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Abstract: Acoustic signals are an ideal source of diagnosis data thanks to their intrinsic non-directional
coverage, sensitivity to incipient defects, and insensitivity to structural resonance characteristics.
However this makes prevailing signal de-nosing and feature extraction methods suffer from high
computational cost, low signal to noise ratio (5/N), and difficulty to extract the compound acoustic
emissions for various failure types. To address these challenges, we propose a hybrid signal processing
technique to depict the embedded signal using generally effective features. The ensemble empirical
mode decomposition (EEMD) is adopted as the fundamental pre-processor, which is integrated with
the sample entropy (SampEn), singular value decomposition (SVD), and statistic feature processing
(SFP) methods. The SampEn and SVD are identified as the condition indicators for periodical
and irregular signals, respectively. Moreover, such a hybrid module is self-adaptive and robust to
different signals, which ensures the generality of its performance. The hybrid signal processor is
further integrated with a probabilistic classifier, pairwise-coupled relevance vector machine (PCRVM),
to construct a new fault diagnosis system. Experimental verifications for industrial equipment show
that the proposed diagnostic system is superior to prior methods in computational efficiency and the
capability of simultaneously processing non-stationary and nonlinear condition monitoring signals.

Keywords: acoustic signal processing; fault diagnosis; ensemble empirical mode decomposition
(EEMD); sample entropy (SampEn); singular value decomposition (SVD); hybrid system

1. Introduction

As a fundamental way of characterizing the condition of a mechanical system, diagnostics should
fulfill the requirement of being able to detect all possible faults. As a defective component may
run for certain time before it is totally damaged, the early detection of machinery fault and making
corresponding maintenance arrangements have great impact on the reduction of unexpected shutdown
and operation cost.

The condition monitoring process includes the acquisition of information, signal processing and
pattern recognition. Various signal types, including vibrations, acoustic signals, and temperature,
have been used for fault diagnosis. Considering the advantages of acoustic signals, there has been
a tendency to apply acoustic signal analysis to machinery fault detection and diagnosis [1]. Firstly,
acoustic signals are non-directional which means that one acoustic sensor can satisfy the data collection
requirements, while signals on three axes are needed to be considered if using a vibration sensor.
Secondly, acoustic signals are relatively independent of structural resonances [1]. Thirdly, the high
sensitivity of acoustic signals [2] provides an opportunity to identify faults at an early stage [3]. What
comes along with the benefits of acoustic signals are their problems of low signal to noise ratio (S/N)
and high computational cost. As acoustic sensors can capture a much broader range of frequencies
than vibration accelerometers, the S/N of acoustic signals is generally lower than that of vibrations.
The high sampling frequency of acoustic signal which results from the high frequency of acoustic
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signals also make it undesirable to use long monitoring times because of the high computational cost,
making the S/N even lower. It is thus imperative to adapt methods which reduce the computational
time and increase the S/N when using longer monitoring times.

To overcome these problems, effective acoustic signal de-nosing techniques and suitable feature
extraction methods are adopted. In this study, a widely used method, discrete wavelet transform
(DWT) using soft threshold [4], is adopted. In addition, some time-frequency analysis methods,
including wavelet transorm and empirical mode decomposition (EMD), are adopted for fault feature
extraction from rotating machinery signals [5]. The wavelet transform is the most dominant method
used nowadays [6], but it still has many defects to overcome. First, as a wavelet transform is in fact a
windowed Fourier transform, energy leakage will occur during the signal processing. Second, once
the decomposition scales are determined, the wavelet transform result is the signal under a certain
frequency band. In other words, a wavelet transform is not a self-adaptive signal processing method
by nature [7]. EMD has been proposed as a time-frequency signal processing technique to deal with
non-linear and non-stationary problems as in this application [8]. It decomposes a complicated signal
into a series of intrinsic mode functions (IMFs) which not only relate to the sampling frequency, but
change with the signal itself. Hence, it is a kind of adaptive signal processing technique for non-linear
and non-stationary signals. However, the major disadvantage of EMD is the issue of mode mixing.
To overcome the issue, an improved EMD method, ensemble empirical mode decomposition (EEMD),
was recently proposed by Wu and Huang [9]. EEMD is a noise-assisted data analysis method that
involves adding finite white noise to the investigated signal to eliminate the mode mixing problem.
Compared with the aforementioned signal processing methods, EEMD is proposed as a suitable
time-frequency analysis technique to process acoustic signals in this application. Even though EEMD
decomposes the signals into IMFs containing the local features of a signal, however, the data size of
IMF is the same as that of the raw data, which is usually very big. Therefore, a proper feature selection
method should be also considered in the feature extraction phase to determine representative features
from IMFs so as to reduce the input dimensions of the classifier.

In the previous literature, both the sample entropy (SampEn) [10,11] and singular value
decomposition (SVD) [12] methods are adopted to extract the representative characteristics from
IMFs. Generally, different indicators can be used to describe different failures. For example, a broken
tooth in a gear has a relatively regular acoustic signal because it is periodic, so the outcome of SampEn
is relatively low, which is very similar to the outcome of a periodic fault such as chipped tooth because
as an indicator SampEn mainly describes the regularity not the detailed impulse. This makes it easier
to produce a wrong classification. On the contrary, SVD can easily solve the problem by rendering the
singular value matrix of the fault signal which can represent the periodic fault information adequately.
As for a non-periodic signal such as outer race wear in a bearing, the signal is very unpredictable as its
regularity is very low. In this case, the performance of SVD is worse than SampEn which can depict
the fault properly by rendering the extent of its irregularity. A hybrid of the two approaches meets the
needs of fault classification with high accuracy. In this paper, the authors propose a meritorious hybrid
of SampEn and SVD, which are based on EEMD and assisted by the statistical features of the acoustic
signals, that dramatically reduces the dimension of IMFs, allowing taking all meaningful IMFs into
account and the use of long monitoring times, without increasing the computational expense, and
at the same time, enhancing the classification accuracy to a considerable extent. After extracting the
features based on SampEn and SVD, the extracted feature vectors are adopted to execute a pattern
recognition algorithm.

Neural network-based monitoring systems have been proposed [13-15]. However, neural network
(NN) classifiers have many limitations, including local minima problems, being time-consuming,
and the risk of over-fitting. To date, researchers have already applied support vector machines
(SVM) to engineering diagnosis problems [16,17], and have shown that SVM is superior to traditional
NNs [18]. The major advantages of SVM are its global optimum and a higher generalization capability.
Considering that there are more than two fault types always exist in a machinery system, it is necessary
to find a suitable probabilistic classifier which can output the probability rank of all failures. According
to the rank, the other possible faults can be traced when the prediction result is not right [19].
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The probabilistic neural network (PNN) was proposed as a probabilistic classifier for multi-label
classification [20]. However, with PNN it is difficult to deal with the issue of large-scale data such
as the multiple acoustic signal problem presented in this paper. Recently, a probabilistic classifier,
relevance vector machine (RVM), was proposed by Widodo et al. [21] and Tipping [22] to deal with
fault diagnosis of low speed bearings. To deal with the issue of multi-class classification, RVM is
adopted in this application. A one-vs-all strategy is usually adopted to overcome the multi-class
classification problem. However, this strategy was verified to produce a large indecision region [23,24].
The pairwise coupling strategy, one-vs-one, is introduced into RVM to overcome the drawback, leading
to the concept of a pairwise-coupled relevance vector machine (PCRVM). Since the correlation between
each pair of faults is considered by the pairwise coupling strategy, a more accurate estimation of the
probability of the fault signal can be achieved. A detailed explanation of the advantages of the pairwise
coupling strategy is presented in Section 2.3.

To summarize, a framework combining feature extraction (EEMD based SampEn and SVD), which
is assisted by statistical features, and PCRVM is proposed for fault diagnosis. The original features of
the work presented in this paper are summarized below:

1. Itis the new research that analyzes the properties of feature extraction using EEMD+SampEn,
which is extremely effective for dealing with irregular faults while it can always improve the
overall performance of fault diagnosis for all types of signals.

2. Itis the first example in the literature that observes the suitable application domain of EEMD+SVD
method, which is sensitive for periodic faults and will not downgrade the classification accuracy
for irregular faults.

3. The proposed EEMD-based hybrid signal processing method, combined with SF, SampEn and
SVD, provides a new and robust solution to improve the general performance of feature extraction
and fault diagnosis systems for various kinds of signals.

4. The proposed fault diagnosis framework, using the hybrid feature extraction module and the
probabilistic classifier, pairwise-coupled relevance vector machine, can achieve a high diagnostic
efficiency for simultaneous faults.

2. Methodology

The methodology is illustrated in four parts. The first part briefly introduces the signal
pre-processing methods, including signal de-nosing (DWT) and signal decomposition (EEMD).
SampkEn is introduced and followed by SVD as approaches to reduce computational cost and enhance
S/N in the second part. The third part demonstrates the meaning of the hybrid of SampEn and SVD
and proposes an innovative framework. The last part is concerned with pattern recognition which
introduces a probabilistic classifier PCRVM. Figure 1 shows a brief outline of the framework.

Acquired acoustic | Statistic
signal samples ”| Features
Wavelet
de-nosin, — N - -
o Normalization Classifier Classification
VI >amp [0,1] PCRVM [ ] results
s
EEMD o
matrix XProc-Train: Processed training dataset
XProc-Vali: Processed validation dataset
XProc-Test: Processed test dataset

Figure 1. A brief framework of the proposed method.

2.1. Data Processing

2.1.1. Signal Denosing

A discrete wavelet transform (DWT) using a soft threshold is selected in this paper. The soft
threshold is calculated as sign (x) (|x| — #), if |x| > ¢, and otherwise is 0, where t denotes the
threshold [25]. More details on the denoising procedures are described in Section 3.2.
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2.1.2. Empirical Mode Decomposition (EMD)

EMD is defined that any complicated signal that can be transformed into several IMF components.
After implementing the EMD, the original signal x(t) can be expressed as follows:

x(t) = Z ci(t) +ru(t) 1)

i=1

where c;(t) and r,(t) are the ith IMF and residue, respectively. The ith IMF changes with the frequency
of the signal from high to low; the residual term 7, (t) is usually overlooked because it represents the
very low energy part of the signal. Although EMD has been widely adopted in signal processing for
diagnostics, mode mixing degrades the performance of EMD in practical applications.

2.1.3. Ensemble Empirical Mode Decomposition (EEMD)

To overcome the problem of mode mixing, the EEMD is proposed by introducing the concept
of noise-assisted data analysis. Generally speaking, when the investigated signal is dominated by
high-frequency components, the noise amplitude needs to be smaller, and when the investigated signal
is dominated by low-frequency components, the noise amplitude should be increased. The differences
between the EEMD and EMD procedures are as follows:

(1) Add different white noise to the original signal to get a group of synthesized signals.
(2) Applying EMD to all the synthesized signals and get different groups of IMFs.
(38) Calculate the mean of corresponding IMF to generate the final result.

A simulated experiment was conducted to illustrate the improvement provided by using EEMD.
The simulation signal is a combination of a sine wave and small impulses. By applying EMD and EEMD
to the simulation signal, respectively, we obtained IMF(b1) and IMF(c1) in Figure 2a and IMF(b2) and
IMF(c2) in Figure 2b. It can be seen in Figure 2a that both IMF(b1) and IMF(b2) could not represent the
sine wave nor the impulses perfectly. Mode mixing happens between the two components, resulting
in the fact that the two components reside in each other. From IMF(b2) and IMF(c2) in Figure 2b, it is
shown that EEMD overcomes the mode mixing issue.
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Figure 2. Comparison of the decomposition results of EMD and EEMD. (a) Decomposition results of
EMD; (b) Decomposition results of EEMD.
2.2. Dimension Reduction and S/N Enhancement

Computational efficiency has been the focus of almost all algorithms, which still holds in our
case. There are three main reasons why dimension reduction is imperative in our work. The first is
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that we adopt acoustic signals as the input signal which have much higher frequency than vibrations,
enlarging the sample dataset and limiting the monitoring time of each sample. The second reason is
that many trials are required due to the additional noise process of EEMD. The last one is that EEMD
decomposes the original signal into many IMFs which makes the dataset at least ten times larger than
before. At the meantime, the S/N of acoustic signals is generally lower than that of vibrations, making
it inconvenient to classify different types of faults.

2.2.1. Sample Entropy

Sample entropy (SampEn) is a modification of approximate entropy [26]. It is used to evaluate the
degree of information production. SampEn can be calculated as follows:

1 N—m+1 1 N—(m+1)+1

mq m+1:
Nowsl 2 GO Nmener & U0 @

SampEn(m,r,N) = In[

where N is the length of signals, m is the match of length, and C}(i) is the probability that any two
epochs match each other. By choosing a proper noise filter parameter r (usually chosen around 25% of
the standard deviation of the signal) it is possible to eliminate the effect of noise [27].

In the proposed framework, SampEn selects the features from IMFs to combine as extracted
features, xgg = [SampEny, SampEn,, ..., SampEn,] where n is the number of IMFs. The extracted
features will be sent to the classifier as indicator vectors.

2.2.2. Singular Value Decomposition (SVD)

SVD is a linear algebra technique that is employed to analyze matrices. In SVD, any matrix X of
size I x N can be decomposed into three matrices, which are defined as follows:

X = UAVT (3)

where U and V are orthogonal matrices, A is a diagonal matrix in which the diagonal element o;
represents the singular values of X. The singular values are listed in the descending order automatically,
01(X) = 02 (X) = --- = o7 (X), by SVD function:

0 (%) 0
A=| . . 4
0 0 - o

After the application of SVD to IMF matrix X, the singular values o (X) of X, which contains the
fault feature vector, can be obtained as follows:

o(X) = [o1(X), 02(X), -+, 01(X)] ©)

The fault is then identified and classified according to the obtained fault feature vector o (X).
When the features describing the characteristics of the signals are available, the next step is to construct
the probabilistic committee machine based on the obtained features.

2.3. Pairwise-Coupling Relevance Vector Machine

Relevance vector machine (RVM) has shown its advantages over traditional classifiers and thus
has attracted more and more attention in diagnostics [28]. By utilizing a Bayesian learning framework
and popular kernels, RVM has the ability to produce probabilistic outcomes. In modern industry,
there are always more than two types of fault that could occur in one system, but the traditional RVM
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formulation uses the one-vs-all strategy to overcome the problem of binary classification, which is
not qualified for fault diagnosis. Taking the d-label issue as example, the one-vs-all strategy builds
d classifiers lgass = [C1, Co, ... Cj, ..., C4]. For any undefined input x, the classification vector
G =[Gy, Gy, ... Gj, ..., Gy], where G;=1if Cj(x) = +1 or G;= 0 if C;(x) = —1. Although the one-vs-all
strategy is simple to implement, it generally provides a poor performance [28,29] because the pairwise
correlation of each label is not considered, which creates a larger indecision region as shown in Figure 3.
On the other hand, pairwise coupling (one-vs-one) also builds d classifiers l.j,ss = [C1,Ca, ... Ci, ..., C4] for
a d-label issue in which each C; = [Ci1, Cj2, ... Cjj, ..., Cjg] contains d — 1 different pairwise classifiers
Cij, i # j. In other words, a total of d(d — 1)/2 classifiers is constructed in ;s as shown in Figure 4.
The output vector of probability p; is defined as:

d d
' 12#7’11‘]‘(31‘]'(?4) ' 12 ipij
i=1L:i#j j=Li#j
pi = Ci(x) = i =— (6)
D M >
=T =T

where 7;; is the number of training feature vectors with either ith or jth labels. Considering the pairwise
correlation between the faults, the proposed framework PCRVM can evaluate the vector of probability
p; at a high accuracy level, and hence generates a higher classification accuracy.

indecisive
3

Boundary constructed using Boundary constructed using
one-vs-all pairwise coupling

Figure 3. Difference between the one-vs-all and pairwise coupling strategies.

Uefexss P; is estimated by Eq. (6
~ 3 ated by Eq
0 Ty o Gy e G2
C 1-C 0 . C,. .. C > p Every C; contains d-1
12 2 e .2 pairwise classifier C;
: . : ’ : . : i,je{l,2,...d};i# j
C; 1-C,. 1-C,. ... 0 .. Co1——»| P
Lj Zj id /?' Since Cj and Cj; are
. 3 . : complementary, there
C are totally d(d-1)/2
1-c, 1-¢,, ... 1-C, ... 04— P, | pairwiseclassifiers.

Figure 4. Probabilistic output based on a pairwise coupling strategy.

3. Experimental Setup and Data Preparation for a Case Study

3.1. Test Rig and Sample Data Acquisition

The test rig includes a computer for data acquisition, an electric load simulator as prime mover,
a gearbox, a flywheel, and an asynchronous generator, which is shown in Figure 5. It can simulate
two periodic faults in the gearbox, a broken tooth and a chipped tooth, and two irregular faults, wear
of outer race and rolling elements.
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Table 1 shows the detailed descriptions of the four simulated faults. The acoustic sensor was
located above the gearbox to record the four simulated faults with a sample rate of 25.6 kHz.
The sampling rate was set to a relatively high frequency, which can ensure no signal is missed.
In other words, every sampling data for each case has 25,600 data points. Finally, a total of 2000 fault
samples (i.e., four simulated faults x 500 samples) was acquired. To test the diagnostic performance,
the acquired signals were separated into three datasets as presented in Table 2, where Dy,;;; denotes the
validation set without feature extraction, Dp,,. vyig indicates the validation set of the extracted features.

Prime
mover

Figure 5. Collection of acoustic signal from a rotating machinery.

Table 1. The detailed descriptions of the four simulated cases.

Case No. Description of Fault
C1 Broken tooth
c2 Chipped tooth
C3 Wear of outer race of bearing
C4 Wear of the rolling elements

Table 2. Division of the sample dataset into different subsets. (Note that the feature extraction includes
EEMD-based SampEn, EEMD-based SVD and statistic features.)

Raw Sample Data Feature Extraction
Validation dataset Dyaiia (800) Validation dataset ~ Dpyo. yirig (800)
Training dataset Dryain (800) Training dataset Dproc_Train (800)
Test dataset Dret (400) Test dataset Dpyoc_Test (400)

3.2. Signal Denoising

The acoustic signal usually suffers from background noise interference. To improve the diagnostic
performance, the acoustic signals need to be denoised. Through a series of experimental trials,
the Daubechies mother wavelet with 4 levels “db4” and a soft threshold are adopted in this study.
Considering the acoustic signal of a broken tooth as an example, the denoised result is demonstrated
in Figure 6. The error means the difference between the original acoustic signal and denoised acoustic
signal in which the white noise component of the signal can be readily eliminated. The result implies
the wavelet shrinkage denoising method is effective and sufficient for signal denoising.

3.3. Feature Extraction

After denoising the signals, EEMD decomposes the acquired signal into I IMFs and residual signal
r7. The SampEn and SVD are adopt for extracting the features from the obtained IMFs. Furthermore,
statistic feature indicators are extracted from the original signal as they are important in analyzing the
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acoustic signals. There are many statistical features available in the literature. Most of the features
deal with the data distribution, such as peakiness, amplitude level, deviation from the mean and so
on. These features provide the physical characteristics of time series data. In this study, 10 statistical
features are employed to analyze the sound signal [30]. Table 3 presents these statistical features.

25 - sweeens Original sound signal De-noised sound signal
20 A
15 - .

10 4 . i "

Amplitude (dB)
5

Time (s}
Figure 6. Comparison of acoustic signal before and after wavelet denoising.

Table 3. Definition of the selected statistical features for acoustic signal.

Features Equation Features Equation
N S 4
1 oy
1. Mean Xm = — D, Xi 6. Kurtosis i;( ! m)
N5 Your = 7 a4
(N = 1)xg,,
x,)? x
2. Standard deviation (% = xm) 7. Crest factor CF = xﬂ
rms
N-1
x
LY, CLF-
3. Root mean square Xrms = A | — 2, X* 8. Clearance factor 1
me AN (2 Vi)
i=1
SF— _ Yrms
4. Peak Xpr = max |x;| 9. Shape factor 1N
N 2 |xil
i=1
N Xpk
2 (= x)® IF= S5 —
5. Skewness i-1 10. Impulse factor 1
Xske = 3 NZ |xi|
(N B sttd i=1
Note: x; represents a signal series for i =1,2, ... , N, where N is the number of data points of a raw signal.

As IMFs are listed in the descending order, the last few IMFs, which have a frequency lower than
0.5 Hz, have nothing to do with the fault information, and the SampEn of these IMFs are zero, which
contributes almost nothing to the classification accuracy. As a result, the first 10 IMFs are adopted in
this experiment.

3.4. Normalization

To ensure that all the features have even contribution, all reduced features should go through
normalization. The interval of normalization is within [0,1] as follows:

y= (x — xmin) (7)

(xmax - xmin)



Entropy 2016, 18, 112 9 of 14

where x and y are the output feature and result of normalization, respectively. After normalization,
a processed dataset xpy,. is obtained. The classifier can be trained by using Xp,.Train and the
PCRVM method.

4. Results and Discussion

To compare the performance of different methods, a set of experiment results were obtained to
determine the best combination of the proposed approaches.

4.1. Performance of Conventional Statistic Feature Indicators Using Denoised Signals

There are many condition indicators available in literature. The 10-SF are picked out as they
depict the most traditional aspects of acoustic signals. In many vibration-concerned papers, the 10-SF
are used alone as condition indicators, and their performance complies with the expectations perfectly,
but in this paper, the signal we use is an acoustic signal which has quite a lot differences compared
with vibrations, so the 10-SF are used alone as input condition indicators to be sent to PCRVM as
a comparison. Moreover, to verify the effectiveness of the proposed denoising technique, denoised
acoustic signals based on PCRVM are used to compare with the original signals. The experimental
result is shown in Table 4.

Table 4. Comparison of original and denoised signals using 10-SE.

Periodic Faults Irregular Faults
: Overall Result
Denoised Broken Tooth Chipped Tooth Wear of Outer Race Wear of Rolling
> Elements
Signals
Original Denoised Original Denoised Original Denoised Original Denoised Original Denoised
Signals  Signals  Signals  Signals  Signals  Signals  Signals  Signals  Signals  Signals
Correct 72 75 86 87 81 83 77 77 316 322
cases
Wrong
28 25 14 13 19 17 23 23 84 78
cases
Accuracy 72% 75% 86% 87% 81% 83% 77% 77% 79% 80.5%

As can be seen from Table 4, although the denoised signals using 10-SF give a 1.5% improvement
compared with the original signals in the overall results, the accuracy of the result is a barely acceptable
80.5%. The reason why 10-SF performs much better when used in vibration analysis than when used
here is that the noise ratio of vibration signals is generally lower than that of acoustic signals. The energy
of the fault features in acoustic signals is much lower compared with vibrations, and as a result, 10-SF
cannot extract the fault features properly to give a desirable outcome.

4.2. Results and Discussion of the Hybrid of SF and EEMD Based SampEn

To overcome the drawbacks of using the SF alone, the denoised acoustic signal should be inspected
from other perspectives rather than only in a time-domain way. EEMD meets these needs very
well. Compared with EMD, EEMD has no mode mixing problems. EEMD decomposes the acoustic
signals into n IMFs which are listed in descending order of frequencies. IMFs represent the different
components of the acoustic signals including the fault information. As the sample entropy can be
extracted out by applying SampEn to each IME, it can be compared to emboss the fault information to
acquire a more accurate answer. To illustrate the advantages of EEMD, a comparison of EEMD- and
EMD-based 10-SF and SampEn using denoised acoustic signals is shown in Table 5. As expected, by
removing the mode mixing effects, the accuracy of EEMD is improved by 1% in the overall result as
compared with the EMD. Therefore, the EEMD-based method is used in the following calculations.
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Table 5. Comparison of the hybrid of 10-SF and EMD/EEMD-based SampEn.

Periodic Faults Irregular Faults
Denoised Overall Result
Signals Broken Tooth Chipped Tooth ~ Wear of Outer Race ~ Wear of Rolling Elements
EMD EEMD EMD EEMD EMD EEMD EMD EEMD EMD EEMD
Correct 80 83 90 90 94 95 93 93 357 361
cases
Wrong 20 17 10 10 6 5 7 7 43 39
cases
Accuracy 80% 83% 90% 90% 94% 95% 93% 93% 89.25%  90.25%

Besides, compared with 10-SF using denoised signals in Table 4, EEMD with the SampEn method
in Table 5 shows that the irregular faults, wear of outer race and the rolling elements, contribute the
most to the improvement by eliminating 28 wrong cases, while the periodic faults, broken tooth and
chipped tooth, contribute to the improvement of eight cases and three cases, respectively. In other
words, the performance of EEMD with SampEn method in the irregular faults is superior than with
the periodic faults. The reason for this is that the values of SampEn of the irregular faults, wear of
outer race and rolling elements, are more different than those of the periodic faults, broken tooth and
chipped tooth, which is shown in Figure 7. Thus, there is a great improvement of the classification
accuracy of irregular faults. Taking the chipped tooth based on EEMD in Table 5 as an example,
the 10 wrongly classified chipped tooth using PCRVM are demonstrated in Table 6.

0.6
§ —&— broken tooth
(5]
5 04 —#— chipped tooth
=
B = 02 —— wear of outer race
53 ’ 7 —¢— wear of rolling elements
0

Figure 7. The SampEn of each IMFs of each fault.

Table 6. The results of PCRVM of the 10 wrongly classified chipped tooth.

Denoi . Periodic Faults Irregular Faults
enoised Signals
Broken Tooth  Chipped Tooth Wear of Outer Race Wear of Rolling Elements

Case 1 0.7201 0.4780 0.2781 0.0270
Case 2 0.7389 04114 0.3475 0.0125
Case 3 0.2138 0.4602 0.7172 0.1373
Case 4 0.7357 0.5232 0.2554 0.0058
Case 5 0.7120 0.5376 0.2518 0.0115
Case 6 0.6108 0.5075 0.3812 0.0243
Case 7 0.7112 0.5367 0.2521 0.0189
Case 8 0.7384 0.5106 0.2521 0.0156
Case 9 0.2427 0.6016 0.6010 0.0745
Case 10 0.5723 0.5503 0.3660 0.0235

Table 6 demonstrates a set of probabilities of PCRVM in which the fault with the highest probability
is picked out as the final decision. By using PCRVM, we can get all the probabilities of all possible
faults and can detect the fault when the classification is wrong. In Table 6, except for case 3 and case 9,
all eight wrongly classified cases misclassified a chipped tooth as a broken tooth, which complies
with Figure 7 showing that chipped tooth and broken tooth have similar SampEn and are unlikely
to be separated. It can be also seen that the probability of wear of the rolling elements is the lowest,
in other words, it is unlikely to misclassify the wear of rolling elements as a chipped tooth because the
difference between their SampEn is quite obvious. Furthermore, by using PCRVM,, it is adequately
illustrated that SampEn tends to misclassify periodic faults like chipped tooth and broken tooth other
than irregular faults.
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This experimental result clearly shows that by applying the approach of EEMD and SampEn,
the fault diagnosis performance of all faults has been improved to a different extent as compared with
the condition indicator 10-SE. SampEn is a better condition indicator in the diagnosis of irregular faults
than of periodic faults. To improve the diagnosis performance of periodic faults, SVD is proposed in
the case study.

4.3. Results and Discussion of SF and EEMD-Based SVD

By applying the SVD to the initial feature vector matrices, IMFs components, the singular values
of the matrix could be obtained, which can be adopted as the input data for a classifier. Table 7 shows
the result of SF and EEMD-based SVD applied to PCRVM.

Table 7. The results of the hybrid of 10-SF and EEMD-based SVD.

Periodic Faults Irregular Faults

Denoised Signals Overall Result
Broken Tooth  Chipped Tooth  Wear of Outer Race ~ Wear of Rolling Elements
Correct cases 95 96 87 90 367
Wrong cases 6 4 13 10 33
Accuracy 94% 96% 87% 90% 91.75%

Table 7 shows that there is an improvement of 11.25% in the overall result as compared with the
SF in Table 4. Besides, the periodic faults, broken tooth and chipped tooth, contribute the most to
the enhancement by eliminating 27 wrong cases. On the contrary, the irregular faults, wear of rolling
elements and outer race in the bearing, contribute the least with eight cases and six cases, respectively.
The reason is that the periodic faults, broken tooth and chipped tooth, have high regularity because
they have one impulse per cycle. This kind of characteristic has high representativeness and can be
extracted from the signal easily by SVD. As to the irregular faults, the performance of SVD is not as
good as SampEn because the fault component in this kind of signal cannot be fully summarized with
a singular value. This means that the singular value is not adequate enough to represent a signal
which has high irregularity or has no obvious tendency. Table 8 shows the results of PCRVM of the
13 wrongly classified wear of outer race examples.

Table 8. The results of PCRVM of the 13 wrongly classified cases of wear of outer race bearing fault.

Denoi . Periodic Faults Irregular Faults
enoised Signals
Broken Tooth  Chipped Tooth Wear of Outer Race Wear of Rolling Elements

Case 1 0.1804 0.1430 0.5178 0.6898
Case 2 0.1109 0.2581 0.4926 0.7484
Case 3 0.1134 0.3245 0.5223 0.6417
Case 4 0.1117 0.2663 0.4839 0.7482
Case 5 0.1121 0.7206 0.4164 0.3534
Case 6 0.2118 0.6113 0.5878 0.1898
Case 7 0.1145 0.3018 0.4516 0.7471
Case 8 0.1165 0.2814 0.5073 0.7089
Case 9 0.0102 0.2542 0.5807 0.6564
Case 10 0.7436 0.0589 0.4476 0.2502
Case 11 0.2168 0.6754 0.4931 0.3146
Case 12 0.1438 0.2497 0.4649 0.7419
Case 13 0.1139 0.2531 0.4137 0.7436

In Table 8, 10 out of 13 cases wrongly classified the bearing fault of wear of outer race to the wear
of rolling elements because these two faults result in same range of SVD values. It demonstrated that
SVD has good performance on periodic faults while easily misclassifies irregular faults.
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4.4. Results and Discussion of SF and EEMD-Based SampEn and SVD

From the comparison, it is clear that SampEn and SVD have different advantages which make
it possible to further enhance the accuracy by combining these two methods. An experiment
was performed to shed light upon this promising hybrid. Table 9 shows the outcome of the
proposed framework.

Table 9. The result of the hybrid of 10-SF and EEMD-based SampEn and SVD.

. . Periodic Faults Irregular Faults
Denoised Signals Total
Broken Tooth  Chipped Tooth  Wear of Outer Race ~ Wear of Rolling Elements
Correct cases 96 94 95 93 378
Wrong cases 4 6 5 7 22
Accuracy 96% 94% 95% 93% 94.5%

It is desirable to see that the accuracy of classification in both periodic and irregular faults has
been greatly improved. The overall accuracy reaches 94.5%. To verify the effectiveness of the proposed
framework, 5-fold cross validation is adopted [31] which is demonstrated in Table 10, which shows
the comparison of the accuracy of all mentioned combination methods. The method only based on SF
has the worst performance. The EEMD-based method has better performance than EMD due to the
elimination of mode mixing. Moreover, the SampEn and SVD-based methods improve the diagnostic
performance in irregular faults and periodic faults, respectively. As to SampEn and SVD, they both
can greatly reduce the dimensions of acoustic signals to lower the computational cost, and improve
the signal to noise ratio, at the meantime, they can enhance the performance of feature extraction of
both regular and irregular faults due to their fundamental differences. Considering all the merits of
the proposed methods, the hybrid of SF and EEMD-based SampEn and SVD obviously meets the need
of high accuracy classification.

Table 10. The comparison of all frameworks.

. . Periodic Faults (Standard Deviation) Irregular Faults (Standard Deviation)
Denoised Signals

Broken Tooth Chipped Tooth ~ Wear of Outer Race of Bearing = Wear of Rolling Elements

o 75 87% 83% 77%
(4.24) (3.53) (4.24) (5.66)

SF+EMD+SampEn (;952) (208/3) (331/2) (221/2)
SF+EMD+SVD éio/;) (3.2;/;) (f;?;/é)) (2.5;/30)
SF+EEMD+SampEn (2,3;{;,)) (;(.)1023) (??Zf) (ﬁ/f)
SF+EEMD+SVD (ﬁ/f) (?,64:/10) (3?1“/20) (2;71"/;)
SF+EEMD+SampEn+SVD (?).670/10) (?%2/10) ((9).570/10) ('ﬁ/f)
EEMD+SampEn+SVD (zf*;/;) (2.7;/20) 3.11:/;) 321"/10)

5. Conclusions

Fault diagnosis has been well recognized as a promising technology that can greatly enhance the
productivity and engineering management effectiveness. In this study, acoustic signals are adopted
as input signals for its pleasing high sensitivity in transmission of working conditions of machinery.
To overcome the shortcomings in acoustic signals processing in terms of low S/N ratio and high
data acquisition frequency requirement, we proposes a novel acoustic signal denosing and feature
extraction method with compensational sensitivities for different categories of faults. EEMD is selected
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as the fundamental acoustic signal decomposition module without mode mixing effects. For feature
extraction indicators, SampEn is sensitive to irregular faults while SVD is an ideal condition indicator
of periodic signals. Each of them is sensitive to the corresponding intrinsic properties of signals.
The compensation effect is thus utilized by proposing a novel hybrid EEMD based SampEn and SVD
module to enhance the classification accuracy of both periodic and irregular faults. The hybrid signal
processing method could both reduce the computational cost and enhance the S/N level. Various
combinations of EEMD, SampEn, SVD, and SF have been investigated in the experiments to figure out
the characteristics of each method and identify the best combination. The experimental versification has
demonstrated that the proposed feature extraction module could always improve the generalization
performance in heterogeneous faults diagnosis and do not contradict each other or degrade the
individual sensitivity of feature extraction. A new fault diagnosis framework that integrates the hybrid
signal processor with a probabilistic classifier, pairwise-coupled relevance vector machine (PCRVM),
is proposed to identify multiple faults with potential concurrent effect. The proposed framework has
achieved the best performance over other 6 benchmarking feature extraction methods.

In this study, although both periodic and irregular faults can be detected effectively, it will be our
future work to consider how to further increase the diagnosis accuracy for faults in same category,
especially for faults with irregular signals.
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