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Abstract: It is well-known that the fatigue lives of materials and structures have a considerable
amount of scatter and they are commonly suggested to be considered in engineering design. In order
to reduce the introduction of subjective uncertainties and obtain rational probability distributions,
a computational method based on the maximum entropy principle is proposed for identifying the
probability distribution of fatigue life in this paper. The first four statistical moments of fatigue
life are involved to formulate constraints in the maximum entropy principle optimization problem.
An accurate algorithm is also presented to find the Lagrange multipliers in the maximum entropy
distribution, which can avoid the numerical singularity when solving a system of equations. Two fit
indexes are used to measure the goodness-of-fit of the proposed method. The rationality and
effectiveness of the proposed method are demonstrated by two groups of fatigue data sets available
in the literature. Comparisons among the proposed method, the lognormal distribution and the
three-parameter Weibull distribution are also carried out for the investigated groups of fatigue
data sets.

Keywords: maximum entropy principle; fatigue life; statistical moments; maximum entropy
distribution; Lagrange multiplier

1. Introduction

In engineering structural design, it is well-known that the experimental data of fatigue testing
and structures subject to cyclic loads display large variations, even if under the same loading
conditions. This is caused by the uncertainties in material properties, loading conditions, boundary
conditions, etc. [1,2]. Therefore, probabilistic methods are very popular for fatigue life prediction
and anti-fatigue design because they can deal with uncertainties in a rational way. As part of the
development of anti-fatigue design, many probabilistic methods have been proposed for assessing
the uncertainty in fatigue lives, and their applications have been reported both on crack initiation
life and crack propagation life [2,3]. Many experimental data sets indicate that crack initiation life
and crack propagation life have a certain amount of scatter. The most famous experimental data
sets were produced by Schijve [4] for three types of specimens and Virkler et al. [5] for fatigue
crack propagation. Other frequently mentioned data sets were generated by Ghonem and Dore [6],
Yang et al. [7], Itagaki et al. [8] and Wu and Ni [9]. From the view of point of engineering design,
the probabilistic distribution of fatigue life is very important, given stress level or crack length, because
they are the fundamentals to construct P-S-N curves or P-a-N curves, which are used in engineering
fatigue design. In most research studies, it is generally assumed that the fatigue lives of metal materials
follow a lognormal distribution or a Weibull distribution [1,2,4,10]. However, these assumptions
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are based on intuition, practical experience and sometimes the consideration of simplification of
mathematical operations [10]. The prediction of fatigue life, the accuracy of analysis and result
credibility depend on whether these assumed distribution types can really reflect the uncertainties
in the fatigue lives of metal materials. The most reliable data source when studying the fatigue
phenomena of materials and structures is that obtained from fatigue testing. Maximized extracting the
variation information of fatigue life from experimental data and reducing subjective uncertainty from
the introduction of assumed distribution types are critical for identifying a proper distribution type for
fatigue lives.

Entropic concepts have been developed for assessing degradation in fatigue phenomena and
uncertainty quantification in fatigue life analysis and prediction. The former topic is based on the
concept of thermodynamic entropy generation, which leads to deterministic fatigue models [11–18],
while the latter topic is based on information entropy, which is used to quantify the fatigue life
uncertainties [19]. To address the abovementioned issue, the maximum entropy (MaxEnt) principle
with the first two statistical moments was suggested to determine the distribution type of fatigue life
for materials by Gong and Norton [19]. Since only the first two statistical moments are involved in
their study, an analytical distribution type for fatigue life can be derived, i.e., a normal or truncated
normal distribution. However, this method is not widely accepted. The main reason is that only an
analytical normal distribution or truncated normal distribution (the nonnegativity of fatigue live is
considered in a truncated normal distribution) can be obtained, since the approach only uses the first
two statistical moments. Therefore, their method did not take full advantage of the flexibility and
optimal unbiased estimation of the MaxEnt principle when employing it to identify the probability
distribution type of fatigue life.

In this paper, a new method to identify the probability distribution of fatigue life based on the
MaxEnt principle with the first four statistical moments is proposed. The first four statistical moments
of fatigue life are directly obtained from experimental data sets. Then, these statistical moments
are formulated as constraints in the MaxEnt principle. The probability distribution of fatigue life
is the solution to an optimization problem formed by applying the MaxEnt principle. This new
method makes a good usage of the flexibility and optimal unbiased estimation of the MaxEnt principle.
Two groups of fatigue data sets are used to demonstrate the performance of the proposed method.
The MaxEnt distribution, the lognormal distribution and the three-parameter Weibull distribution
are considered and compared in this study. They are used to fit fatigue data in two groups of testing
results. Attention is paid on the goodness-of-fit based on two fit indexes.

2. Probability Distributions for Fatigue Life

One of the most useful probability distributions for modeling failure times of fatiguing materials
and structures is the log-normal one. The log-normal distribution is characterized by a probability
density function (PDF) of the form:

f pxq “
1

?
2πσ

exp

«

´
1
2
px´ µq2

σ2

ff

, ´8 ă x ă 8 (1)

where the parameters µ and σ are the mean and standard deviation of the distribution, respectively. In
general, the statistical variable x in Equation (1) is the 10-logarithm of the fatigue life N, i.e.,:

x “ logN (2)

From the fatigue physics point of view, the fatigue life N does not take on negative values. Thus,
the transformation of the fatigue life N in Equation (2) is consistent with the requirement of the fatigue
physics. It should be pointed out that if the fatigue life N has a log-normal distribution, the logarithm
of N, i.e., x has a normal distribution. This relationship is very useful as one can use the theoretical
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results and formula of the normal distribution when dealing with the log-normal distribution. The
cumulative distribution function (CDF) of the log-normal distribution is given by:

Fpxq “
ż x

´8

f ptqdt (3)

where t is the integrated variable. There is no-closed form solution to this integral, and it needs to be
evaluated by a numerical algorithm. However, many good tools are available for the evaluation of
Equation (3) in today’s software and computer languages, such as Matlab, Scipy, Microsoft Excel, etc.

One mission in fatigue reliability analysis is to estimate the two parameters of the log-normal
distribution. Suppose that a fatigue data set is obtained from lab testing or in service measurement
with n samples xi “ logNi, pi “ 1, . . . , nq. Based on the maximum likelihood principle, the estimators
of µ and σ are estimated as:

µ̂ “
1
n

n
ÿ

i“1

xi (4)

σ̂ “

d

ř

pxi ´ µ̂q2

n´ 1
(5)

The Weibull distribution is another very popular model which has been successfully used for
fatigue phenomena. The formula for the PDF of the Weibull distribution is:

f pxq “
β

θ
p

x´ x0

θ
q

β´1
e
´p

x´ x0

θ
q

β

(6)

where β is the shape parameter that influences the shape of PDF curve of the distribution. For β ă 1,
the PDF has a shape which is somewhat similar to that of the exponential distribution. For 1 ă β ă 3,
the PDF is positively skewed. For β ą 3, the PDF is somewhat symmetrical. θ is the scale parameter
that influences both the mean and standard deviation, or dispersion, of the distribution. The third
parameter x0, i.e., the location parameter, in the Weibull distribution corresponds to a lower fatigue
life limit N, i.e., x0 “ logN0. No fatigue failure less than N0 will take place. This seems to be very
reasonable based on the common understanding of fatigue physics. We will examine this parameter
when working with its estimation. If the value of x0 reduces to zero, the three-parameter Weibull
distribution degrades into the two-parameter Weibull distribution. In general, the fitting capacity of
the three-parameter Weibull distribution is superior to that of the two-parameter Weibull, according to
comparisons and observations available in the literature. Therefore, only a comparison between the
three-parameter Weibull distribution and the presented MaxEnt distribution is performed in this study.

For the Weibull distribution, there is an explicit expression of its CDF:

Fpxq “ 1´ expr´p
x´ x0

θ
q

β

s, x ě x0 (7)

The primary method to estimate these three parameters is to fit a linear regression line of the form
y “ a` bx to a set of transformed data using the least squares method. From the CDF of the Weibull
distribution, one can obtain:

loglogr
1

1´ Fpxq
s “ ´βlogpθq ` βlogpxi ´ x0q (8)

by taking double logarithms.
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Therefore, a least-square fit is achieved with:

yi “ loglogp
1

1´ Fpxiq
q

xi “ logpNiq

a “ β

b “ ´βlogpθq

(9)

If the fatigue data is from a Weibull distribution, a proper fit would graph as an approximate
straight line in a Weibull plot. The shape parameter β can be easily estimated from the slope of the
plotted line, and the scale parameter θ can be estimated from the point on the plotted line which
corresponds to 63.2% of failure, i.e., Fpxiq “ 0.632. With regard to the estimation of the location
parameter x0, there is no closed-form solution, so an iteration procedure should be adopted. The
estimator that results in a minimal of the sum of squared deviations would be used. In other words, the
“best” estimator for the location parameter is defined to be a minimum-bias estimator, and searched
by a numerical algorithm [1,4]. Recall that the lower limit of fatigue life is consistent with the fatigue
physics. However, an estimator from a numerical algorithm cannot be interpreted as having a realistic
meaning of the fatigue physics. It is even possible for the estimator of N0 to be negative if a least
square fit is performed using the fatigue data directly, i.e., Nipi “ 1, . . . nq.

Schijve [1] also discussed another three-parameter distribution with a lower limit of fatigue life.
The statistical variable x is written as:

x “ logpN ´ N0q (10)

Then, the statistical data of xi is also fitted by a normal distribution. It is clear that the PDF and
CDF are still the same as in Equations (1) and (2), and µ and σ are the mean and standard deviation
of x, respectively. Like in the three-parameter Weibull distribution, the introduction of N0 assumes
that no fatigue failures will occur prior to N0. To estimate N0, an iterative least squares method is also
required to search for a solution that meets the mathematical meaning rather than the physical meaning
as expected. Comparisons between the three-parameter Weibull distribution and three-parameter
log-normal distribution have been carried out by Schijve [1]. It turns out that the three-parameter
log-normal distribution produced similar fits to the three-parameter Weibull distribution for two
fatigue data sets investigated by Schijve. This statement is based on the small difference between the
root mean square (r.m.s.) of the deviations from the two distributions when dealing with the same
fatigue data set. However, Schijve also reported that there are very big differences in the estimators of
the minimum fatigue lives determined from these two distributions for his investigated fatigue data
sets. This phenomenon indicates the physical meaning of location parameter may not be realistic as
expected since its value is found from the mathematical point of view.

It is well known that the first two statistical moments, i.e., mean value and standard deviation,
are enough to uniquely determine a normal distribution. Therefore, it is not surprising that the
identified distribution using the MaxEnt principle follows a normal distribution or a truncated normal
distribution [19]. The Weibull distribution also only utilizes the first two statistical moments with
a logarithm transformation [20]. In contrast, the presented MaxEnt principle can extract statistical
information from the first four statistical moments and select a proper distribution from a family of
distributions [20].

3. Fit Index

For identifying an appropriate probability distribution of fatigue life, some fit indexes have been
proposed in the literature under limited fatigue data conditions. Zhao et al. suggested the proper fit
indexes should consider the following aspects [21]: (a) the total fit effects for goodness-of-fit, (b) the tail
fit effects for goodness-of-fit and (c) the consistency of the identified distribution with fatigue physics.
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Since Zhao et al.’s work concentrated on the selection of an appropriate distribution from a group
of standard distributions, the linear correlation coefficient r and the critical value of rc, rc for hypothesis
test, were adopted for the checking of total fit effects [21]. As an alternative, the r.m.s. of the deviations
was suggested as a fit index which reflects the total fit effects by Schijve [1,4]. The MaxEnt distribution
does not belong to any standard distribution so that the concept linear correlation coefficient is not
defined for the MaxEnt distribution. In this study, the r.m.s. of the deviation is used to check the total fit
effects, and comparisons are carried out among the presented MaxEnt distribution, the three-parameter
Weibull distribution and the log-normal distribution. Here, we select the three-parameter Weibull
distribution as example to deduce the calculation of the r.m.s. of deviations. For the ith sample of
xi “ logNi , the empirical failure probability Pi associated with this sample is approximated by:

pi “
i´ 0.5

n
(11)

An alternative empirical expression is:

pi “
i´ 0.3
n` 0.4

(12)

In order to make a comparison with Schijve’s computational results [4], we utilize Equation (11)
to approximate the empirical failure probability. From the CDF expression of the three-parameter
Weibull distribution, the estimated x̂i is given by:

x̂i “ x0 ` θr´lnp1´ piqs

1
β (13)

Then the deviation between xi and x̂i is:

devi “ x0 ` θr´lnp1´ piqs

1
β ´ xi (14)

The r.m.s. of the deviation is expressed as:

r.m.s. “

g

f

f

e

1
n

n
ÿ

i“1

pdeviq
2 (15)

Attention is paid to the left tail region of a fatigue life distribution because this region has very
low failure probabilities and is important in fatigue reliability analysis. Therefore, the differences
between the empirical failure probability and the predicted failure probability for the first two samples
in an ordered data set are suggested to measure the goodness-of-fit in the left region [21]. Hence, the
two parameters d1 and d2 are given by:

d1 “
1´ 0.5

n
´ Fpx1q (16)

and:
d2 “

2´ 0.5
n

´ Fpx2q (17)

where n is the total number of samples, Fp¨q is the CDF of the identified distribution, and x1 and x2

are the first two samples, i.e., x1 ă x2 ă ¨ ¨ ¨ xn. In fact, these two parameters provide the tendency of
the predicted values, which are expected to be conservation for engineering design. Small values of
|di| are preferred because they indicate a better fit. If d1 ă d2, it indicates that there is a conservative
predication of the lower failure probability less than p1. On the contrary, if d1 ą d2, it indicates there is
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a non-conservative prediction. The value of d1 may also be useful to check whether a prediction is
conservative or not. If d1 ă 0, it implies that the predictions of failure probabilities less than p1 may
lean to be conservative. Otherwise, they may lean to be non-conservative. From the fatigue physics of
the weakest link failure and irreversible cumulative damage failure, Zhao et al. proposed the following
two statements [21]:

(a) Failure rate curve increase with the fatigue cycling.
(b) The PDF of the identified distribution is positively skewed.

The method presented in this paper is a data-driven method, which does not capture the difference
between failure modes and mechanisms. This may result in the identified distribution inconsistent
with the fatigue physics. For example, it is well-known that the third statistical moment of a data set
determines the skewness of the underlying probability distribution. If the estimator of the skewness is
less than zero, the identified distribution by numerical methods often tends to be negatively skewed.
Obviously, it is not consistent with the fatigue physics, but it at least reflects the statistical information
hidden in the fatigue data set. Here, we do not force a probability distribution to totally meet the
fatigue physics.

4. Maximum Entropy Distribution of Fatigue Life

4.1. Computation of Statistical Moments of Fatigue Life

For fatigue reliability analysis, the number of load cycles under the given stress level or crack
length can be obtained in lab condition or service measurement. The samples of the number of load
cycles contain the distribution information of fatigue life, but they are not suitable for statistical
inference since the valuable information is scattered in each sample. A more proper method is to
employ sample statistics, e.g., mean value and standard deviation, to assemble the scatter information
in each sample. Then, the statistical inference is performed based on sample statistics.

The statistical moments of fatigue life are required to be obtained from the experimental data by
the proposed method. Suppose that x1, x2, ¨ ¨ ¨ , xn are the logarithms of fatigue life Ni from lab testing
or service measurement. Then, the first four statistical moments of fatigue life can be estimated as:

µ̂ “
1
n

n
ÿ

i“1

xi (18)

ŝ2 “
1

n´ 1

n
ÿ

i“1

pxi ´ µ̂q2 (19)

ske “
1

n´ 1

n
ÿ

i“1

pxi ´ µ̂q3{ŝ3 (20)

kur “
1

n´ 1

n
ÿ

i“1

pxi ´ µ̂q4{ŝ4 (21)

where µ̂, ŝ, ske and kur are mean value, standard deviation (SD), skewness and kurtosis of fatigue life,
respectively.

4.2. Maximum Entropy Principle

In probability theory, the information entropy is a measure of the uncertainty represented by a
probability distribution. For a continuous random variable with a PDF f pxq, its information entropy is
defined as:

HX “ ´

ż

f pxq log f pxq dx (22)
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The maximum entropy (MaxEnt) principle states that the most unbiased estimate of the PDF
f pxq is that maximizes Equation (22) subjected to the given information, such as statistical moments.
The MaxEnt principle possesses four axioms: uniqueness, invariance, system independence and subset
independence. For a general problem with the given constraints of the form of statistical moments,
there is only one distribution, which is determined by MaxEnt principle, satisfying these statistical
moments. And it is also the best one. Following the derivation in Jaynes’s studies [22,23], if the
available knowledge is m high order statistical moments of a random variable, i.e.,

µi “

ż

xi f pxq dx pi “ 1, ¨ ¨ ¨ , mq (23)

In addition, the usual PDF normalization constraint is given by:
ż

f pxq dx “ 1 (24)

Therefore, the problem of identifying a probability distribution by MaxEnt principle is
transformed to maximize Equation (22) subjected to constraints of Equations (23) and (24), i.e.,

max HX
s.t.

r
f pxq dx “ 1r
xi f pxq dx “ µi pi “ 1, ¨ ¨ ¨ , mq

(25)

The Lagrange multiplier method is usually employed to solve the optimization problem in
Equation (25). It is easy to obtain the following well-known form of the MaxEnt distribution:

f pxq “ exp p´λ0q exp

˜

´

m
ÿ

i“1

λixi

¸

(26)

where λi i “ 1, ¨ ¨ ¨ , m are the Lagrange multipliers. If we substitute Equation (26) into Equation (24),
the normalizing factor λ0 is in the following form:

λ0 “ ln

«

ż

exp

˜

´

m
ÿ

i“1

λixi

¸

dx

ff

(27)

It should be pointed out that MaxEnt principle is not only limited to statistical moment information
but also can be generalized to the expected value of an arbitrary function that is integrable with
respect to.

4.3. Computation of Lagrange Multipliers

The MaxEnt distribution in Equation (26) belongs to the Pearson family of distributions.
For m ď 2, analytical solutions to λi i “ 1, ¨ ¨ ¨ , m in terms of the available moments are possible
to be obtained. For example, it is the well-known normal distribution when m = 2. Park and Bera [20]
provided a table of examples of MaxEnt distributions, which includes 16 standard distribution types.
However, no analytical solutions are available to provide a MaxEnt distribution for m ě 3. This also
means that the MaxEnt distribution is not standard distribution type, e.g., normal distribution, when
m ě 3. It is obvious that the Lagrange multipliers may be achieved by solving N nonlinear equations
through the standard Newton’s method [24]. This formulation can be easily derived by substituting
Equations (26) and (27) into Equation (23). However, the solving procedure may encounter the
numerical stable issue. In this paper, the unconstrained minimization of a potential function had been
presented to address this issue, instead of solving N nonlinear equations [25]. This family of methods
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is much faster and numerical stable than the traditional Newton’s method. The derivation procedure
of this method is briefly described here.

Substituting Equation (26) into Equation (24):

exp pλ0q “

ż

exp

˜

´

m
ÿ

i“1

λixi

¸

dx (28)

In order to calculate conveniently, define a function of λi i “ 1, ¨ ¨ ¨ , m:

P pλ1, ¨ ¨ ¨ , λmq ” exp pλ0q “

ż

exp

˜

´

m
ÿ

i“1

λixi

¸

dx (29)

Then, the PDF in Equation (26) is rewritten as:

f pxq “ exp

˜

´

m
ÿ

i“1

λixi

¸

{P pλ1, ¨ ¨ ¨ , λmq (30)

Arranging terms in Equation (29) produces:

P pλ1, ¨ ¨ ¨ , λmq “
r

exp
ˆ

´
m
ř

i“1
λixi

˙

dx

“ exp
ˆ m
ř

i“1
λiµi

˙

exp
ˆ

´
m
ř

i“1
λiµi

˙

r
exp

ˆ

´
m
ř

i“1
λixi

˙

dx

“ exp
ˆ

´
m
ř

i“1
λiµi

˙

ş

exp
ˆ

´
m
ř

i“1
λi

`

xi ´ µi
˘

˙

dx

(31)

The integral term in the right hang of Equation (31) is defined as a potential function:

Q pλ1, ¨ ¨ ¨ , λmq ”

ż

exp

˜

´

m
ÿ

i“1

λi

´

xi ´ µi

¯

¸

dx (32)

Then, Equations (29) and (30) are rewritten as:

P pλ1, ¨ ¨ ¨ , λmq “ Q pλ1, ¨ ¨ ¨ , λmq exp

˜

´

m
ÿ

i“1

λiµi

¸

(33)

and:

f pxq “ rQ pλ1, ¨ ¨ ¨ , λmqs
´1 exp

˜

´

m
ÿ

i“1

λi

´

xi ´ µi

¯

¸

(34)

From the definition of Q pλ1, ¨ ¨ ¨ , λmq, calculating the partial derivation of Q pλ1, ¨ ¨ ¨ , λNq with
respect to λi i “ 1, ¨ ¨ ¨ , m, yields:

BQ
Bλi

“
r B

Bλi
exp

ˆ

´
m
ř

i“1
λi

`

xi ´ µi
˘

˙

dx “
r
´
`

xi ´ µi
˘

exp
ˆ

´
m
ř

i“1
λi

`

xi ´ µi
˘

˙

dx

“ Q pλ1, ¨ ¨ ¨ , λmq rQ pλ1, ¨ ¨ ¨ , λmqs
´1 r

´
`

xi ´ µi
˘

exp
ˆ

´
m
ř

i“1
λi

`

xi ´ µi
˘

˙

dx

“ Q pλ1, ¨ ¨ ¨ , λmq
r
´
`

xi ´ µi
˘

f pxq dx

(35)

It can be readily obtained from Equation (23):
ż

´

xi ´ µi

¯

f pxq dx “
ż

xi f pxq dx´
ż

µi f pxq dx “
ż

xi f pxq dx´ µi “ 0 (36)
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Therefore, the partial derivation BQ{Bλi pi “ 1, ¨ ¨ ¨ , mq have zero values. This means the point
pλ1, ¨ ¨ ¨ , λmq is at least a stationary point for the potential function Q pλ1, ¨ ¨ ¨ , λmq. Calculating the
element in the corresponding Hessian matrix:

B2Q
BλiBλj

“ Q pλ1, ¨ ¨ ¨ , λmq

ż

´

xi ´ µi

¯´

xj ´ µj

¯

f pxq dx (37)

Equation (37) shows that the Hessian matrix of Q pλ1, ¨ ¨ ¨ , λmq is a variance-covariance-like matrix
because xi i “ 1, ¨ ¨ ¨ , N are linearly independent. As long as f pxq is a PDF, this variance-covariance-like
Hessian matrix should be positive definite and of full rank. Agmon et al. [15] proved that the problem
of searching a minimum of the potential function Q pλ1, ¨ ¨ ¨ , λmq is equivalent to solving N nonlinear
equations. In other words, the global minimum of Q pλ1, ¨ ¨ ¨ , λmq is also the solution set of the MaxEnt
distribution that maximizes the information entropy shown in Equation (22) while satisfying the
statistical moment constraints. Since there is no constraint on the potential function Q pλ1, ¨ ¨ ¨ , λmq,
the solving procedure is more easy and can be performed by the famous Nelder–Mead algorithm.

4.4. Identifying the Distribution Type of Fatigue Life

In order to determine the MaxEnt distribution of fatigue life, the first four statistical moments are
required and calculated form experimental data. It should be pointed out that the standardization of
statistical moments is more convenient to implement this algorithm [20]. It is also clear that the type of
entropy used in this paper is information entropy.

Then, the first two statistical moment constraints are rewritten as:
#

µxb “ 0
sxb “ 1

(38)

where xb “
x´ µ̂

ŝ
is the standardized random variable which is used to descript the randomness in

fatigue life. The skewness and kurtosis are the same since it is a linear transformation.
The probability distribution of fatigue life of metal material can be determined from the first four

statistical moments based on the MaxEnt principle, i.e., solving the optimization problem in Section 4.2
using the numerical algorithm in Section 4.3. In probability theory, a set of finite statistical moments is
not sufficient to uniquely determine the underlying probability distribution. Following the principle
of maximum entropy, however, one can obtain a distribution amongst all possible distributions. It is
consistent with the available partial information and contains minimum arbitrary assumption of
information, i.e., the minimization of the introduction of subjective uncertainty. Furthermore, it is the
only unbiased distribution [22,23].

Once the expression of fatigue life distribution is identified, it can be readily employed to calculate
the cumulative distribution function (CDF) and quantile of fatigue life by computer programming.
The information of CDF and quantile are valuable for fatigue reliability prediction, analysis and design.

Here, we also need to mention another exciting research branch using entropic concepts, that
is entropy based damage and fatigue characterization, which have been attracting a lot of research
interests. The method is within an irreversible thermodynamic framework and entropy production in
a solid system is used as a measure of damage. The discussion of this method is beyond the scope of
this paper and readers may refer to references [11–18] for more details.

5. Test Examples

Two groups of fatigue data sets are using to demonstrate the performance of the presented MaxEnt
distribution. The first group is taken from Schijve’s study [4], and it includes six fatigue data sets of
2024-T3 Alclad material. The second group is stemmed from Wu and Ni’s study [9], which focused on
the fatigue life of crack growth. Comparisons of the total fit effects and the tail effects are made with
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the log-normal distribution and the three-parameter Weibull distribution. To guarantee the predicted
fatigue life taking positive value, all experimental data are processed by taking the 10-logarithm of the
fatigue lives Ni.

5.1. Six Fatigue Data Sets From Schijve’s Study

The presented MaxEnt distribution, the log-normal distribution and the three-parameter Weibull
distribution are firstly applied to six fatigue data sets of 18 to 30 similar fatigue tests in Schijve’s
work [4]. The experimental information is summarized in Table 1. Three kinds of specimens were
involved in this fatigue testing, i.e., unnotched, edge notched and riveted lap joint. In addition, two
stress levels were considered. In order to apply the presented MaxEnt distribution, we first calculated
the first four statistical moments of fatigue lives, as shown in Table 2. For the original test results,
please refer to Schijve’s work [4].

Table 1. Experimental information of six fatigue data sets.

Specimen Data Set Thickness (mm) Stress (MPa) Number of Specimens

Unnotched
Kt =1.15 2.0

Smax (R = 0)
1 225 20
2 157 18

Edge notched
Kt =2.85 5.0

Smax (R = 0)
3 103 20
4 64 30

Riveted lap joint 0.8
Sm Sa

5 88 71 20
6 88 31 20

Table 2. Statistical moments of six fatigue data sets.

Data Set Mean SD Skewness Kurtosis

1 5.2921 0.1140 ´0.3491 2.5835
2 6.1107 0.1632 ´0.0985 2.3992
3 5.2680 0.0690 ´1.0909 3.4517
4 6.0676 0.1795 0.8843 3.3241
5 5.0636 0.0589 0.0320 3.0828
6 6.0081 0.0980 0.3066 2.9434

The estimators of all parameters in three distributions are listed in Table 3. Unfortunately, no
Weibull distribution could be filled to data set 3 through the least square method. The computational
results of fit indexes are listed in Table 4. In addition, Figures 1 and 2 show the PDF curves and
probability plots of these six fatigue data set.

Table 3. Estimators of parameters in three probability distributions.

Data Set
Lognormal Weibul1l MaxEnt Distribution

µlogpNq σlogpNq α β logpN0q λ0 λ1 λ2 λ3 λ4

1 5.2921 0.1140 0.7082 6.8412 4.6301 ´1.1427 0.3288 ´0.2507 ´0.1386 ´0.0623
2 6.1107 0.1632 0.6799 4.3882 5.4911 ´0.7592 0.0966 ´0.2011 ´0.0405 ´0.0635
3 5.2680 0.0690 - - - ´1.6724 1.4226 ´0.3391 ´0.7755 ´0.2071
4 6.0676 0.1795 0.2978 1.5187 5.8004 ´0.7451 ´0.8848 ´0.3598 0.4182 ´0.1045
5 5.0636 0.0589 0.2186 3.8061 4.8660 ´1.9222 ´0.0145 ´0.5187 0.0047 0.0030
6 6.0081 0.0980 0.2575 2.5214 5.7800 ´1.3785 ´0.1945 ´0.4412 0.0712 ´0.0156
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Table 4. Fit indexes of three investigated probability distributions.

Data Set
Lognormal Weibull MaxEnt

r.m.s. d1 d2 r.m.s. d1 d2 r.m.s. d1 d2

1 0.0187 0.0112 0.0227 0.0149 0.0011 0.0102 0.0163 0.0067 0.0060
2 0.0335 ´0.0022 0.0285 0.0325 ´0.0048 0.0247 0.0337 ´0.0003 0.0239
3 0.0242 0.0208 0.0143 - - - 0.0122 0.0102 ´0.0373
4 0.0459 ´0.0639 ´0.0438 0.0193 0.0053 0.0188 0.0159 ´0.0106 0.0095
5 0.0092 0.0078 ´0.0107 0.0097 0.0097 ´0.0135 0.0090 0.0081 ´0.0093
6 0.0135 0.0000 ´0.0371 0.0127 0.0181 ´0.0330 0.0117 0.0111 ´0.03113

From Table 4, it can be seen that the r.m.s. of the Weibull distribution are similar or smaller
than those of the log-normal distribution. It implies that the Weibull distribution has a better total
fit effect than the log-normal distribution for the investigated data sets. Comparing the r.m.s. of the
presented MaxEnt distribution and the log-normal distribution, a similar conclusion can be drawn
from Table 4, i.e., the MaxEnt distribution gives a better total fit effect than the log-normal distribution
on the average. For data set 2, the r.m.s. values is 0.0335 for the log-normal distribution, and 0.0337 for
the MaxEnt distribution. In fact, these two values are too small and close to be distinguished. Then,
the r.m.s. of the Weibull distribution and the MaxEnt distribution are compared. In 4 of 6 data sets,
the MaxEnt distribution has a smaller value of the r.m.s. than the Weibull distribution. It should be
pointed out that the MaxEnt distribution is suited for the fatigue data set 4, with a good fit (the r.m.s.
is 0.0122), while the Weibull distribution cannot provide a fit. For data set 4, the MaxEnt distribution
and the Weibull distribution are also hardly to be distinguished since they have small values for the
r.m.s of deviation. The above observations indicate that, on the average, the MaxEnt distribution is
better than the Weibull distribution for the investigated fatigue data sets.

In the following subsection, we are going to make comparisons of the tail fit effects. For the
log-normal distribution, data sets 1, 2 and 4 have the same trends, i.e., d1 ă d2, and data 3, 5 and 6
have the same trends, i.e., d1 ą d2. The trend of d1 ă d2 is preferred in engineering design because the
predicted fatigue life may be conservative for the investigated fatigue data sets. 2 of 6 data sets i.e.,
sets 2 and 4 show d1 ă 0, while the rest data sets have d1 ě 0. For the Weibull distribution, data sets
1, 2 and 4 also show a trend of d1 ă d2, and data sets 5 and 6 have a trend of d1 ą d2. Based on this
observation, it seems that the three-parameter Weibull distribution and log-normal distribution have
the same predicted trend. For the MaxEnt distribution, data sets 2 and 4 have a trend of d1 ă d2, and
the rest data set have a trend of d1 ą d2. However, the value of d1 is very close to the d2 in data set 1,
which has been observed with a preferred trend of d1 ă d2. General speaking, those three distributions
have similar predicted trend for the investigated fatigue data sets. In the next step, the number of data
set with negative d1 is checked for each probability distribution. Both the log-normal distribution and
the MaxEnt distribution have 2 cases of d1 ă 0, i.e., data sets 2 and 4, while the Weibull distribution
has only one cases of d1 ă 0, i.e., data sets 2. Considering these two parameters, all three probability
distributions may give a non-conservative prediction in the tail region for the current investigated
fatigue data.

The PDF curves of three distributions are shown in Figure 1. For data sets 1, 2, 5 and 6, the
PDF shape obtained by three distributions are very similar to each other. This further confirms the
observation from the comparison of r.m.s. in Table 4. Because the smallest differences among the
r.m.s. are observed in Table 4, the smallest differences among the PDF curves of the three distributions
can also be found in Figure 1e. As mentioned before, the three-parameter Weibull distribution is not
suitable for data set 3. Both the log-normal distribution and the MaxEnt distribution can be used to
fit data set 3. However, a bi-modal PDF is observed for the MaxEnt distribution. Investigating the
r.m.s. values in Table 4, the MaxEnt distribution is better than the log-normal distribution for data set 3.
For data set 4, the MaxEnt distribution is similar to the three-parameter Weibull, but different from the
log-normal distribution (Figure 1d).
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Figure 1. The PDF curves of six fatigue data sets. (a) data set 1, Smax = 225 MPa; (b) data set 2,
Smax = 157 MPa; (c) data set 3, Smax = 103 MPa; (d) data set 4, Smax = 64 MPa; (e) data set 5,
Smax = 71 MPa; (f) data set 6, Smax = 31 MPa.

The probability plots of three distributions are given in Figure 2. For comparison purposes, the
experimental data are plotted in Figure 2. These probability plots are obtained on a normal probability
graph. This means the fitted normal distribution is a straight line, while the other two distributions
are nonlinear curves. For data sets 1, 2, 5 and 6, the CDF curves obtained by the MaxEnt distribution
and the Weibull distribution have good agreement with each other, especially for the region where
experimental samples are available, and are better than those of the lognormal distribution. On the
contrary, the difference among CDF curves is becoming bigger in the small probability region (left tail
region on a PDF curve) and high reliability region (right tail region on a PDF curve). This phenomenon
is not surprising since both the small probability region and high reliability region are generalized
from the experimental data. From Figure 2c, it can be seen that data set 3 has an irregular trend.
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Although the lognormal distribution may be used to fit this data set, it is clear that the lognormal
distribution disagrees with the trend of data. Integrating the information in Figure 2c, the MaxEnt
distribution is the only proper distribution to fit data set 3, which has an irregular trend. For data set 4,
the experimental data shows a similar trend as data set 3 because the specimens are the same just with
different stress levels. All three investigated distributions may be used to fit it. However, Figure 2d
further confirms the fact that both the MaxEnt distribution and the Weibull distribution are better than
the lognormal distribution.
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Figure 2. The probability plots of six fatigue data sets. (a) data set 1, Smax = 225 MPa; (b) data
set 2, Smax = 157 MPa; (c) data set 3, Smax = 103 MPa; (d) data set 4, Smax = 64 MPa; (e) data set 5,
Smax = 71 MPa; (f) data set 6, Smax = 31 MPa.
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5.2. A Fatigue Data Set of Fatigue Crack Propagation

The experimental data of fatigue crack propagations [9] is selected to further demonstrate the
performance of the presented MaxEnt distribution. The experimental system comprises an MTS
dynamic testing machine, a machine controller, a LabVIEW signal generating/data acquisition system
and a zoom microscope for the measurement of crack length. The metal material is 2024-T351 aluminum
alloy, which is a major metal material in the aeronautical industry. The dimensions of the specimens
were 50.0 mm wide and 12.0 mm thick. The nominal yield strength of the material is 320 MPa, the
ultimate strength is 462 MPa, and the elongation is 15.4%.

The crack length is started at a pre-cracking of 15.0 mm and extended to the length of 18.0 mm.
During both the pre-cracking and fatigue crack growth tests, sinusoidal signals with maximum of
4.5 kN, minimum of 0.9 kN, and frequency of 15 Hz were used as the input loads. Figure 3 shows
the crack propagation curves for all 30 specimens. According to Equations (18)–(21), the statistical
moments of fatigue lives at different crack lengths are summarized in Table 5.
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Table 5. The statistical moments of fatigue lives at different crack lengths.

Length (mm) Mean SD Skewness Kurtosis

20 4.2796 0.0899 0.2884 1.9006
22 4.5084 0.0807 0.2222 1.8750
24 4.6152 0.0797 0.2899 1.7897
26 4.6747 0.0783 0.2766 1.7638
28 4.7090 0.0778 0.2753 1.7266
30 4.7285 0.0772 0.2840 1.7295

Based on the statistical moments in Table 5, the MaxEnt principle was applied to identify the
probability distributions under different crack lengths, i.e., a = 22, 24, 26, 28 and 30 mm. Table 6 gives
the estimators of parameters in three distributions at different crack lengths. Table 7 summarizes the fit
indexes of the three distributions. It is found that the expressions of PDFs for fatigue lives at different
crack length are very similar to each other if only one of three distributions is considered. Comparing
the r.m.s of deviations (Table 7), the presented MaxEnt distribution produced the smallest values
among three distributions for all crack lengths, and the three-parameter Weibull distribution yields
smaller values than the lognormal distribution for all crack lengths. In other words, regarding the total
fit effects, the MaxEnt distribution is the best choice for this fatigue data set. For all three distributions,
five out of six crack lengths show a trend of d1 ă d2, except at a = 22 mm, which indicates conservative
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evaluations in the left tails. In addition, most of d1 have negative values, except for a = 22 mm from
the MaxEnt distribution.

Table 6. Estimators of parameters in three probability distributions at different crack lengths.

Length
(mm)

Lognormal Weibull MaxEnt Distribution

µlogpNq σlogpNq α β logpN0q λ0 λ1 λ2 λ3 λ4

20 4.2796 0.0899 0.2290 2.4495 4.0768 ´1.0173 ´0.5796 0.6485 0.3236 ´0.3390
22 4.5084 0.0807 0.2205 2.6682 4.3126 ´1.1289 ´0.4404 0.6408 0.2433 ´0.3258
24 4.6152 0.0797 0.1989 2.4115 4.4391 ´1.0106 ´0.6870 0.9801 0.4080 ´0.4631
26 4.6747 0.0783 0.1972 2.4424 4.5001 ´1.0030 ´0.6743 1.0491 0.4043 ´0.4867
28 4.7090 0.0778 0.1969 2.4616 4.5347 ´0.9555 ´0.7113 1.1876 0.4356 ´0.5408
30 4.7285 0.0772 0.1923 2.4220 4.5582 ´0.9618 ´0.7362 1.1917 0.4516 ´0.5447

Table 7. Fit indexes of three probability distributions at different crack lengths.

Length
(mm)

Lognormal Weibull MaxEnt

r.m.s. d1 d2 r.m.s. d1 d2 r.m.s. d1 d2

20 0.0188 ´0.0435 ´0.0262 0.0154 ´0.0250 ´0.0111 0.0075 ´0.0019 0.0118
22 0.0171 ´0.0241 ´0.0519 0.0151 ´0.0079 ´0.0458 0.0082 0.0102 ´0.0388
24 0.0193 ´0.0569 ´0.0327 0.0163 ´0.0386 ´0.0165 0.0073 ´0.0097 0.0111
26 0.0203 ´0.0572 ´0.0275 0.0165 ´0.0395 ´0.0106 0.0074 ´0.0099 0.0186
28 0.0200 ´0.0511 ´0.0362 0.0175 ´0.0318 ´0.0208 0.0078 ´0.0003 0.0090
30 0.0203 ´0.0549 ´0.0328 0.0177 ´0.0351 ´0.0154 0.0081 ´0.0036 0.0153

The PDF curves and probability plots for three distributions are plotted in Figures 4 and 5
respectively. It is obvious that the identified distributions by the MaxEnt principle are not the commonly
used standard distribution type. Taking a close look at the identified PDF curves, bimodal PDFs are
observed from the MaxEnt principle in this case study (Figure 4). They are very different for standard
probability distributions, e.g., the lognormal distribution and the Weibull distribution in this study.
From Figure 5, it can be seen that all fatigue lives have an irregular trend like in data set 3 in test
example 1. The MaxEnt distribution shows a better agreement with the experimental data than that
of the lognormal distribution and the Weibull distribution. Using the same experimental data, both
the lognormal and Weibull distribution can pass hypothesis testing. However, the CDFs of fatigue
lives identified by the lognormal and Weibull distribution cannot match the experimental data well.
This indicates that the commonly used standard probability distributions are not suitable to descript
the scatter in fatigue lives in this case study.

For comparison purposes, the computational results reported by Wu and Ni [9] should be also
considered in this study. It should be pointed out that Wu and Ni adopted a stochastic process
method [7,26] which seems to have an advanced mathematical theory, however, the computational
results are almost the same to the lognormal distribution. Compared with the experimental data, the
MaxEnt distribution is better than the stochastic process method. Furthermore, the implementation
procedure of the proposed method is much easier than that of the stochastic process method.
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Figure 4. The PDF curves of six different crack lengths. (a) a = 20 mm; (b) a = 22 mm; (c) a = 24 mm;
(d) a = 26 mm; (e) a = 28 mm; (f) a = 30 mm.
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Figure 5. The probability plots of six different crack lengths. (a) a = 20 mm; (b) a = 22 mm; (c) a = 24 mm;
(d) a = 26 mm; (e) a = 28 mm; (f) a = 30 mm.

6. Conclusions

A new computational method is proposed in this paper for identifying the probability distribution
of fatigue life of materials and structures. It is based on the first four statistical moments of fatigue
life and the maximum entropy principle. The first four statistical moments are calculated from
samples of fatigue life in a fatigue testing or measurement. Then, they serve as constraints in the
maximum entropy principle. The corresponding optimization problem in the maximum entropy
principle is solved by transferring it into an unconstrained optimization problem using a potential
function. This strategy avoids the possible numerical singularity when solving N nonlinear equations.
The following conclusions have been reached:

(1) The MaxEnt distribution is the most natural distribution given the fatigue life samples. It reduces
the introduction of subjective uncertainty when a standard distribution is chosen to model fatigue
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life. Additionally, the presented method has many significant characteristics, such as simply
concept, high efficiency, easy programming, wide applicability, etc.

(2) A careful comparison between the MaxEnt distribution, the lognormal distribution and the
three-parameter distribution has been carried out in this paper. The three-parameter Weibull
distribution has a minimum of fatigue life (N0) as the third parameter. This seems to be consistent
with fatigue physics, but the physical significance of this minimum fatigue life remains unclear
because its estimated value is obtained by an iteration algorithm without any physical concepts.
Due to the existing of the third parameter, the three-parameter Weibull distribution cannot be
performed in extremely cases, e.g., data set 3 in test example 1.

(3) The fatigue life distributions of two groups of fatigue data sets were identified by the lognormal
distribution, the Weibull distribution and the MaxEnt distribution. The computational results
show that both the Weibull distribution and the MaxEnt distribution have a better agreement
with the experimental data than the lognormal distribution. The most attractive feature is that
the MaxEnt distribution is better than the Weibull distribution on average, especially for the cases
where the fatigue life CDF has an irregular trend.
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