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Abstract: This present study describes the entropy generation on magnetohydrodynamic (MHD)
blood flow of a nanofluid induced by peristaltic waves. The governing equation of continuity,
equation of motion, nano-particle and entropy equations are solved by neglecting the inertial
forces and taking long wavelength approximation. The resulting highly non-linear coupled
partial differential equation has been solved analytically with the help of perturbation method.
Mathematical and graphical results of all the physical parameters for velocity, concentration,
temperature, and entropy are also presented. Numerical computation has been used to evaluate the
expression for the pressure rise and friction forces. Currently, magnetohydrodynamics is applicable
in pumping the fluids for pulsating and non-pulsating continuous flows in different microchannel
designs and it also very helpful to control the flow.
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1. Introduction

Nanotechnology is the most important driving force for the major thermal engineering, biology,
and industrial applications. In 1995, Choi [1] introduced the term that dilutes suspension of ultrafine
particles in common liquids, named as nanofluids. Nanofluids can improve the thermal conductivity
of the mixture. Nanofluid dynamics also find diverse applications in medical science and energetic.
Basically, it is a fluid which is synthesized by dispersing the nano-particle in the base fluid, such as
biofluids, oil, lubricants, and water. More examples include various types of heat exchangers [2,3],
microchannel [4–6] and car radiators [7,8]. Another important mechanism of fluid transport which
can be achieved through the progressive wave of contraction or expansion which spreads along the
length of a distensible tube or channel containing different types of fluid is known as peristaltic flow.
The movement of chyme in the gastrointestinal routs, swallowing food through the esophagus, and
the movement of the ovum in the female fallopian tube are prominent examples of peristaltic flow.
Peristaltic flow can also be found in industrial applications, such as in pumping for the transport of
corrosive and sterile fluids. Due to these important applications, peristaltic flow has been the subject
of intensive studies in both theoretical and experimental domains alike [9–13].

The main objectives of peristaltic motion are to investigate the secondary fluid motion as
a possible fluid mixing mechanism and fluid motion within the pump. Moreover, peristaltic motion in
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physiological sciences has opened a new dimension for researchers to manipulate their equipment
for attaining better output in their respective field of interest. One of the most important fields in
these areas is peristaltic blood flow. In fact, the basic idea of peristalsis in blood circulation was given
by Nicoll [14] by explaining that the minute vessels of most vascular systems retain the power of
contraction and expansion. Although, at that time he could not assign the word peristalsis, but this
approach inspired the researchers to investigate experimentally, as well as theoretically. The rate at
which kidney cells execute the regulation of the volume of water or salts in the body is affected by
using drugs; similarly, the rate at which blood flows through arteries may also be affected or slowed
down by the drugs. It is important to note that there is a significant difference between restoration and
reparation. By using drugs, the damaged structures or function of a human body can be repaired only
but restoration is not possible. Many researchers have studied various aspects of blood flow in normal
diseases arteries and blood flow in arteries having a single stenosis. Blair [15] used the available
experimental results on human blood and verified by plotting the square root of the strain-rate against
the square root of the shear stress that the linearity with a non-zero value for the intercept on the
stress axis. Blood flow through an arterial segment having multiple stenosis was investigated by
Misra et al. [16]. He derived volumetric flow rate and pressure distribution and concluded that the wall
shear stress and pressure drops are at a maximum at the throat of each stenosis and a minimum at the
ends of each stenosis. Another important development in the history of bio-fluids is the investigation
of nanoparticle separation technology which can be used to isolate a wide range of nanoparticles out
of plasma with a minimum amount of manipulation [17]. This latest discovery enables researchers
to study the mathematical modeling of drug delivery nanoparticle systems in blood flow. Table 1
shows the composition of blood and main features in a healthy human body. Some more investigations
dealing with blood flow modeling can be viewed in the available references [18–21].

Table 1. Composition of blood and main features in a healthy adult male [22].

Plasma/Living Cells Range

Erythrocytes 4.5–5.2 ˆ 106/mm3

Protids 70–80 g/L
Leukocytes 4–10 ˆ 103/mm3

Ions 295–310 mEq/L
Eosinophils 1%–2%

Lipids 5–7 g/L
Lymphocytes 20%–40%

Glucids 0.8–1.1 g/L
Neutrophils 40%–70%

Osmotic pressure 280–300 mOsm
Basophils 0.5%–1%

pH 7.39–7.41
Monocytes 2%–10%
Hematocrit 41%–47%

Platelets 2–4 ˆ 105/mm3

The presence of a magnetic field in the study of peristaltic flow is of great interest with regards
to certain problems of physiological fluids such as blood, blood pump machines. Abbas et al. [22]
solved a fundamental problem of magnetohydrodynamic (MHD) peristaltic blood flow of nanofluids
in a non-uniform channel. This was the motivation towards estimating blood flow in arteries
during electromagnetic hyperthermia. Computational study on LDL transfer from blood flow to
the wall tissues of arteries has been studied by Wade and Karino [23]. Agrawal and Anwaruddin [24]
studied a mathematical model of MHD peristaltic blood flow through a channel with flexible walls.
They observed that the effect of a magnetic field can be utilized as a blood pump in carrying out
cardiac operations. Sud et al. [25] explored the effect of a moving magnetic field on blood flow. Further,
Abbasi et al. [26] developed a mathematical model of peristaltic transport of MHD fluid by considering
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variable viscosity. Some relevant studies to magnetic field models can be found from the list of
references [27–30].

During the past few years, the analysis of various physiological systems has been reported by
various scientist. However, physiological systems are quite difficult and complicated even though they
depict a certain amount of linearity. They also show unpredictable and chaotic behavior. Furthermore,
in such types of systems, the analysis of heat and mass transfer involves great interest which arises
due to its complex combination of stochastic and deterministic physiological processes. Another such
type of system in human blood is oscillation. While a human body performs its normal daily routine,
ambulatory blood pressure is a clinical procedure to analyze the blood pressure for every 20 to 30 min
during 24 to 48 h. Blood flow enhances when a person performs different physical activities and in
such types of situations, blood circulation remains unstable. When the environmental temperature
rises up to 20 ˝C, then heat transfer takes place from the skin through the process of evaporation,
and when the temperature falls below 20 ˝C then human body loses heat through conduction and
radiation processes. In such types of cases, entropy plays an important role to scrutinize such systems.
Entropy generation comprises of two main parts; (i) frictional factors, and (ii) thermal irreversibility.
Bejan [31,32] originally formulated the analysis of entropy generation and found various applications,
such as two-phase flows [33], MHD pumps, and electric generators [34]. More studies on entropy
generation are available in references [35,36]. However, in none of the studies mentioned above
are the peristaltic flow problems with entropy generation. There are very few attempts in which
the entropy generation of the peristaltic flow of nanofluids is taken into account in the presence of
a magnetic field. In fact, the presence of magnetic fields introduces additional dissipation that must be
considered to supply the necessary input power to perform the required task. This can be acquired by
minimizing entropy generation in the processes. It is necessary to minimize the entropy generation in
energy optimization problems. Moreover, to assess the intrinsic irreversibilities in microfluidics and to
investigate optimized operation conditions, entropy generation appears as a convenient tool.

With the above analysis in mind, the aim of the present investigation is to study the MHD
peristaltic blood flow of nanofluid with entropy generation through a porous medium. The governing
flow problem is modeled by taking the approximation of the long wavelength and creeping flow regime.
The solution for the resulting non-linear partial differential equations is solved with the help of the
homotopy perturbation method (HPM). The impact of various pertinent parameters for pressure rise,
friction force, temperature profile, concentration profile, and entropy are plotted and discussed in detail.

2. Mathematical Formulation

Let us suppose the unsteady irrotational, hydromagnetic flow of a non-Newtonian Williamson
fluid, being incompressible and electrically-conducting by an external magnetic field, applied through
a two-dimensional non-uniform porous channel having a sinusoidal wave moving down towards its
walls. We have selected a Cartesian coordinate system for the channel in such a way that rx´ axis is
taken along the axial direction and ry´ axis is taken along the transverse direction as shown in Figure 1.
The geometry of the governing flow problem can be described as:

H
´

rx,rt
¯

“ b prxq ` rasin
2π

λ

´

rx´ rcrt
¯

, (1)

where:
bprxq “ b0 ` rx,
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The governing equation of motion, continuity, thermal energy, and the nano-particle fraction for
the peristaltic nanofluid of blood can be written as [22]:

Bru
Brx
`
Brv
Bry
“ 0, (2)

ρ f

ˆ

Bru
Brt
` ru

Bru
Brx
` rv

Bru
Bry

˙

“ ´
Brp
Brx
`
B

Brx
S
rxrx `

B

Bry
S
rxry ´ σf B2

0ru´
µ f

rk
ru` g

”

p1´ Fq ρ f0 ζ pT´ T0q ´
´

ρp ´ ρ f0

¯

pF´ F0q
ı

, (3)

ρ f

ˆ

Brv
Brt
` rv

Bru
Brx
` rv

Brv
Bry

˙

“ ´
Brp
Bry
`
B

Brx
S
ryrx `

B

Bry
S
ryry ´ σf B2

0rv´
µ f

k
rv` g

”

p1´ Fq ρ f0 ζ pT´ T0q ´
´

ρp ´ ρ f0

¯

pF´ F0q
ı

, (4)

pρcq f

ˆ

BT
Brt
` ru

BT
Brx
` rv

BT
Bry

˙

“ κ

ˆ

B2T
Brx2 `

B2T
Bry2

˙

` pρcqp DB

ˆ

BT
Brx
BF
Brx
`
BF
Bry
BT
Bry

˙

`
DT
T0

˜

ˆ

BT
Brx

˙2
`

ˆ

BT
Bry

˙2
¸

´
Bqr

Bry
`Q0, (5)

ˆ

BF
Brt
` ru

BF
Brx
` rv

BF
Bry

˙

“ DB

ˆ

B2F
Brx2 `

B2F
Bry2

˙

`
DT
T0

ˆ

B2T
Brx2 `

B2T
Bry2

˙

´ k1 pF´ F0q . (6)

Under the approximation of Rosseland for radiation, the radiative heat flux qr is defined as:

qr “ ´
4σ

3K
BT4

Bry
. (7)

Let us consider that temperature within the nano-particle blood flow is very small, such that the
term ”T4” can be expanded about a free stream temperature ”T0” as:

T4 “ T4
0 ` 4T3

0 pT´ T0q ` 6T2
0 pT´ T0q

2
` . . . , (8)

After neglecting the higher order terms in the above equation it can be written as:

T4 – 4T3
0 pT´ T0q , (9)

Using Equations (7)–(9) we get:

qr “ ´
16σ

3K
BT
Bry

. (10)

The extra stress tensor for Williamson fluid are defined as:

S “ rµ8 ` pµ0 ` µ8q
`

1´ Γ
.
γ
˘´1
sA1, (11)

where:

.
γ “

g

f

f

e

trac
´

A2
1

¯

2
, A1 “ pgrad V` pgrad VqTq.

In the above equation we have considered µ8 “ 0 and Γ
.
γ ă 1. Now, it is convenient to define

the non-dimensional quantities:
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Let us consider the creeping flow under the assumptions of the long wavelength and low Reynolds
number approximations. Using Equation (12) in Equations (2)–(6) we get the resulting equations in
simplified form as:

B2u
By2 `We

B

By

ˆ

Bu
By

˙2
´M2u´

1
k

u` GrTθ ´ GrFΦ´
Bp
Bx
“ 0, (13)

ˆ

1`RnPr
Pr

˙

B2θ

By2 ` Nb
Bθ

By
BΦ
By
` Nt

ˆ

Bθ

By

˙2
` β “ 0, (14)

B2Φ
By2 `

Nt

Nb

ˆ

B2θ

By2

˙

´ γΦ “ 0. (15)

Subject to the respective boundary conditions:

Bu p0q
By

“ 0, θ p0q “ 0, Φ p0q “ 0, (16)

u phq “ 0, θ phq “ 1, Φ phq “ 1, (17)

where h “ 1`
λKx
b0

` φsin2π px´ tq .

3. Entropy Generation Analysis

Entropy generation is derived from the energy and entropy balance for the case of heat and mass
transfer. In the presence of a magnetic field it can be written as [36–38]:
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1´ φ
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where µ f the viscosity of base fluid, and φ is the solid volume fraction which is valid for 0.01 ! φ ! 0.04.
When the thermal conductivity of the particle is over 100 times larger than that of base fluid then the
thermal conductivity in the sense of macroscopic effective medium theory known as the Maxwell
model given as [37]:
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The solution of the above non-linear coupled partial differential equation can be solved with
the help of the homotopy perturbation method (HPM). The homotopy for Equations (13)–(15) can be
written as:

H pw, rqq “ p1´ rqq pL1 pwq ´ L1 pw0qq ` rq

˜

L1 pwq ` We
B

By

ˆ

Bw
By

˙2
` GrTΘ´ GrFϑ´

Bp
Bx

¸

, (24)

H pΘ, rqq “ p1´ rqq
`

L2 pΘq ´ L2
`

Θ0
˘˘

` rq

˜

L2 pΘq `
Pr

1`RnPr

˜

Nb
Bϑ

By
BΘ
By
` Nt

ˆ

Bϑ

By

˙2
¸

`
Prβ

1`RnPr

¸

, (25)

H pϑ, rqq “ p1´ rqq
`

L2 pϑq ´ L2
`

ϑ0
˘˘

` rq
ˆ

L2 pϑq `
Nt

Nb

ˆ

B2Θ
By2

˙

´ γϑ

˙

. (26)

The linear operators L1, L2 are taken in the following form:

L1 “
B2

By2 ´M2 ´
1
k

, (27)

L2 “
B2

By2 , (28)

and the initial guess for the above linear operators are defined as:
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w0 “
coshN2y´ coshN2h

coshN2h
, (29)

ϑ0 “ Θ0 “
y
h

. (30)

Defining the following expansion:

w px, yq “ w0 px, yq ` rqw1 px, yq ` rq2w2 px, yq ` . . . , (31)

Θ px, yq “ Θ0 px, yq ` rqΘ1 px, yq ` rq2Θ2 px, yq ` . . . , (32)

ϑ px, yq “ ϑ0 px, yq ` rqϑ1 px, yq ` rq2ϑ2 px, yq ` . . . , (33)

Using Equations (31)–(33) in Equations (24)–(26), and comparing the powers of rq, we get a system
of linear differential equations with their relevant boundary conditions. According to scheme of HPM,
we obtained the solution as rq Ñ 1 , we get:

u px, yq “ w px, yq “ w0 px, yq `w1 px, yq `w2 px, yq ` . . . , (34)

θ px, yq “ Θ px, yq “ Θ0 px, yq `Θ1 px, yq `Θ2 px, yq ` . . . , (35)

Φ px, yq “ ϑ px, yq “ ϑ0 px, yq ` ϑ1 px, yq ` ϑ2 px, yq ` . . . , (36)

The solution of the velocity profile, temperature profile, and nano-particle concentration are
written in simplified form as:
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The instantaneous volume rate is defined as: 
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where N2 “ M2 `
1
k

.
The instantaneous volume rate is defined as:

Q “

ż h

0
udy. (40)

The non-dimensional form of the pressure rise ∆PL and friction force ∆FL along the wall with
a length of the non-uniform channel L is given by:

∆PL “

ż L{λ

0

dp
dx

dx, (41)

∆FL “

ż L{λ

0
h
ˆ

´
dp
dx

˙

dx. (42)

5. Numerical Results and Discussion

In this section influence of different parameters of interest are investigated graphically. To discuss
the above results more vigorously, we assume that for instantaneous volume flow rate Q px, tq is
periodic in px´ tq and is defined by:

Q px, tq “ Q` φsin2π px´ tq ,

where Q describes the average time flow over one period of the wave. With the help of this form
Q px, tq, we will numerically compute the pressure rise p∆PLq and friction force p∆FLq over the length
L of the non-uniform channel. A graphical demonstration for temperature profile, concentration
distribution, pressure rise, friction force, and entropy generation are plotted for all of the physical
parameters, such as Brownian motion (Nbq, Prandtl number pPrq, thermophoresis parameter pNtq,
chemical reaction parameter (γq, heat source/sink parameter pβq, Hartmann number pMq , porosity
parameter pkq , Brinkman number pBrq, dimensionless temperature difference pΩq, concentration
difference pΛq, constant parameter pζq, and diffusive coefficient pΓq .

From Figure 2 it can be observed that temperature profile is increasing throughout the domain
with the increase in the parameters β and Nt. According to Equations (14) and (15), the thermophoresis
parameter is directly proportional to the temperature profile; thus, with the increase in Nt temperature
profile increases. Figure 3 shows that the temperature profile also increases when Nb and Pr increase.
Brownian motion creates micro-mixing which raises the thermal conductivity while an increase in
the Pr thinner thermal boundary layer forms. It can be observed from Figure 4a that, when the
chemical parameter increases, the concentration profile shows opposite behavior near the walls of the
channel. The concentration profile describes the same behavior for Nb and Nt in Figures 4b and 5a.
Entropy generation is plotted in Figures 5b, 6 and 7 for different values of Br, Γ, Λ, ζ, and Ω. It has been
investigated that the behavior of entropy generation is increasing with the increment in Br, Γ, Λ, ζ and
remains uniform throughout the domain. In Figure 7b we can observe that the behavior is opposite
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when the parameter Ω increases. The reason behind these behaviors of entropy generation is that the
Brinkman parameter is directly proportional to the square of the velocity profile of the flow; hence,
entropy generation increases with the increase in Br while Ω is inversely proportional to the velocity
distribution which causes a decrease in entropy generation for larger values of Ω. Additionally, it is
important to note that ζ is the ratio of the dimensionless concentration difference to the dimensionless
temperature difference. The parameters ζ and Γ indicate the contribution of mass transfer to the
entropy generation. Figures 8, 9 and 10a are displayed to analyze the pressure rise corresponding to
the variation of the numerical values of the different parameters GrT , GrF, k, M, and We. In Figure 8a,
it is noticed that the pressure rise is decreasing with the increase in GrF while, in Figure 8b, it is
concluded that its behavior is opposite for pGrTq. It can be analyzed from Figure 9a that the pressure
rise increases when the porosity parameter pkq increases. It can also be seen from Figure 9b that when
the Hartmann number pMq increases, then the pressure rise decreases. This phenomena describes the
fact that a suitable magnetic field can be applied to control the pressure and the pressure decreasing
means that the flow can pass easily without imposing higher pressure. It is concluded from Figure 9a
that the pressure rise increases with the increase in the Weissenberg number pWeq. The graphical
results for friction forces are plotted in Figures 10b, 11 and 12. It can be observed from all of these
figures that the friction forces show completely opposite behavior for all the physical parameters as
compared to the pressure rise.
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GrF “ 0.6, γ “ 0.1, k “ 1, Pr “ 0.5.

Moreover, In Equation (13), by taking We “ M “ 0, k Ñ8, GrT “ GrF “ 0, the present results
can be reduced to the results obtained by Shapiro et al. [39] and Srivastava and Srivastava [40] for
a Newtonian fluid case (Power Law index n “ 1). Moreover, Equation (13) can also reduce to the same
results obtained by Gupta and Seshadri [41] by taking We “ 0, k Ñ8, GrT “ GrF “ 0. The present
analysis can also be reduced to the similar results obtained by Mekheimer [42] for a Newtonian fluid
(couple stres parameter γ Ñ8 ) by taking We “ 0, k Ñ8, GrT “ GrF “ 0. The graphical results are
shown in Figure 13.
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6. Conclusions

In this article, entropy generation on MHD blood flow of a nanofluid induced by a sinusoidal
wave has been investigated. The governing equation for the blood flow problem is modeled with
the help of continuity, momentum, and nano-particle equations. The resulting nonlinear coupled
partial differential equation has been solved with the help of the homotopy perturbation method
(HPM). The expressions for pressure rise and friction forces are calculated numerically with the help
of computational software Mathematica (10.3v). The major outcomes for the present analysis are:

‚ The temperature profile increases with the increase in Nt and Nb, while friction force reduces with
the increment of these parameters.

‚ The concentration distribution for chemical reactions parameter is opposite near the walls.
‚ The temperature profile and velocity profile play vital roles to measure entropy generation by

increases in Br, Ω, Λ, ε, and Γ.
‚ The pressure rise increases with the increase in density Grashof number and thermal Grashof

number, but its behavior is opposite for friction forces, which indicates the fact that with the
increase in these parameters, pressure rise can be controlled and can also enhance peristaltic
pumping performance.

‚ The pressure rise also increases for nanofluid thermal conductivity, Weissenberg number, and
Hartmann number, but friction force behavior for these parameters are totally different. It provides
a great importance at the time of surgery and critical operations to control excessive bleeding.

‚ The present analysis can also be reduced to a Newtonian nanofluid by taking We “ 0 as a special
case for our study.
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Nomenclature

ru, rv velocity components pm{sq
rx, ry Cartesian coordinate pmq
rp pressure in fixed frame

`

N{m2˘

ra wave amplitude pmq
b prxq width of the channel pmq
rc wave velocity pm{sq
Pr Prandtl number
Re Reynolds number
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rt time psq
GrF basic density Grashof number
GrT thermal Grashof number
Nb Brownian motion parameter
Nt thermophoresis parameter
K p! 1q constant
A1 Rivilin Erickson tensor
B0 magnetic field pTq
We Weissenberg number
Rn radiation parameter
Q volume flow rate

`

m3{s
˘

T, F temperature pKq and concentration
T0, T1 Temperature at centre and at the wall
F0, F1 Nanoparticle fraction at centre and at the wall
Br Brinkman number
rq Perturbation parameter
g acceleration due to gravity

`

m{s2˘

DB Brownian diffusion coefficient
`

m2{s
˘

DT thermophoretic diffusion coefficient
`

m2{s
˘

K mean absorption constant
M Hartman number
S stress tensor
rk porosity parameter

Greek Symbols

γ chemical reaction parameter
κ nanofluid thermal conductivity pW{m Kq
β heat source/sink parameter
µ viscosity of the fluid

`

N s{m2˘

Φ nano-particle volume fraction
σ electrical conductivity pS{mq
Ω dimensionless temperature difference
Λ concentration difference
ζ constant parameter
Γ diffusive coefficient
.
γ Second invariant tensor
δ wave number

`

m´1˘

σ Stefan Boltzmann constant
cp effective heat capacity of nanoparticle pJ{Kq
ν nanofluid kinematic viscosity

`

m2{s
˘

pρqp nanoparticle mass density
`

kg{m3˘

ρ f fluid density
`

kg{m3˘

ρ f0

fluid density at the reference temperature
pT0q

`

kg{m3˘

ζ volumetric expansion coefficient of the fluid
pρcq f heat capacity of fluid pJ{Kq
λ wavelength pmq
φ Amplitude ratio
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