

πa(n, α, p) = 1−Φ
(√

n p0−p√
p(1−p)

+ z1−α

√
p0(1−p0)
p(1−p)

)
, where Φ(·) is the standard normal cdf, and

the approximate RP results RP = πa(n, α, pt). The corresponding RP-estimator is then
π̂a = πa(n, α, P̂). Note that, in this case, the probability distribution of π̂ and π̂a can be obtained
analytically. In particular, the support of π̂ is given by the values π̂(s) = 1 − B(ncα; n, p̂•s ),
s = 0, 1, ..., n, where p̂•s is the solution of B(s; n, p̂•) = 1/2. The probability function of
π̂ is given by P (π̂ = π̂(s)) = (n

s)ps
t(1 − pt)n−s, s = 0, 1, ..., n. Analogously, the support of

π̂a is π̂a(s) = 1−Φ
(√

n p0−s/n√
s/n(1−s/n)

+ z1−α

√
p0(1−p0)

s/n(1−s/n)

)
, s = 0, 1, ..., n, and P (π̂a = π̂a(s)) =

P (π̂ = π̂(s)) = (n
s)ps

t(1− pt)n−s, s = 0, 1, ..., n.
Now, both the asymptotic and the exact tests can be replicated by using the RP-estimators

defined above. Specifically, thanks to the results in [8] (which require the adoption of the median
estimator P̂• in the definition of the RP-estimator π̂), it results that:

Ψα(Xn) =

{
1 if P̂ > cα

0 if P̂ ≤ cα
=

{
1 if π̂ > 1/2
0 if π̂ ≤ 1/2

.

Similarly, it is easy to verify that: Ψ̃α(Xn) =

{
1 if P̂ > c̃α

0 if P̂ ≤ c̃α
=

{
1 if π̂a > 1/2
0 if π̂a ≤ 1/2

.

Note that, also for the validity of this last identity, the use of the point estimator P̂ in the definition of
π̂a is fundamental.

3.2. Non-Parametric RP-Estimation and Testing for the Binomial Test

The case of the binomial test is particularly interesting when studying the features of the plug-in
RP-estimators, since, in this context, the probability function of the estimators π̂PI

e and π̂PI
a,e can be

analytically derived, and the RP-based decision rules based on the latter can be analytically studied.
Lemma 2 below describes the analytical expression of the non-parametric plug-in RP-estimator for
the exact binomial test (Point 1); provides the probability distribution of this estimator (Point 2);
establishes the equivalence between the exact binomial test and the RP-based decision rule derived
by the non-parametric plug-in estimator (Point 3). Similar results concerning the asymptotic binomial
test are provided in Lemma 3.

Lemma 2. Let Xn = (X1, ..., Xn) be a random sample drawn from the Bernoulli distribution with unknown
parameter pt in order to test hypotheses (7). It results that:

1. π̂PI
e =

1
nn ∑

xi
n∈X (Xn)

Ψα(xi
n) = 1− B

(
ncα; n, P̂

)
;

2. the support of π̂PI
e is π̂PI

e (s) = 1− B
(
ncα; n, s

n
)
, s = 0, 1, ..., n, and

P(π̂PI
e = π̂PI

e (s)) = (n
s)ps

t(1− pt)n−s.
3. the decision rule based on the RP-estimator π̂PI

e exactly replicates the exact Binomial test Ψα.

Lemma 3. Let Xn = (X1, ..., Xn) be a random sample drawn from the Bernoulli distribution with unknown
parameter pt in order to test Hypotheses (7). It results that:

1. π̂PI
a,e =

1
nn ∑

xi
n∈X (Xn)

Ψ̃α(xi
n) = 1− B

(
bnc̃αc ; n, P̂

)
;

2. the support of π̂PI
a,e is π̂PI

a,e(s) = 1− B
(
bnc̃αc ; n, s

n
)
, s = 0, 1, ..., n, and

P(π̂PI
a,e = π̂PI

a,e(s)) = (n
s)ps

t(1− pt)n−s.
3. the decision rule based on the RP-estimator π̂PI

a,e exactly replicates the asymptotic Binomial test Ψ̃α.

The proofs of Lemma 2 and Lemma 3 are reported in the Supplementary Material.
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3.3. Evaluating the Performances of the RP-Estimators for the Binomial Test

In the case of the binomial test, it is possible to compute the exact expectation and the MSE of π̂

and π̂a, π̂PI
e and π̂PI

a,e. In order to make a comparison among these estimators, their exact bias and MSE
are represented in Figure S1 and Figure S2 of the Supplementary Material. Here, in Figure 1, only the
MSE curves with n = 15, α = 0.05, and p = 0.2, 0.5, are given. From these figures, it emerges that there
is no RP-estimator that uniformly performs best. Concerning the estimators for the power of Ψα(Xn),
there is a tangible difference between the performance of π̂ and π̂PI

e . For a wide range of small values
of pt, π̂ has a bias and MSE, which is greater than the one of π̂PI

e ; for large values of pt, π̂ generally
performs better than π̂PI

e ; whereas, the performances of π̂a and π̂PI
a for the power of Ψ̃α(Xn) are very

similar. Regarding RP-testing, we recall that there is no disagreement between classical binomial tests
(exact or approximated) and their RP-based version. The results obtained here for the binomial test
still hold for the sign test. The interested reader is referred to the Supplementary Material where the
connection between these tests is explained in depth.

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
0

.0
2

0
.0

4
0

.0
6

0
.0

8
0

.1
0

p

M
S

E

π̂e

π̂a

π̂e

PI

π̂ae

PI

(a)

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
0

.0
2

0
.0

4
0

.0
6

0
.0

8

p

M
S

E

π̂e

π̂a

π̂e

PI

π̂ae

PI

(b)

Figure 1. MSE curves of the reproducibility probability (RP) estimators π̂e (solid), π̂a (dashed), π̂PI
e (dotted) and

π̂PI
a,e (dot-dashed). The MSE curves are computed considering the testing problem (7) with α = 0.05, p0 = 0.2, 0.5

and n = 15. (a) p0 = 0.2, n = 15; (b) p0 = 0.5, n = 30.
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4. RP-Estimation and Testing for the Wilcoxon Signed Rank Test

Let Xn = (X1, ..., Xn) be a random sample from a continuous and symmetric cdf Fθt with median
θt. In order to test H0 : θt ≤ θ0 vs H1 : θt > θ0, it is possible to apply the Wilcoxon signed
rank (WSR) test, which is based on the statistic W = ∑n

i=1 IiiRi = ∑n
i=1 ∑n

j=i Iij where Zi = Xi − θ0,
Ri = rank(|Zi|) and:

Iij =

{
1 if Zi + Zj > 0
0 if Zi + Zj < 0

. (8)

Following the classification proposed in Section 2, the WSR test falls under Case (B), since the
exact distribution of W can be derived by enumeration (see [19] on p. 126) under H0, but, under
H1, it can only be approximated by using a central limit theorem. In particular, it is well known

(see [19] on p. 166) that
W−EFθt

[W]√
VarFθt

(W)

d→ N (0, 1) where:

EFθt
[W] = e(p, p1) =

n(n− 1)
2

p1 + np , (9)

VarFθt
[W] = v(p, p1, p2)

= n(n− 1)(n− 2)(p2 − p2
1) +

n(n− 1)
2

[
2(p− p1)

2 + 3p1(1− p1)
]
+ np(1− p) , (10)

with:

p = PFθt
(Z > 0) , p1 = PFθt

(Z + Z′ > 0) , p2 = p1 = PFθt
(Z + Z′ > 0 and Z + Z′′ > 0) , (11)

being Z = X− θ0, Z′ and Z′′ i.i.d. to Z.
Note that, under H0, p = p1 = 1

2 and p2 = 1
3 . These results allow the use of W in order to define

the exact and asymptotic tests

Ψα(Xn) =

{
1 if W > wα

0 otherwise
and Ψ̃α(Xn) =

{
1 if W > w̃α

0 otherwise

where wα denotes the (1 − α)-quantile of the exact null distribution of W and w̃α = n(n+1)
4 +

z1−α

√
n(n+1)(2n+1)

24 . Obviously, the exact and asymptotic tests are not equivalent, and their
disagreement is evaluated using Expression (4). In Table S2 of the Supplementary Material, the values
of D(α, n, Fθt , θ0) are computed by fixing α = 0.05 and θ0 = 0 for some values of n and θt and by
considering X ∼ N (θt, 1) (light tails) and X ∼ Cauchy(θt) (fat tails).

4.1. Semi-Parametric RP-Estimation and Testing for the WSR Test

As mentioned above, the WSR is classified under Case (B). Therefore, its exact power
function cannot be generally determined. However, it can be approximated thanks to the
asymptotic normality of W. The approximation of the power function of the exact test Ψα(Xn) is

π̃(n, α, Fθ , θ0) ≈ 1−Φ

(
wα−EFθ

[W]√
VarFθ

[W]

)
. Analogously, the approximation of the power function of the

asymptotic test Ψ̃α(Xn) is πa(n, α, Fθ , θ0) ≈ 1 − Φ

(
w̃α−EFθ

[W]√
VarFθ

[W]

)
. Now, in order to define some

semi-parametric RP-estimators starting from the approximated power function reported above, it
is necessary to derive the estimators for EFθ

[W] and VarFθ
[W]. They can be obtained by plugging into

Expressions (9) and (10) the estimators for the parameters p, p1 and p2, defined in (11). Below, two
different estimators for these parameters are considered.
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• Analogic estimators:
p̂ = 1

n ∑n
i=1 Iii, p̂1 = 1

n(n−1) ∑n
i=1 ∑n

j=1
i 6=j

Iij =
2

n(n−1) ∑n
i=1 ∑n

j=i+1 Iij ,

p̂2 = 1
n(n−1)(n−2) ∑n

i=1 ∑n
j=1 ∑n

k=1
i 6=j 6=k

Iij Iik =
2

n(n−1)(n−2) ∑n
i=1 ∑n

j=1 ∑n
k=j+1

i 6=j i 6=k
Iij Iik .

• Plug-in estimators. In order to introduce the plug-in estimators for p, p1 and p2, let
Gθt(z) = Fθt(z + θ0) and gθt(z) be the cumulative distribution function and the density function
of Z = X− θ0. By using this notation, it is easy to note that p = Gθt(0), p1 == 1− EGθt

[Gθ(−Z)],
and p2 = 1− 2EGθt

[Gθ(−Z)] + EGθt
[Gθ(−Z)2]. Let Gn be the empirical distribution function of

the Zi’s (i.e., of the Xi − θ0’s). By plugging Gn into the above expressions, the following estimators
are obtained:

p̃ = 1− Gn(0) ≡ p̂ , p̃1 = 1− 1
n

n

∑
i=1

Gn(−Zi) , p̃2 = 1− 2
1
n

n

∑
i=1

Gn(−Zi) +
1
n

n

∑
i=1

G2
n(−Zi) .

Now, the following RP-estimators for the exact test can be introduced: π̂1 = 1 − Φ
(

wα−Ê√
V̂

)
and

π̂2 = 1 − Φ
(

wα−Ẽ√
Ṽ

)
, where Ê = e( p̂, p̂1), V̂ = v( p̂, p̂1, p̂2), Ẽ = e( p̃, p̃1) and

Ṽ = v( p̃, p̃1, p̃2). Analogously, the following RP-estimators for the asymptotic test can be introduced:
π̂a1 = 1−Φ

(
w̃α−Ê√

V̂

)
and π̂a2 = 1−Φ

(
w̃α−Ẽ√

Ṽ

)
.

Following the idea in [20], the approximated power of nonparametric tests can be simplified by
assuming that the variance of the test statistic is close to its value under H0 (see [19] on pp. 72 and 167,
for other applications of Noether’s approach). In that case, the approximated and simplified power

functions of Ψα(Xn) and Ψ̃α(Xn) result: π̃(n, α, Fθ , θ0) ≈ 1−Φ

(
wα−EFθt

[W]√
n(n+1)(2n+1)

24

)
, and πa(n, α, Fθ , θ0) ≈

1−Φ

(
w̃α−EFθt

[W]√
n(n+1)(2n+1)

24

)
. These expressions give rise to the following additional RP-estimators:

- RP-estimators for the exact test:

π̂1S = 1−Φ

(
wα−Ê√

n(n+1)(2n+1)
24

)
and π̂2S = 1−Φ

(
wα−Ẽ√

n(n+1)(2n+1)
24

)
;

- RP-estimators for the asymptotic test:

π̂aS1 = 1−Φ

(
w̃α−Ê√

n(n+1)(2n+1)
24

)
and π̂aS2 = 1−Φ

(
w̃α−Ẽ√

n(n+1)(2n+1)
24

)
.

Finally, the estimators based on the following Noether’s power approximation π̃(n, α, Fθ , θ0) ≈
πa(n, α, Fθ , θ0) ≈ 1−Φ

(
z1−α −

√
3n
(

p1 − 1
2

))
are also considered here. In particular, the estimators

π̂N1 = 1− Φ
(

z1−α −
√

3n
(

p̂1 − 1
2

))
and π̂N2 = 1− 1− Φ

(
z1−α −

√
3n
(

p̃1 − 1
2

))
are applied to

estimate the RP of both the exact and asymptotic WSR tests.
Concerning the RP-based version of the WSR test based on the introduced semi-parametric

RP-estimators, the following corollary (proven in the Supplementary Material) can be stated:

Corollary 4. The decision rules based on the RP-estimators π̂1 and π̂1S exactly replicate the exact WSR test
Ψα. Analogously, the decision rules based on the RP-estimators π̂a1 and π̂aS1 exactly replicate the asymptotic
WSR test Ψ̃α.

Concerning the RP-based decision rules stemming from the remaining semi-parametric
RP-estimators (i.e., π̂2, π̂2S, π̂a2, π̂aS2, π̂N1 and π̂N2), they do not replicate the exact/asymptotic WSR
tests, and their disagreement probabilities will be evaluated in Section 4.3.
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4.2. Non-Parametric RP-Estimation and Testing for the WSR Test

As explained, in Section 2, the RP of the exact and asymptotic WSR test can be estimated by
using (5) and (6), respectively. Here, we consider the non-parametric RP-estimators π̂PI

5 , π̂PI
10 , π̂PI

20 ,
π̂PI

a5 , π̂PI
a10 and π̂PI

a20. The first three estimators coincide with (5) with B = 500, B = 1000, B = 2000.
The last three estimators coincide with (6) with B = 500, B = 1000, B = 2000. As mentioned above,
the RP-based decision rules based on these estimators do not replicate the exact and asymptotic WSR
tests, respectively, and their disagreement probabilities will be evaluated in Section 4.3.

4.3. Evaluating the Performances of the RP-Estimators for the WSR Test

In order to evaluate the performances of the several RP-estimators introduced above for the exact
and asymptotic WSR test, a simulation study is built. The scenarios considered in the simulation
study regard the testing problem H0 : θt ≤ 0 vs. H0 : θt > 0 with α = 0.05. The considered sample
sizes are n = 15, 30, 60, 120, 240. Data are drawn from normal distribution with unit variance and
mean (median) θt and shifted Cauchy with median θt. For each one of the considered sample sizes
and distributions (normal or Cauchy), 19 values for θt have been considered. These values have been
obtained by simulation and have been chosen in order to provide the following prefixed values for
the power of the exact/asymptotic test: (α, 0.1, 0.15, 0.20, 0.25, ..., 0.85, 0.9, 0.95). In each simulation,
104 replications are considered.

The results of the simulation study are summarized in Tables S3 and S4 in the Supplementary
Material, where the averages (computed over the 19 different values of θt) of the simulated MSE,
simulated bias and disagreement rate are provided. Here, in Table 2, only the simulated MSE and
disagreement rate related to the Cauchy distribution are provided.

Table 2. Averaged MSE and disagreement rate for the asymptotic and exact Wilcoxon signed rank
(WSR) test when sampling from the Cauchy distribution. The averages are computed over the 19
different values of θ considered in the simulation study. The smallest values for the averaged MSE
and disagreement are highlighted in bold.

RP-estimation and Testing for the Asymptotic WSR Test
n = 15 n = 30 n = 60 n = 120 n = 240

RP-est. MSE D MSE D MSE D MSE D MSE D

π̂N1 0.0684 0.0286 0.0678 0.0073 0.0686 0.0045 0.0688 0.0018 0.0683 0.0012
π̂N2 0.0664 0.0131 0.0669 0.0057 0.0682 0.0025 0.0686 0.0010 0.0682 0.0008
π̂aS1 0.0652 0.0000 0.0664 0.0000 0.0680 0.0000 0.0685 0.0000 0.0681 0.0000
π̂aS2 0.0636 0.0122 0.0656 0.0034 0.0676 0.0019 0.0683 0.0009 0.0680 0.0004
π̂a1 0.0793 0.0000 0.0734 0.0000 0.0713 0.0000 0.0702 0.0000 0.0690 0.0000
π̂a2 0.0735 0.0122 0.0702 0.0034 0.0697 0.0019 0.0693 0.0009 0.0685 0.0004
π̂PI

a5 0.0718 0.0180 0.0698 0.0142 0.0696 0.0136 0.0695 0.0133 0.0687 0.0129
π̂PI

a10 0.0717 0.0164 0.0696 0.0111 0.0694 0.0097 0.0693 0.0093 0.0686 0.0091
π̂PI

a20 0.0716 0.0156 0.0695 0.0091 0.0694 0.0072 0.0692 0.0068 0.0685 0.0065
RP-estimation and Testing for the Exact WSR Test

n = 15 n = 30 n = 60 n = 120 n = 240
RP-est. MSE D MSE D MSE D MSE D MSE D

π̂N1 0.0677 0.0200 0.0678 0.0082 0.0686 0.0040 0.0688 0.0018 0.0683 0.0011
π̂N2 0.0657 0.0045 0.0668 0.0033 0.0682 0.0020 0.0686 0.0010 0.0682 0.0006
π̂S1 0.0647 0.0000 0.0664 0.0000 0.0680 0.0000 0.0685 0.0000 0.0681 0.0000
π̂S2 0.0631 0.0066 0.0655 0.0036 0.0675 0.0018 0.0683 0.0009 0.0680 0.0005
π̂1 0.0797 0.0000 0.0734 0.0000 0.0713 0.0000 0.0702 0.0000 0.0690 0.0000
π̂2 0.0739 0.0066 0.0703 0.0036 0.0697 0.0018 0.0693 0.0009 0.0685 0.0005
π̂PI

5 0.0722 0.0211 0.0698 0.0143 0.0696 0.0137 0.0695 0.0133 0.0687 0.0130
π̂PI

10 0.0721 0.0200 0.0697 0.0113 0.0694 0.0099 0.0693 0.0093 0.0686 0.0092
π̂PI

20 0.0720 0.0193 0.0696 0.0091 0.0694 0.0073 0.0692 0.0068 0.0685 0.0066

Note that the disagreement between the exact Wilcoxon signed rank test and its approximated
versions is often higher than 2% with n = 15 (up to 2.5%) and can reach 0.8% with n = 30 (see Table
S2 in the Supplementary Material). Rather, the averaged disagreement between classical tests and
their RP-based version, with n = 15, surpasses 2% just with two estimators, whereas for some of
them, no disagreement is shown; with n = 30, some RP estimators provide a disagreement between
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the classical test and the RP-based one resulting in a little higher than 1%, but no disagreement is
shown for two of them.

Regarding RP estimation, the estimators that globally have the lowest MSE are π̂aS2 for the
approximated test and π̂S2 for the exact test. However, these estimators do not exactly replicate the
corresponding classical test. By considering both the estimation performance and the disagreement
probability, we suggest using the estimators π̂aS1 for the approximated test and π̂S1 for the exact test,
since their MSE is very similar to the ones of π̂aS2 and π̂S2, but their disagreement probability is null.
As a final remark, note the good performance of the non-parametric plug-in estimators, which is not
far from the one of the semi-parametric ones, even if they are not ad hoc estimators.

5. RP-Estimation and Testing for the Kendall Test of Monotonic Association

Let (X, Y) be a bivariate continuous random variable with joint distribution Ft and margins
tFX and tFY. Let (X, Y)n = {(Xi, Yi), i = 1, ..., n} be a random sample drawn from Ft. To test
the presence of positive or negative monotone association between X and Y, the Kendall test can
be adopted. Without loss of generality, consider the alternative hypothesis of positive monotone
association. In that case, the testing problem of interest is H0 : τt ≤ 0 vs. H0 : τt > 0,
where τt is the Kendall rank-correlation coefficient, which, under the assumption of absolute
continuity of Ft, is defined as the difference between the probability of concordance p1 and the
probability of discordance p′1: τt = p1 − p′1 = 2p1 − 1 with p1 = PFt ((X− X′)(Y−Y′) > 0),
p′1 = PFt ((X− X′)(Y−Y′) < 0) = 1− p1 and (X′, Y′) i.i.d as (X, Y). The test statistics is τ̂ = 2K

n(n−1)

where K = ∑n−1
i=1 ∑n

j=i+1
(
sign(Xi − Xj) · sign(Yi −Yj)

)
and sign(a) =

{
1 if a > 0
−1 if a < 0

. As

for the WSR test, the Kendall test falls under Case (B). The exact distribution of τ̂ can be derived,
under H0, by enumeration or by using a recurrence relation (see [21]), but generally, it can only be
approximated through a central limit theorem under H1. In particular, it is well known (see [22]) that

τ̂−EFt [τ̂]√
VarFt [τ̂]

d→ N (0, 1) where:

EFt [τ̂] = τt (12)

and VarFt [τ̂] = u(τt, p2) =
2

n(n− 1)
(1− τ2

t ) +
4(n− 2)
n(n− 1)

(2p2 − 1− τ2
t ) (13)

with p2 = PFt [(X− X′)(Y−Y′)(X− X′′)(Y−Y′′) > 0] (14)

being (X′, Y′) and (X′′, Y′′) i.i.d as (X, Y).
Note that, under H0, p2 = 5

9 , and consequently: Var0[τ̂] = u
(
0, 5

9
)
= 2(2n+5)

9n(n−1) . These results
allow the introduction of the exact and asymptotic Kendall tests

Ψα((X, Y)n) =

{
1 if τ̂ > tα

0 otherwise
and Ψ̃α((X, Y)n) =

{
1 if τ̂ > t̃α

0 otherwise
where tα denotes

the (1− α)-quantile of the exact null distribution of τ̂ and t̃α = z1−α

√
2(2n+5)
9n(n−1) .

Note that the computational burden necessary to compute the exact null distribution of τ̂

increases rapidly with n. From a practical point of view, the exact test can be performed, if n < 9, by
computing the exact (1− α)-quantile from the null distribution of τ̂ using, for example, the software
R [23] function qKendall of package SuppDists [24]. If n > 9, the asymptotic test Ψ̃α is generally
performed or an Edgeworth expansion (see [25]) is used to obtain a better approximation of tα. The
(1 − α)-quantile from the null distribution of τ̂ approximated by the Edgeworth expansion is also
computed by qKendall. When n > 9, it is common practice to refer to the test based on the Edgeworth
expansion as the “exact” Kendall test, even if it is actually an approximated test. From here onwards,
this commonly-used terminology will be adopted.

Obviously, the exact and asymptotic tests are not equivalent, and their disagreement is
evaluated, again, using Expression (4). In Table S5 of the Supplementary Material, the probabilities of
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disagreement between the asymptotic and exact (based on Edgeworth expansion) tests are computed
by fixing α = 0.05 for some values of n and τt when sampling from the bivariate normal distribution
with correlation coefficient ρ and from the bivariate Student’s t distribution with three degrees of
freedom (df) and correlation coefficient ρ.

5.1. Semi-Parametric RP-Estimation and Testing for the Kendall Test

The exact power function of the Kendall test cannot be generally determined, but it can
be approximated thanks to the asymptotic normality of τ̂. In particular, the approximation

of the power function of the exact test Ψα((X, Y)n) is π̃(n, α, Ft) ≈ 1 − Φ
(

tα−EFt [τ̂]√
VarFt [τ̂]

)
.

Analogously, the approximation of the power function of the asymptotic test Ψ̃α((X, Y)n) is

πa(n, α, Fτ) ≈ 1−Φ
(

t̃α−EFt [τ̂]√
VarFt [τ̂]

)
.

Now, in order to define semi-parametric RP-estimators starting from the approximated power
function reported above, it is necessary to derive estimators for EFt [τ̂] and VarFt [τ̂]. From
Expressions (12) and (13), it follows that EFt [τ̂] can be estimated by τ̂, while an estimator for VarFt [τ̂]

can be introduced once an estimator for p2 has been defined. Two different estimators for p2 are
considered here:

• Analogic estimators: Remembering Expression (14), the analogic estimator for
p2 results: p̂2 = 1

n(n−1)(n−2) ∑n
i=1 ∑n

j=1
i 6=j 6=k

∑n
k=1 Iijk where

Iijk =

{
1 if (xi − xj)(xi − xk)(yi − yj)(yi − yk) > 0
0 otherwise

.

• Plug-in estimators: In order to introduce these estimators, the following alternative
expression for p2 is useful: p2 =

∫ ∞
−∞

∫ ∞
−∞

[
p(x, y)2 + (1− p(x, y))2] ft(x, y)dxdy =

EFt

[
p(X, Y)2 + (1− p(X, Y)2)

]
where p(x, y) = PFt [X ≤ x ∩ Y ≤ y] + PFt [X > x ∩ Y > y] =

1− tFX(x)− tFY(y) + 2Ft(x, y).

Now, let F̂nX , F̂nY and F̂n be the ecdfs of X, Y and (X, Y), respectively. The
plug-in estimators for p2 results: p̃2 = 1

n ∑n
i=1
[
p̃(xi, yi)

2 + (1− p̃(xi, yi))
2] where

p̃(x, y) = 1− F̂nX(x)− F̂nY(y) + 2F̂n(x, y).

Now, the following RP-estimators for the exact test can be introduced: π̂1 = 1−Φ
(

tα−τ̂√
Û

)
and

π̂2 = 1−Φ
(

tα−τ̂√
Ũ

)
, where Û = u(τ̂, p̂2), Ũ = u(τ̂, p̃2). Analogously, the following RP-estimators for

the asymptotic test can be introduced: π̂a1 = 1−Φ
(

t̃α−τ̂√
Û

)
and π̂a2 = 1−Φ

(
t̃α−τ̂√

Ũ

)
.

As for the WSR test, the approximated power of nonparametric tests can be simplified following
Noether’s idea by assuming that the variance of the test statistic is close to the value it assumes

under H0, obtaining the estimators π̂S = 1−Φ

 tα−τ̂√
2(2n+5)
9n(n−1)

 and π̂aS = 1−Φ

 t̃α−τ̂√
2(2n+5)
9n(n−1)

 for the

exact and asymptotic tests, respectively. Note that the above estimators are very simple, since
they do not require the estimation of p2. Another approach that can be followed in order to
introduce an approximation of the power function π̃(n, α, Ft) and πa(n, α, Ft) is described below.
From Expression (14), it is clear that p2 is not independent from τt, and there is no unique function
describing the behavior of p2 as a function of τt since the relation between p2 and τt depends on the
entire shape of Ft. However, if τt = ±1, then p2 = 1, while if τt = 0, then p2 = 5/9. Then, the
relation between τt and p2 can be intuitively represented by the parabola passing through the points
(−1, 1), (0, 5/9) and (1, 1): p2 = 1− 4

9 (1− τ2
t ) . By substituting this expression into (13) one obtains
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the RP-estimators π̂L = 1−Φ

 tα − τ̂√
2(2n+5)
9n(n−1) (1− τ̂2)

 and π̂aL = 1−Φ

 t̃α − τ̂√
2(2n+5)
9n(n−1) (1− τ̂2)

 for the

exact and asymptotic tests, respectively.
For completeness, the [20] estimator is also considered and applied both

to the exact and asymptotic tests: π̂N = 1 − Φ
(
z1−α − 3

2
√

nτ̂
)
. Finally, the

estimators deduced from the power approximation provided in [2] are considered:

π̂C1 = 1−Φ
(

z1−α3−
√

n
2 τ̂√

2p̂2−1−τ̂2

)
, π̂C2 = 1−Φ

(
z1−α3−

√
n

2 τ̂√
2p̃2−1−τ̂2

)
.

5.2. Non-Parametric RP-Estimation and Testing for the Kendall Test

As for the WSR test, the RP of the exact and asymptotic Kendall test can be estimated by using
the non-parametric RP-estimators π̂PI

5 , π̂PI
10 , π̂PI

20 , π̂PI
a5 , π̂PI

a10 and π̂PI
a20. It is recalled once again that the

RP-based decision rules based on these estimators do not replicate the exact and asymptotic Kendall
tests, respectively, and their disagreement probabilities will be evaluated next.

5.3. Evaluating the Performances of the RP-Estimators for the Kendall Test

In order to evaluate the performances of the several RP-estimators introduced above for the
exact and asymptotic Kendall test, a simulation study is built. The scenarios considered in the
simulation study regards the testing problem H0 : τt ≤ 0 vs. H1 : τt > 0. The considered
sample sizes are n = 15, 30, 60, 120. Data are drawn from the bivariate standard normal distribution
with correlation coefficient ρ and from the bivariate Student’s t distribution with three df and
correlation coefficient ρ. For each one of the considered sample sizes and distributions, 19 values
for ρ have been considered. These values have been obtained by simulation and have been chosen
in order to provide the following prefixed values for the power of the exact/asymptotic test:
(α, 0.1, 0.15, 0.20, 0.25, ..., 0.85, 0.9, 0.95). In each simulation, 104 replications are considered. The
results of the simulation study are summarized in Table S6 and Table S7 of the Supplementary
Materials. In these tables, the averages (computed over the 19 different values of θ) of the simulated
MSE, simulated bias and disagreement rate are provided. Here (see Table 3), only the simulated
MSE and disagreement rate obtained under the bivariate Student’s t distribution with three df are
reported. As for the binomial and sign tests, the disagreement between the exact Kendall test and
its approximated versions is quite high: often higher than 5% and in some cases higher than 10%,
both with n = 15 and n = 30. The disagreement is still remarkable even with n = 120. On the
contrary, the averaged disagreement between the classical asymptotic test and its RP-based version is
between 3% and 7% for just three estimators, for each sample size, whereas the other estimators
provide a disagreement often lower than 1%. The disagreement between the classical exact test
and the RP-based one results in being a little higher than the previous case, but still lower than the
disagreements between classical tests.

Regarding RP estimation, the simulation results suggest that the best estimators for the
approximated and exact tests are π̂a2 and π̂2, respectively. Indeed, these two estimators generally
have the least MSE and a null probability of disagreement. Also in these cases, the good performance
of the general non-parametric plug-in estimators should be noted.
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Table 3. Averaged MSE and disagreement rate for the asymptotic and exact Kendall’s test when
sampling from the t copula with 3 degrees of freedom. The averages are computed over the 19
different values of ρ considered in the simulation study. The least values for the averaged MSE and
disagreement are highlighted in bold.

RP-estimation and Testing for the Asymptotic Kendall’s Test
n = 15 n = 30 n = 60 n = 120

RP-est. MSE D MSE D MSE D MSE D

π̂N 0.0759 0.0551 0.0751 0.0281 0.0752 0.0133 0.0748 0.0070
π̂aS 0.0689 0.0000 0.0721 0.0000 0.0738 0.0000 0.0741 0.0000
π̂a1 0.0778 0.0000 0.0735 0.0000 0.0709 0.0000 0.0693 0.0000
π̂a2 0.0591 0.0000 0.0581 0.0000 0.0577 0.0000 0.0570 0.0000
π̂C1 0.0881 0.0551 0.0765 0.0281 0.0720 0.0133 0.0697 0.0070
π̂C2 0.0617 0.0551 0.0589 0.0281 0.0579 0.0133 0.0571 0.0070
π̂aL 0.0736 0.0000 0.0741 0.0000 0.0747 0.0000 0.0745 0.0000
π̂PI

a5 0.0695 0.0769 0.0687 0.0595 0.0685 0.0448 0.0680 0.0329
π̂PI

a10 0.0694 0.0775 0.0685 0.0597 0.0683 0.0451 0.0679 0.0327
π̂PI

a20 0.0693 0.0779 0.0684 0.0596 0.0683 0.0455 0.0678 0.0329
RP-estimation and Testing for the Exact Kendall’s Test

n = 15 n = 30 n = 60 n = 120
RP-est. MSE D MSE D MSE D MSE D

π̂N 0.0906 0.1411 0.0847 0.1063 0.0829 0.0955 0.0819 0.0882
π̂S 0.0672 0.0000 0.0713 0.0000 0.0734 0.0000 0.0739 0.0000
π̂1 0.0780 0.0000 0.0738 0.0000 0.0711 0.0000 0.0693 0.0000
π̂2 0.0590 0.0000 0.0580 0.0000 0.0577 0.0000 0.0570 0.0000

π̂C1 0.1064 0.1411 0.0876 0.1063 0.0803 0.0955 0.0769 0.0882
π̂C2 0.0764 0.1411 0.0680 0.1063 0.0651 0.0955 0.0634 0.0882
π̂L 0.0732 0.0000 0.0739 0.0000 0.0746 0.0000 0.0745 0.0000
π̂PI

5 0.0738 0.0781 0.0715 0.0601 0.0707 0.0457 0.0696 0.0324
π̂PI

10 0.0737 0.0784 0.0714 0.0604 0.0706 0.0461 0.0695 0.0326
π̂PI

20 0.0736 0.0791 0.0713 0.0607 0.0705 0.0463 0.0694 0.0323

6. Example of Applications

Let us consider the data reported in Table 4 (see [26], p.38), concerning the Hamilton depression
scale factor (HDSF) in nine patients with mixed anxiety and depression, observed at a first visit before
the initiation of a therapy (X) and at a second visit after administration of a tranquilizer (Y). An
improvement due to the tranquilizer corresponds to a reduction of the HDSF. Six patients out of nine
showed a reduction; one was almost invariant; and two gave small increments. The sign test and
the WSR test have been applied to evaluate HDSF reduction and the Kendall test to evaluate the
association between X and Y.

For each test, the RP estimates given by the best semiparametric estimator (among those studied
above) and by the nonparametric π̂PI

20 are computed, at three levels of α: 0.01, 0.05, 0.1 (see Table 5).
First, note that RP estimates decrease as tests become stricter, i.e., as α decreases. Second, RP estimates
fulfill RP-testing. Third, RP estimates might differ from one technique to another: the nonparametric
technique is not the most reliable, but is a general one, whereas the best RP estimation technique
should be customized for each test.

As concerns the interpretation of the results, RP estimates highlight that significant outcomes are
often less reproducible than one may think. For example, when α = 0.05, the significance threshold
for the WSR test with n = 9 data is w0.05 = 36, and the significant result Wob = 40, although providing
a p-value that is quite small (i.e., ' 0.02), gave an RP estimate of about 2/3: this means that, it is
estimated that, under the same experimental conditions, about one out of three test replications will
not show significance.

On the other hand, non-significant outcomes might be highly variable, and significance can be
found with non-negligible probability when replicating the experiment. Continuing the example
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above, and assuming that α was 0.01, the observed test statistic provides a non-significant p-value of
about two-times α, but also gives an RP estimate not far from 50%.

Table 4. Hamilton depression scale factor (HDSF) data: first visit (X) and second visit (Y).

xi yi

1.83 0.878
0.50 0.647
1.62 0.598
2.48 2.050
1.68 1.060
1.88 1.290
1.55 1.060
3.06 3.140
1.30 1.290

Table 5. RP estimates for the example data.

Sign Test

standard results α cα π̂ π̂PI
e

n = 9 0.1 6 0.7905 0.6781
Bob = 7 0.05 7 0.5 0.3719

p-value = 0.0898 0.01 8 0.1683 0.1042

WSR Test

standard results α wα π̂1S π̂PI
20

n = 9 0.1 34 0.7614 0.8835
Wob = 40 0.05 36 0.6822 0.7435

p-value = 0.0195 0.01 41 0.4528 0.4505

Kendall Test

standard results α tα π̂2 π̂PI
20

n = 9 0.1 0.3333 0.6979 0.6930
τ̂ob = 0.5 0.05 0.4444 0.5685 0.5495

p-value = 0.2231 0.01 0.6111 0.3648 0.2615

Finally, we remark that even when p-values are quite a bit smaller than α, RP estimates may not
be high, that is the test results (viz. significances) are estimated to be quite variable. For example,
when p-values result in being about one order of magnitude smaller than α, RP estimates are still
close to 80%.

7. Conclusions

Several results have been obtained, concerning both the precision of RP estimators and of
RP-testing in the cases of the binomial, sign, Wilcoxon signed rank and Kendall tests.

For both the binomial and sign tests, the RP-testing rule holds exactly, also when nonparametric
estimators of RP are adopted. In terms of estimation performances, semi-parametric and
nonparametric estimators behave similarly.

For the WSR and Kendall tests, the RP-testing rule holds exactly for just some RP estimators,
and for the remaining ones, the disagreement is very small. It is worth noting that the disagreement
between these two classical exact tests and their respective approximated version is often higher than
the disagreement between the classical tests (exact or approximated) and their RP-based version.
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In general, the disagreement between the several classes of tests decreases when the sample
size increases.

Concerning the variability of RP estimators, there is not an overall best performer for the
WSR and Kendall tests. Nevertheless, the estimators showing good estimation performances
also present slow or null disagreement and, mainly, belong to the semi-parametric family.
Nonparametric estimators present a slightly higher variability and disagreement with respect to the
best semi-parametric ones, but have the advantage of being general, since they can be adopted even
when the power functional has not been studied and parametrized.

To conclude, many useful and actually applicable solutions to estimate the RP and to perform
RP-testing for the most commonly-used nonparametric tests, exact or approximated, are provided.
The RP-testing rule is shown to be easily extended to these nonparametric tests. Further development
in RP estimation might concern the application of Bayesian techniques in the nonparametric context,
since in the parametric one, they showed promising improvement when uninformative priors have
been adopted [27]. Furthermore, prediction intervals may be considered for nonparametric RP
estimation (see [28]); in particular, it would be interesting to link prediction intervals, which provide
likely results of future RP estimators, once experimental data have been observed, to the RP-testing
rule.

Supplementary Materials: The following are available online at www.mdpi.com/1099-4300/18/4/142/s1.
Figure S1. Bias (left) and MSE (right) of the RP estimators π̂e (solid), π̂a (dashed), π̂PI

e (dotted), and π̂PI
a,e

(dot-dashed). The MSE and the Bias are computed setting α = 0.05 and considering the testing problem (3.1) by
setting α = 0.05, p0 = 0.2 and n = (5, 10, 15). (a) p0 = 0.2, n = 5; (b) p0 = 0.2, n = 5; (c) p0 = 0.2, n = 15;
(d) p0 = 0.2, n = 15; (e) p0 = 0.2, n = 30; (f) p0 = 0.2, n = 30; Figure S2. Bias (left) and MSE (right) of the
RP estimators π̂e (solid), π̂a (dashed), π̂PI

e (dotted), and π̂PI
a,e (dot-dashed). The MSE and the Bias are computed

setting α = 0.05 and considering the testing problem (3.1) by setting α = 0.05, p0 = 0.5 and n = (5, 10, 15). (a)
p0 = 0.5, n = 5; (b) p0 = 0.5, n = 5; (c) p0 = 0.5, n = 15; (d) p0 = 0.5, n = 15; (e) p0 = 0.5, n = 30; (f) p0 = 0.5,
n = 30; Table S1. Probability of disagreement D(pt, n, α, p0) between the tests Ψα(Xn) and Ψ̃α(Xn) evaluated
for α = 0.05, n = (5, 15, 30), p0 = (0.2, 0.5) and pt = (0.1, 0.2, ..., 0.9).; Table S2. Probability of disagreement
D(α, n, Fθt , θ0) between the tests Ψα(Xn) and Ψ̃α(Xn) evaluated for α = 0.05, n = (15, 30, 60, 120, 240), θ0 = 0,
and assuming that Fθt ≡ N (θt, 1) or Fθt ≡ Cauchy(θt) with θt = (0.0, 0.1, 0.2, ..., 0.9); Table S3. Averaged MSE,
Bias and Disagreement rate for the asymptotic and exact WSR test when sampling from the Normal distribution.
The averages are computed over the 19 different values of θ considered in the simulation study. The smallest
values for the averaged MSE, Bias and disagreement are highlighted in bold; Table S4. Averaged MSE, Bias and
Disagreement rate for the asymptotic and exact WSR test when sampling from the Chaucy distribution. The
averages are computed over the 19 different values of θ considered in the simulation study. The smallest values
for the averaged MSE, Bias and disagreement are highlighted in bold; Table S5. Probability of disagreement
between Ψ̃α((X, Y)n) and Ψα((X, Y)n) when α = 0.05, n = (15, 30, 60, 120), and assuming that Ft is the Bivariate
Normal or Bivariate Student’s t (3 df) with correlation coefficient ρ = (0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6). The values of
τt corresponding to the considered values of ρ are reported in the second column of the table. They have been
obtained by using the relation τt =

2
π arcsin(ρ) which holds for all absolutely continuous elliptical distributions;

Table S6. Averaged MSE, Bias and Disagreement rate for the asymptotic and exact Kendall’s test when sampling
from the Gaussian copula. The averages are computed over the 19 different values of ρ considered in the
simulation study. The least values for the averaged MSE, Bias and disagreement are highlighted in bold; Table
S7. Averaged MSE, Bias and Disagreement rate for the asymptotic and exact Kendall’s test when sampling from
the t copula with 3 degrees of freedom. The averages are computed over the 19 different values of ρ considered
in the simulation study. The least values for the averaged MSE, Bias and disagreement are highlighted in bold.
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