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Abstract: Many natural and engineered dynamical systems, including all living objects, exhibit
signatures of what can be called spontaneous dynamical long-range order (DLRO). This order’s
omnipresence has long been recognized by the scientific community, as evidenced by a myriad
of related concepts, theoretical and phenomenological frameworks, and experimental phenomena
such as turbulence, 1/ f noise, dynamical complexity, chaos and the butterfly effect, the Richter
scale for earthquakes and the scale-free statistics of other sudden processes, self-organization
and pattern formation, self-organized criticality, etc. Although several successful approaches to
various realizations of DLRO have been established, the universal theoretical understanding of
this phenomenon remained elusive. The possibility of constructing a unified theory of DLRO
has emerged recently within the approximation-free supersymmetric theory of stochastics (STS).
There, DLRO is the spontaneous breakdown of the topological or de Rahm supersymmetry that
all stochastic differential equations (SDEs) possess. This theory may be interesting to researchers
with very different backgrounds because the ubiquitous DLRO is a truly interdisciplinary entity.
The STS is also an interdisciplinary construction. This theory is based on dynamical systems theory,
cohomological field theories, the theory of pseudo-Hermitian operators, and the conventional theory
of SDEs. Reviewing the literature on all these mathematical disciplines can be time consuming.
As such, a concise and self-contained introduction to the STS, the goal of this paper, may be useful.

Keywords: supersymmetry; stochastic differential equations; non-equilibrium dynamics;
cohomological field theory; ergodicity; thermodynamic equilibrium; complexity; chaos; butterfly
effect; turbulence; 1/ f noise; self-organization; self-organized criticality

1. Introduction

1.1. Dynamical Long-Range Order

It is well established experimentally and numerically that many seemingly unrelated sudden
processes in astrophysics [1], geophysics [2], neurodynamics [3,4], econodynamics [5], and other
branches of modern science exhibit power-law statistics, the very reason why the Richter scale is
logarithmic. This is simply one example of the spontaneous long-range dynamical behavior (LRDB)
that emerges in many nonlinear dynamical systems (DSs) with no underlying long-range interactions
that could potentially explain such behavior. Two other well-known examples of LRDB are the infinitely
long memory of perturbations known as the butterfly effect [6], and the algebraic power-spectra
commonly known as 1/ f noise or the long-term memory effect [7] found in many existing DSs,
including apparently all living objects [8,9].

It was understood that the LRDB must be a signature of some type of spontaneous dynamical
long-range order (DLRO). The existence and omnipresence of this DLRO has long been recognized
by the scientific community, as evidenced by a myriad of related concepts, including chaos [10–12],
turbulence [13,14], dynamical complexity [15], self-organization [16], pattern formation [17], and
self-organized criticality [18].
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Several successful approaches to various realizations of DLRO have been established. For example,
the concept of deterministic chaos is a centerpiece of the well-developed dynamical system (DS) theory.
Nevertheless, there existed no universal theoretical understanding of DLRO. In particular, no rigorous
stochastic generalization of the concept of deterministic chaos existed previously, whereas all natural
DSs are never completely isolated from their environments and are thus always stochastic.

A class of models with the potential to reveal the mathematical essence of the ubiquitous DLRO
is the stochastic (partial) differential equations (SDEs). Indeed, SDEs most likely have the widest
applicability in modern science. In physics, for example, SDEs are the effective equations of motion
(EoM) for all physical systems above the scale of quantum degeneracy/coherence. In quantum
models, SDEs are used in a variety of ways. For example, SDEs play a central role in quantum optics
(see, e.g., [19] and the references therein). In many-body quantum models, SDEs are used in the
investigation of non-equilibrium quantum dynamical phenomena in the form of the effective EoM of
the collective quantum modes [20] and order parameters [21]. They also represent a useful tool for
quantum statistics [22]. In other scientific disciplines, SDEs are even more fundamental, as they appear
at the level of the very formulation of dynamics, unlike the EoM in physics, which descend from least
action principles.

The theory of stochastic dynamics has a long history. Many important insights into stochastic
dynamics have been provided so far (see, e.g., [23–30] and the references therein). Nevertheless, the
mathematical essence of DLRO remained elusive.

1.2. Topological Supersymmetry of Continuous Time Dynamics

One way of deducing the potential theoretical origin of DLRO is provided by the following
qualitative yet solid argument. From the field-theoretic point of view, LRDB is indicative of the presence
of a gapless excitation with an infinite correlation length/time. There are only two possible scenarios
for such a situation to occur: the accidental or critical scenario and the Goldstone scenario. In the
accidental scenario, the parameters of the model can be fine-tuned to ensure that a certain excitation
has zero gap. This is exactly the situation with (structural) phase transitions, where an excitation called
the soft mode becomes gapless exactly at the transition temperature (or other parameter). This allows
the system to move effortlessly from a previously stable vacuum to a new vacuum. Immediately
following the transition, the soft mode “hardens” again, i.e., it acquires a finite gap that signifies the
dynamical stability of the new vacuum. In other words, only at exactly the transition point the soft
mode is gapless and thus has an infinite correlation length/time.

The accidental scenario for DLRO contradicts the fact that DLRO is robust against moderate
variations in the parameters of the model. For example, a slight variation in the magnitude
of the electric current flowing through a dirty conductor will not destroy the 1/ f noise. In
other words, in phase diagrams, DLRO occupies full-dimensional phases and not the lower
dimensional transitions/boundaries between different full-dimensional phases. This observation
unambiguously suggests that the Goldstone scenario is the only possibility for the field-theoretic
explanation of DLRO. More specifically, the Goldstone theorem states that, under the conditions of the
spontaneous breakdown of a global continuous symmetry, the ground state is degenerate and that,
in spatially extended models, this degeneracy tailors the existence of a gapless excitation called the
Goldstone–Nambu particle. As such, DLRO may be the result of the spontaneous breakdown of some
global continuous symmetry.

It is understood that the symmetry responsible for DLRO cannot be a conventional bosonic
symmetry because DSs with no bosonic symmetries can also exhibit DLRO, e.g., be chaotic. In other
words, DLRO must be a result of the spontaneous breakdown of some fermionic symmetry or
supersymmetry. It has long been known that supersymmetries are indeed present in some classes
of SDEs. The work on supersymmetric theories of SDEs began with the Parisi–Sourlas stochastic
quantization procedure [31–41], which leads from a Langevin SDE, i.e., an SDE with a gradient
flow vector field, to a model with N = 2 supersymmetry. The Parisi–Sourlas quantization
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procedure was later identified as a realization of the concept of Nicolai maps [42,43] and “half” of
the N = 2 supersymmetry as a corresponding Becchi–Rouet–Stora–Tyutin (BRST) or topological
supersymmetry, which is a definitive feature of Witten-type topological or cohomological field
theories [44–50]. Similar supersymmetries have been studied in classical mechanics [51–59] and
its stochastic generalization [60].

From the perspective of the theory of ubiquitous DLRO, the consideration of specific models
is clearly insufficient. In reality, EoM are never exactly Langevin or classical mechanical, and the
generalization of the discussion to all or at least most of SDEs is necessary. In other words, the
supersymmetry responsible for DLRO must be an attribute of all SDEs to be able to account for
omnipresence of DLRO in nature. The remaining question in the Goldstone scenario of the theory of
DLRO now is whether such supersymmetry exists.

Traces of this supersymmetry can be found in the literature. In [61], for example, the authors
considered a non-potential generalization of the Langevin stochastic dynamics and noted that half
of the N = 2 supersymmetry survives a non-potential perturbation. Nevertheless, to the best of
the knowledge of the present author, this N = 1 supersymmetry in the context of all SDEs has not
been addressed previously. One possible reason for this is the pseudo-Hermitianity of the stochastic
evolution operator of a general SDE. Specifically, the theory of pseudo-Hermitian evolution operators
appeared only relatively recently [62–66] as a generalization of the theory of PT-symmetric evolution
operators [67–71]. It was only after the theory of pseudo-Hermitian operators became available that
studies on topological supersymmetry in the context of the general SDEs could be resumed. The idea
that the spontaneous breakdown of this supersymmetry pertinent to all SDEs may be the mathematical
essence of DLRO, or rather of one of its realizations known previously as self-organized criticality, was
reported in [72]. Further work in this direction [73–76] resulted in the formulation of what can be called
the supersymmetric theory of stochastics (STS). The goal of this paper is to present the current state of
the STS in a self-consistent manner. This paper can be viewed as a compilation of a few previous works
and as a compilation that corrects several mistakes made during the early stages of the development
of the STS and that clarifies a couple of points that were previously swept under the carpet. This paper
also presents a few new results, including a discussion of the pseudo-time reversal symmetry.

Given the multidisciplinary character of STS, it would take an enormous amount of work to
review all the relevant results from DS theory, cohomological field theory, the classical theory of SDEs,
and physics. This goal is not pursued in this paper, and references are provided on only the most
relevant results that are known to the author and that the material presented here is directly based
on. The author would like to apologize in advance if some important related works have escaped
his attention.

1.3. Relation to Existing Theories

The topological supersymmetry breaking picture of DLRO aligns well with the previous
understanding of the concept of dynamical chaos. For example, the nontrivial connection between
chaos and topology is at the heart of the topological theory of chaos [77]. Furthermore, it was also
known that, in some cases, the transition into chaos must be a phase transition of some sort, as evident
from certain universal features of the onset of chaotic behavior [78]. The only unexpected insight from
the supersymmetry breaking picture of DLRO is the fact that its mathematical essence is in a sense
opposite to the semantics of the word chaos. Indeed, chaos literally means “absence of order”, whereas
the phase with the spontaneously broken supersymmetry is the low-symmetry or “ordered” phase.
This is why DLRO may be a more accurate identifier for this phenomenon than, say, stochastic chaos.
In this paper, both terms will be used interchangeably.

STS in a nutshell is the following. An SDE defines the noise-configuration-dependent
trajectories in the phase space. The collection of all these trajectories can be viewed as a family
of noise-configuration-dependent phase space diffeomorphisms. Instead of studying the trajectories,
one can equivalently study the actions, called the pullbacks, that these diffeomorphisms induce on the
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exterior algebra of the phase space. The original trajectories can be reconstructed from these pullbacks
so that the later contain all the information on the SDE-defined dynamics.

The pullbacks have one very important advantage over the trajectories. Unlike trajectories in
the general case of a nonlinear phase space, the pullbacks are linear objects and can thus be averaged
over the noise configurations. Such a stochastically averaged pullback is the finite-time stochastic
evolution operator (SEO). Thus, it becomes clear where the supersymmetry originates from: all the
diffeomorphism-induced pullbacks and consequently the finite-time SEO are commutative with the
exterior derivative, which is thus a (super-)symmetry of any SDE. In other words, the existence of this
supersymmetry in all SDEs is merely the algebraic version of the most fundamental and indisputable
statement that continuous dynamics preserves the continuity of the phase space.

The idea to study pullbacks induced by random maps averaged over noise configurations
appeared first, to the best of this author’s knowledge, in DS theory, where the analogue of the
finite-time SEO is known as the generalized transfer operator [79]. From this perspective, the STS can
be viewed as a continuation of DS theory. On the side of the Parisi–Sourlas quantization procedure,
the path integral representation of the Witten index of the STS is a member of the cohomological
field theories. Furthermore, the SEO of the general SDE is pseudo-Hermitian; thus, the STS is within
the domain of applicability of the theory of pseudo-Hermitian operators. In other words, the STS
is a multidisciplinary mathematical construction. It combines a few major mathematical disciplines
that are naturally synergetic within the STS. This synergy can ensure fruitful cross-fertilization during
future work on the STS. To date, the STS has already provided a few novel findings, therein making it
interesting from several points of view, as discussed below.

For DS theory, an interesting result from the STS is the established equivalence between
the so-called sharp-trace of the generalized transfer operator, the stochastic Lefschetz index of
the corresponding SDE-defined diffeomorphisms, and the Witten index of the STS. From the
perspective of the conventional theory of SDEs, a valuable result from the STS is the demonstrated
equivalence between the Stratonovich interpretation of SDEs and the (bi-graded) Weyl symmetrization
procedure. For a field theorist, there are two potentially interesting results from the STS. First, the
cohomological field theories, or rather the methodology developed within them (e.g., the localization
principle and topological invariants as expectation values on instantons), together with the theory
of pseudo-Hermitian evolution operators, may find multiple applications in almost all branches
of modern science. Second, there are very few known analytical mechanisms that can result in
the spontaneous breakdown of supersymmetry [80], which is basically one of the main reasons
behind the introduction of the concept of explicit (or soft) supersymmetry breaking [81]. The STS
provides yet another such mechanism: the topological supersymmetry in (deterministic) chaotic DSs is
spontaneously broken by the non-integrability of the flow vector field.

From a wider perspective, SDEs find applications in almost all modern scientific disciplines,
ranging from social sciences and econodynamics to astrophysics and high-energy physics.
Therefore, the STS in general and this paper in particular may be interesting to specialists working in
any of these areas of science.

1.4. Models of Interest and the Structure of This Paper

The following class of SDEs that covers most of the models in the literature will be of
primary interest:

ẋ(t) = F(x(t)) + (2Θ)1/2ea(x(t))ξa(t) ≡ F (t). (1)

Here and in the following, summation over repeated indexes is assumed; x(t) : R → X is
a trajectory of the DS in a D-dimensional topological manifold called the phase space, X; F(x) ∈ TXx

is the flow vector field from the tangent space of X at the point x; ξ = {ξa ∈ R, a = 1, 2...} are noise
variables; and ea(x) ∈ TXx is a set of vector fields. The position-dependent/independent e are often



Entropy 2016, 18, 108 5 of 66

called multiplicative/additive noise. The notation F is introduced to separate the flow perturbed by
the noise from the deterministic flow, F. As will be discussed in Section 3.2, the SDE in Equation (1)
is the Stratonovich SDE along the lines of stochastic calculus on manifolds (see, e.g., [82] and the
references therein). It will also be argued that the STS appears to point to the possibility that the
Stratonovich approach is the only correct choice for continuous time models.

The parameter Θ represents the temperature or rather the intensity of the noise. As will be made
clear below in Section 3, the vector fields ea define the noise-induced metric on X: gij(x) = ei

a(x)ej
a(x).

Therefore, in situations wherein the number of vector fields ea equals the dimensionality of the phase
space, these vector fields can be identified as veilbeins (see, e.g., Chapter 7 of [83]). In the general case,
however, the number of es must not necessarily be equal to the dimensionality of the phase space.

Most of the discussion will be directed toward models with Gaussian white noise. The probability
distribution of its configurations is

PNs(ξ) = Ce−
∫

dt(ξa(t)ξa(t))/2, (2)

with C being a normalization constant such that

〈1〉Ns ≡
∫∫

Dξ · 1 · P(ξ) = 1. (3)

Here, the functional or infinitely dimensional integration is over all the configurations of the noise.
The stochastic expectation value of some functional f (ξ) is defined as

〈 f (ξ)〉Ns ≡
∫∫

Dξ f (ξ)PNs(ξ). (4)

The fundamental correlator of the Gaussian white noise is

〈ξa(t)ξb(t′)〉Ns = δabδ(t− t′). (5)

ξ(t )

ξ n +3

ξ n +1

t n + 1 t n

∆t
t n - 1 t n - 2

ξ n −1

ξ n

t n + 2

ξ n +2

t i m e

Figure 1. Piece-wise constant approximation for Gaussian white noise. Each ξn ≡ ξ(t)|tn<t<tn−1
is

a random Gaussian variable. The time in the figure flows from right to left. This is conventional in
both quantum theory and the theory under consideration, as discussed at the end of Section 2.3.1.

The infinite-dimensional integrations in Equations (4) and (5) can be given a more concrete
meaning by splitting the time domain into a large number of intervals with infinitesimal duration
∆t and then taking the continuous time limit, namely, ∆t → 0. Before taking this limit, each noise
configuration can be viewed as a piece-wise constant function (see Figure 1) on each interval, i.e., the
value of the noise variable ξa(t) = ξa

n for tn > t > tn−1. The discrete-time version of the probability
distribution of the Gaussian white noise in Equation (2) is

PNs(ξ) ∝ e−∆t ∑n ξa
nξa

n/2, (6)
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and that of the correlator in Equation (5) is

〈ξa
nξb

n′〉Ns = ∆t−1δabδnn′ , (7)

whereas all the other (even) order correlators are

〈ξa1
n1 ...ξa2k

n2k 〉Ns ∝ ∆t−k. (8)

The theory of stochastic dynamics defined by Equation (1) can be constructed in two steps.
The first step is to understand the deterministic temporal evolution defined by the ordinary differential
equation (ODE) obtained from the SDE in Equation (1) by fixing the noise configuration. This problem
will be addressed in Section 2, where a few concepts closely related to the continuous-time dynamics
will also be introduced. The second step is the stochastic generalization of this deterministic evolution,
which will be addressed in Section 3.

The realistic noises are more complicated than Gaussian white noise, which is, of course,
a mathematical idealization. In Section 4, the path integral representation of the theory will enable
the generalization to noise of any form. Further generalization to the spatially extended models with
infinite-dimensional phase spaces will also be discussed briefly in Section 4.3. Having established
general technical aspects of the STS, the discussion will concentrate on the analysis of the structure of
the ground states in Section 5. The classification of ergodic stochastic models on the most general level
related to topological supersymmetry breaking will be proposed. This in particular will help reveal
the theoretical picture of the stochastic dynamics on the border of “ordinary chaos”, known previously
under such names as intermittency, complexity, and self-organized criticality. Finally, in Section 6, the
paper will be concluded with a brief discussion of a few potentially fruitful directions for future work.

2. Continuous-Time Dynamics and Related Concepts

2.1. Dynamics as Maps

For a fixed noise configuration, Equation (1) is an ODE with a time-dependent flow vector field in
its Right-Hand Side (R.H.S.). This ODE defines a two-parameter family of maps of the phase space
onto itself, namely, Mtt′ : X → X:

Mtt′ : x′ 7→ x = Mtt′(x′). (9)

These maps have straightforward interpretations: x(t) = Mtt′(x′) is the solution of the ODE with
the condition x(t′) = x′. Clearly,

Mtt = IdX , Mtt′ ◦Mt′t′′ = Mtt′′ , and Mt′t = M−1
tt′ . (10)

The only difference here with the stationary flows described, e.g., in Chapter 5 of [83] is that the
maps depend on both the initial and final moments of evolution, i.e., t′ and t, and not only on the
duration of the evolution, i.e., t− t′. This is the result of the dependence of the noise configuration on
time, which breaks the time-translation symmetry. Following stochastic averaging over the Gaussian
white noise, which does possess time-translation symmetry, this symmetry of the model will be
restored (see Section 3).

Only physical models in which the maps (for finite time evolution) are invertible and differentiable
will be considered. On the mathematical level, this means that F and e’s are sufficiently smooth in X
such that the Picard-Lindelöf theorem (see, e.g., [84]) on the existence and uniqueness of the solution
of an ODE for any initial condition is applicable. In other words, all maps are diffeomorphisms.

To avoid the necessity of addressing various subtle mathematical aspects not directly related to
the subject of interest, the fixed noise configuration will be assumed as a continuous function of time.
However, this continuity is not necessary. The noise configuration only needs to be integrable in the
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sense that there must exist aW a(t) such that dW a(t)/dt = ξa(t). For Gaussian white noise,W a(t) is
called the Wiener process.

A physicist’s proof of the invertibility of maps defined by Equation (10) is as follows. A physical
ODE provides only one outcome x at t for each initial condition x′ at t′. The same must be true for the
time-reversed physical ODE, which provides only one x′ at t′ for any x at t. In other words, the map
Mtt′ is a one-to-one map, i.e., it is invertible.

If at time t′ the DS is described by a total probability function P(x), the expectation value of some
function f (x) : X → R is

f (t′) =
∫

X
f (x)P(x)dx1...dxD. (11)

According to Equation (9), this expectation value at a later time moment t > t′ is

f (t) =
∫

X
f (Mtt′(x))P(x)dx1...dxD. (12)

This view on dynamics can be clarified through the following example. Consider X = RD and
an ODE of the simple form ẋ = v, where v ∈ RD is a constant vector field. The corresponding
diffeomorphisms are Mtt′(x) = x + v(t− t′). For f (x) being one of the coordinates, i.e., f (x) = xi,
Equation (12) states that xi(t) = xi(t′) + vi(t− t′), just as it should.

One can now make the transformation of the variable of integration in Equation (12), i.e.,
x → Mt′t(x),

f (t) =
∫

X
f (x)M∗t′t(P(x)dx1...dxD). (13)

Here, M∗t′t is the operation of the variable transformation applied to the coordinate-free object
consisting of P(x) and the collection of all the differentials dx1...dxD,

M∗t′t(P(x)dx1...dxD) = P (Mt′t(x)) J(TMt′t(x))dx1...dxD, (14)

where J is the Jacobian of the tangent map, TMt′t(x) : TXx → TXMtt′ (x),

TMt′t(x) : dxi 7→ d(Mt′t(x))i = TMt′t(x)i
kdxk, (15)

with

TMt′t(x)i
k = ∂(Mt′t(x))i/∂xk (16)

being the coordinate representation of the tangent map.
Equation (13) suggests that the forward temporal evolution of the variables of the DS is equivalent

to the backward temporal evolution of the coordinate-free object representing the total probability
distribution (TPD)

ψ(D) = P(x)dx1...dxD ∈ ΩD(X). (17)

In algebraic topology, this object is known as a top differential form (D-form), the
infinite-dimensional linear space of all D-forms is denoted as ΩD(X), and the operation M∗t′t in
Equation (14) is called the action or the pullback induced by Mt′t on ψ(D).

Note that the diffeomorphism in Equation (13) is for the inverse temporal evolution as compared
to the time flow in the SDE. This seeming confusion of the time direction can be clarified as follows.
The pullbacks act in the opposite direction compared to the diffeomorphisms inducing them. This is
the reason for the term pullback. The graphical representation of this situation is given in Figure 2.
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There, one introduces an infinite number of copies of the phase space for each time moment, X(t),
and dynamics is defined as a two-parameter family of diffeomorphisms between these copies:
Mtt′ : X(t′)→ X(t).

t ’ ’
t ’

t
M *

t ’ ’ t ’

M t ’ ’ t ’

M t ’ t

ψ( t ’ )

x ( t )
X ( t ’ )X ( t )

x ( t ’ )
x ( t ’ ’ )t i m e

X ( t ’ ’ )
ψ( t )

ψ( t ’ ’ )

M *
t ’ t

Figure 2. Continuous-time deterministic dynamics with a fixed noise configuration can be viewed as
a two-parameter family of diffeomorphisms of the phase space onto itself or between the copies of the
phase space: Mtt′ : X(t′)→ X(t). The temporal evolution of a differential form is a pullback induced
by the inverse diffeomorphism M∗t′t : ψ(t′)→ ψ(t).

In this path-integral-like picture of dynamics, the pullback in Equation (14) can be given as

M∗t′t(P(x(t′))dx1(t′)...dxD(t′) = P (Mt′t(x(t))) J(TMt′t(x))dx1(t)...dxD(t). (18)

or

M∗t′t : ΩD(X(t′))→ ΩD(X(t)) (19)

as opposed to

Mt′t : X(t)→ X(t′). (20)

The relation between the direction of the flow of time for maps and the corresponding pullbacks
can be expressed via the following diagram:

t flow of time←− t′ flow of time←− t′′

X(t)
Mt′ t−→ X(t′)

Mt′′ t′−→ X(t′′)

ΩD(X(t))
M∗t′ t←− ΩD(X(t′))

M∗t′′ t′←− ΩD(X(t′′)).

(21)

This diagram particularly suggests that the composition law for pullbacks is

M∗t′′t = M∗t′t M∗t′′t′ . (22)

2.2. Differential Forms as Wavefunctions

The description of a stochastic model in terms of only TPDs as in the previous subsection
is insufficient in the general case. This can be observed from the following qualitative example.
Consider the simplest Langevin SDE with X = R, F = ∂U(x)/∂x, e = 1. Consider also the case of the
stable Langevin potential U, as shown in Figure 3a. It is clear that, after a sufficiently long temporal
evolution, this DS will forget its initial condition, and its (only) variable will be distributed according
to some steady-state TPD, which is the ground state of this DS (see Section 5.2 for details). In contrast,
when the Langevin potential is unstable, as in Figure 3b, the DS will never forget its initial condition
because a small difference in the initial conditions will grow exponentially. No meaningful steady-state
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TPD can be prescribed to its unstable variable. This example signifies that the steady-state probability
distributions make sense only for stable variables.

b )U ( x ) ,  P ( x )

x

U ( x ) , P ( x ) - ?

x

a )

Figure 3. (a) A one-variable Langevin stochastic differential equations (SDE) with stable potential, i.e.,
U(x) (blue parabola oriented up), exhibits dynamics (broken dashed arrow) that can be characterized as
the gradual settling to a steady-state probability distribution P(x) (bell-shaped curve). These dynamics
exhibit a loss of the dynamical memory of the initial condition; (b) In the case of an unstable Langevin
potential (blue parabola oriented down), the dynamics escape to infinity (dashed arrow pointing left).
The dynamics is sensitive to the initial condition. No meaningful steady-state probability distribution
can be associated with the ground state in this case.

The previous example may not look physical because, for any initial condition, the DS escapes to
infinity and never returns. Perhaps a better example for the same purpose is a (deterministic) chaotic
DS, in which the unstable variables exist even after the infinitely long temporal evolution, i.e., even in
the ground state of the DS. In DS theory, the existence of these unstable variables is revealed by positive
(global) Lyapunov exponents. Such a chaotic ground state must not be a probability distribution in
its unstable variables. That this is indeed so will be observed in Section 5.3.2 below. The DS theory
predecessors of such ground states are the Sinai–Ruelle–Bowen conditional probability functions on
the global unstable manifolds [85].

Section 3.6 will demonstrate on a more rigorous level that it is a mathematical necessity that
the Hilbert space of a stochastic DS be not only the space of the TPDs but rather the entire exterior
algebra of X:

Ω(X) =
D⊕

k=0

Ωk(X), (23)

with the elements being the differential forms of all degrees (see, e.g., Chapter 5 of [83])

ψ(k) = (1/k!)ψ(k)
i1...ik

dxi1 ∧ ...∧ dxik ∈ Ωk(X). (24)

Here, 0 ≤ k ≤ D, ψ
(k)
i1...ik
≡ ψ

(k)
i1...ik

(x) is an antisymmetric tensor, ∧ is the wedge or antisymmetrized

product of differentials, e.g., dx1 ∧ dx2 = −dx2 ∧ dx1 = dx1 ⊗ dx2 − dx2 ⊗ dx1, and Ωk(X) is the space
of all differential forms of degree k (k-forms).

This by no means contradicts the intuitive understanding that it must be possible to associate
a TPD with any wavefunction. As will be clear later, the TPD associated with a wavefunction is not the
wavefunction itself but rather, as in quantum theory, is the bra-ket combination, which is a D-form
and/or a TPD (see, e.g., Section 3.3 and the discussion following Equation (96)).

One possible interpretation of the differential forms is the generalized (total, conditional, marginal)
probability distributions in the coordinate-free setting. The following example demonstrates how the
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conditional probability distribution can be represented as a differential form (the dimensionality of X
is D = 3):

ψ(2) = (1/2!)ψ(2)
i1i2

dxi1 ∧ dxi2

= P(x2x3|x1)dx2 ∧ dx3 + P(x1x3|x2)dx3 ∧ dx1

+P(x1x2|x3)dx1 ∧ dx2 ∈ Ω2(X),

where ψ
(2)
12 = −ψ

(2)
21 = P(x1x2|x3), ψ

(2)
31 = −ψ

(2)
13 = P(x1x3|x2), and ψ

(2)
23 (x) = −ψ

(2)
32 = P(x2x3|x1).

Similarly, the TPD introduced previously is

ψ(D) = (1/D!)ψ(D)
i1...iD

dxi1 ∧ ...∧ dxiD = Pdx1 ∧ ...∧ dxD ∈ ΩD(X),

where ψ
(D)
i1...iD

= Pεi1...iD , with εi1...iD = (−1)p(i1...iD) being the Levi-Civita antisymmetric tensor and
with p(i1...iD) being the parity of the permutation of indexes.

The geometrical meaning of a k-form is a differential of a k-dimensional oriented volume.
Therefore, a k-form can be integrated over a k-dimensional submanifold or a k-chain, ck,∫

ck

ψ(k) = pck ∈ R. (25)

This quantity can be interpreted as follows. If one introduces local coordinates such that the
k-chain belongs to the k-dimensional manifold cut out by (xk+1, ..., dxD) = (Const(k+1), ..., Const(D)),
then Equation (25) is the probability of finding variables (x1, ..., xk) within this k-chain given that all
the other variables are known with certainty to be equal (Const(k+1), ..., Const(D)).

It is worth stressing that the interpretation of the differential forms as the generalized probability
distributions is valid only locally in the general case. Only in a neighborhood of a given point and with
a properly chosen local coordinates can a differential form be thought of as a conditional probability
distribution. Globally, however, this may not be possible because there may not exist global coordinates
such that a given differential form is positive everywhere on X and normalizable. Moreover, if it
were possible to interpret all differential forms as conditional probability distributions in the global
sense, then there would be no reason to consider the extended Hilbert space in the first place. Indeed,
a conditional probability distribution can be constructed from the TPD so that it does not contain any
additional information, and it would suffice to describe the DS in terms of the TPD only.

The exact physical meaning of the wavefunctions in the STS is an open question. At this
moment, as a working interpretation of the wavefunction, one can adopt the point of view on the
wavefunction from quantum theory. Namely, the ket of the wavefunction at a given moment of time is
an abstract object that contains information about the system’s past, whereas the bra-ket combination
of a wavefunction has the meaning of the TPD.

To finalize the above justification for the use of the extended Hilbert space, it must be stressed
that the idea of using the entire exterior algebra as a Hilbert space of a DS is by no means new. This is
a well-known method in the supersymmetric theory of Hamilton models in references [52–54], where
it was even demonstrated to a certain degree that the information of chaoticity of a Hamilton model is
better represented by differential forms. Moreover, the mathematical object known as the generalized
transfer operator that will play a central role in Section 3 was designed in the DS theory to probe chaos,
and this object was defined on the entire exterior algebra [79].

To establish the law of the temporal evolution of k-forms, one assumes that the DS is described by
ψ(k)(x) at time moment t′. By analogy with Equation (13), the quantity in Equation (25) at a later time
moment t > t′ is

pck (t) =
∫

Mtt′ (ck)
ψ(k)(x) =

∫
ck

M∗t′tψ
(k)(x). (26)
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Here, M∗t′t : Ωk(X)→ Ωk(X) is the generalization of the pullback in Equation (14) to pullbacks
acting on Ω(k)(X). Explicitly,

M∗t′tψ
(k)(x) = (1/k!)ψ(k)

i1...ik
(Mt′t(x))d(Mt′t(x))i1 ∧ ...∧ d(Mt′t(x))i1 , (27)

where the k-form is from Equation (24) and d(Mt′t(x))i is from Equation (15).

2.3. Operator Algebra

2.3.1. Lie Derivative

The infinitesimal pullback is known as the physical or Lie derivative

L̂Fψ = lim
∆t→0

1̂Ω(x) −M∗(t−∆t)t

∆t
ψ. (28)

The infinitesimal map defined by Equation (1) can be given as

M(t−∆t)t(x) ≈ x− ∆tF (t), (29)

with F being the R.H.S. of Equation (1). Accordingly, the infinitesimal tangent map defined in
Equation (16) is

TM(t−∆t)t(x)i
k ≈ δi

k − ∆tTF i
k(t), (30)

with

TF i
k = ∂F i/∂xk. (31)

Using Equations (28)–(30) and the definition of the pullback in Equation (27), one arrives at the
following expression for the Lie derivative:

L̂Fψ(k) =
1
k!

(
F i ∂

∂xi ψ
(k)
i1...ik

+
k

∑
j=1

TF ĩj
ij

ψ
(k)
i1...ĩj ...ik

)
dxi1 ∧ ...∧ dxik , (32)

with ψ(k) being from Equation (24).
The finite-time pullback satisfies the following equation:

∂t M∗t′t = lim
∆t→0

M∗t′t −M∗t′(t−∆t)

∆t

= lim
∆t→0

M∗(t−∆t)t M∗t′(t−∆t) −M∗t′(t−∆t)

∆t

= lim
∆t→0

M∗(t−∆t)t − 1̂Ω(X)

∆t
M∗t′(t−∆t) = −L̂F (t)M∗t′t, (33)

where M∗t′t = M∗(t−∆t)t M∗t′(t−∆t), which follows from Equation (22), has been used together with the
definition of the Lie derivative in Equation (28). The integration of this equation with the initial
condition M∗tt = 1̂Ω(X) results in

M∗t′t = T e−
∫ t

t′ dτL̂F (τ) , (34)
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where T denotes the operator of chronological ordering. This operator is necessary because L̂F (τ) at
different τs do not commute. Equation (34) can be represented in the form of a Taylor series as

M∗t′t = 1̂Ω(X) −
∫ t

t′
dτL̂F (τ) +

∫ t

t′
dτ1L̂F (τ1)

∫ τ1

t′
dτ2L̂F (τ2)

− ... (35)

As in quantum theory, in the Taylor series expansion of the finite-time evolution operator, the new
infinitesimal evolution operators (the Lie derivatives in this case) accumulate from the left. In other
words, operators at later moments of time are always on the left of the operators at earlier moments of
time, just like letters in Arabic script. In other words, the time flows from right to left in the operator
representation of stochastic evolution. This is exactly the reason why the arrow of time points left in
Figures 1 and 2, which may appear unconventional.

2.3.2. Exterior Derivative

One of the fundamental operators of the exterior algebra is the exterior multiplication
dxi∧ : Ωk(X)→ Ωk+1(X). This operator can be defined via its action on a k-form from Equation (24):

dxi ∧ ψ(k) = (1/k!)ψi1...ik dxi ∧ dxi1 ∧ ...∧ dxik . (36)

Viewing the differentials in the definition of a k-form in Equation (24) as the operators of exterior
multiplication, one can also define the operation of the exterior product of differential forms:

ψ(k) ∧ ψ(n) ∈ Ωk+n(X). (37)

The other fundamental operator of the exterior algebra is the interior multiplication ı̂i : Ωk(X)→
Ωk−1(X), which is defined as

ı̂iψ(k) =
1
k! ∑k

j=1(−1)j+1ψi1...ij−1iij+1...ik dxi1 ∧ ...d̂xij ...∧ dxik , (38)

where d̂xij denotes a missing element. As can be readily verified, the (anti)commutation relations for
these operators are [

dxi1∧, dxi2∧
]
= 0,

[
ı̂j1 , ı̂j2

]
= 0,

[
dxi∧, ı̂j

]
= δi

j. (39)

Here and in the following, the square brackets denote the bi-graded commutator:

[X̂, Ŷ] = X̂Ŷ− (−1)deg(X̂)deg(Ŷ)ŶX̂, (40)

with deg(X̂) = #(dx∧)− #(î) being the degree of operator X̂, i.e., the difference between the numbers
of exterior and interior multiplication operators in X̂. For example, deg(dx∧) = 1 and deg(î) = −1
so that the bi-graded commutators in Equation (39) are actually anticommutators.

The centerpiece of the theory under consideration is the exterior derivative or de Rahm operator:

d̂ = dxi ∧ ∂

∂xi . (41)

The exterior derivative is a bi-graded differentiation, i.e., for any operators X̂ and Ŷ,

[d̂, X̂Ŷ] = [d̂, X̂]Ŷ− (−1)deg(X̂)X̂[d̂, Ŷ]. (42)

In the new notations, the Lie derivative can be given via the Cartan formula

L̂F = F i∂/∂xi + TF i
j dxj ∧ ı̂i = [d̂, ı̂F ], (43)
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where ı̂F = F i ı̂i is the interior multiplication by F , and [d̂, ı̂i] = ∂/∂xi and [d̂,F i] = TF i
j dxj∧ have

been used.

2.3.3. Hodge Dual

Yet another operation that will be used later is the Hodge star

? : Ωk(X)→ ΩD−k(X), (44)

defined as

?ψ
(k)
i1...ik

dxi1 ∧ ...∧ dxik

= 1
(D−k)! g1/2ψ

(k)
ĩ1...ĩk

gĩ1i1 ...gĩk ik εi1...iD dxik+1 ∧ ...∧ dxiD , (45)

where ε is the Levi-Civita antisymmetric tensor and g = det gij is the determinant of the metric on X.

As previously mentioned, the natural choice of metric on X is the noise-induced metric gij = ei
aej

a.
In Section 3.3.3, it will be noted that, for certain purposes, other metrics on X can be used. The Hodge
star has the following property:

?? = (−1)k̂(D−k̂), (46)

where k̂ is the operator of the degree of the differential form

k̂ = dxi ∧ ı̂i, k̂ψ(k) = kψ(k), ψ(k) = Ωk(X) (47)

so that

? ? ψ(k) = (−1)k(D−k)ψ(k), ψ(k) ∈ Ωk(X). (48)

This can easily be verified using

εi1...iD gĩ1i1 ...gĩk ik gik+1 ĩk+1 ...giD ĩD = g−1εĩ1...ĩD
, (49)

where the indexes are lowered by the Euclidean metric and

εĩ1...ĩk ĩk+1...ĩD
εĩk+1...ĩD i1...ik

= (−1)k(D−k)(D− r)!


δĩ1i1

. . . δĩ1ik
...

. . .
...

δĩk i1
. . . δĩk jk

 . (50)

In other words, the square of the Hodge star is a unity operator up to a sign. Up to the same sign,
the Hodge star is its own inverse:

?−1 = (−1)k̂(D−k̂)?, (51)

and

??−1 = ?−1? = 1̂Ω(X). (52)

The Hodge star naturally defines an internal product on Ω(X)

(φ|ψ) =
∫

X
?φ∗ ∧ ψ (53)
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for φ, ψ ∈ Ω. The internal product is Hermitian positive definite, i.e.,

(φ|ψ) = (ψ|φ)∗, and (ψ|ψ) ≥ 0. (54)

Thus, it may serve as a Hermitian metric on Ω. As will be discussed in Section 3.3.3, the
eigensystem of the pseudo-Hermitian Ĥ provides its own non-trivial metric on the Hilbert space. It is
this metric that must be viewed as the fundamental metric of the Hilbert space of the model and
for which the standard notation 〈·|·〉must be reserved, whereas the round brackets can be used for
Equation (54).

Equation (54) can also be used for the definition of the concept of the Hermitian conjugate of
an operator

(φ|Âψ) = (Â†φ|ψ) (55)

for any φ, ψ ∈ Ω and any operator Â : Ω(X) → Ω(X). Using this definition, it is straightforward
to derive

(dxi∧)† = gij ı̂j, (ıi)† = gijdxj∧, (56)

and the explicit expression for the so-called codifferential, which is the Hermitian conjugate of the
exterior derivative,

d̂† = −gij ı̂j

(
∂

∂xi + gik(glk)′mdxm ∧ ı̂l + (1/2)
∂log(g)

∂xi

)
. (57)

Finally, in the forthcoming discussion, the concept of the Hodge Laplacian will also be recalled:

∆̂H = [d̂, d̂†]. (58)

2.4. Fermionic Variables

The exterior algebra has an alternative field-theoretic representation in terms of the fermionic
variables that will be used in the path integral representation of the theory in Section 4.1 as well as at
the end of the next section.

Following reference [49], one notes that the (anti-)commutation relations in Equation (39) are
equivalent to those of Grassmann or anticommuting variables, i.e., χi, and derivatives over them,
i.e., ∂/∂χj: [

χi1 , χi2
]
+
= 0,

[
∂

∂χj1
,

∂

∂χj2

]
+

= 0,
[

χi,
∂

∂χj

]
+

= δi
j, (59)

Therefore, one can make the formal substitution

dxi∧ → χi, and ı̂j →
∂

∂χj , (60)

and a wavefunction in the new notations becomes

1
k!

ψ
(k)
i1...ik

(x)dxi1 ∧ ...∧ dxik → 1
k!

ψ
(k)
i1...ik

(x)χi1 ...χik ≡ ψ(k)(xχ), (61)

whereas the expression for the exterior derivative,

d̂ = χi ∂

∂xi , (62)
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reveals why d̂ is a “super” operator: it destroys a bosonic or commuting variable xi and creates
a fermionic or anticommuting variable χi.

Equation (61) can be viewed as a k-th term of the Taylor expansion of a wavefunction

ψ(xχ) = ∑D
k=0

1
k!

ψ
(k)
i1...ik

(x)χi1 ...χik , (63)

which is now a function of a pair of variables that are the supersymmetric partners with respect to the
Operator (62).

Some properties of fermionic variables are similar to those of bosonic variables. For example,
one can introduce the fermionic δ-function∫

dDχδD(χ− χ′) f (χ) = f (χ′). (64)

Here, f (χ) is an arbitrary function of a fermionic variable, χ′ is yet another fermionic variable,
the differential is dDχ = dχD...dχ1, and

δD(χ− χ′) = (−1)D(χ− χ′)1...(χ− χ′)D. (65)

Note that the definition of the fermionic δ-function depends on the relative position of the
differentials because

∫
dDχδD(χ − χ′) = (−1)D ∫ δD(χ − χ′)dDχ, where (−1)D2

= (−1)D has
been used.

The above property of fermionic variables and their δ-function can be established using
Berezin rules of integration over Grassmann numbers. The latter include identities such as∫

dχ1 = 0,
∫

χ1dχ1 = −
∫

dχ1χ1 = 1.
Another property of fermionic variables that has a straightforward bosonic analogue is the

exponential representation of a fermionic delta function

δD(Âχ) =
∫

dDχ̄eχ̄Âχ, (66)

where χ̄ is yet another additional fermionic variable.
Other properties of fermionic variables may be in a sense opposite to their bosonic

counterparts, e.g., ∫
dDχδD(Âχ) = detÂ, (67)

whereas for bosonic variables, one would have
∫

dDxδD(Âx) = |detÂ|−1 for x ∈ RD. There are many
other interesting properties and relations associated with fermionic variables (see, e.g., [86]). In the
forthcoming discussion, however, only those introduced so far will be used.

3. Operator Representation

3.1. Stochastic Generalization of Dynamics

In the previous section, the noise configuration was assumed to be fixed, and the dynamics was
essentially deterministic. The next step is to account for all possible realizations of the noise. This goal
can be achieved as follows.

The stochastic generalization of Equation (13) is

f (t) =

〈∫
X

f (x)M∗t′tP(x)dx1...dxD
〉

Ns

=
∫

X
f (x)M̂tt′(P(x)dx1...dxD), (68)
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and that of Equation (26) is

pck (t) =
〈∫

ck

M∗t′tψ
(k)(x)

〉
Ns

=
∫

ck

M̂tt′ψ
(k)(x), (69)

where the notation for the stochastic average is from Equation (4) and the new operator M̂tt′ : Ω(X)→
Ω(X) is defined as

M̂tt′ = 〈M∗t′t〉Ns. (70)

The operation of the stochastic averaging here is legitimate because the pullbacks are linear
operators on Ω(X). Now, the possibly highly nonlinear (stochastic) dynamics is described by linear
operators acting on the linear Hilbert space. The price one pays for this “linearization” is the
infinitely larger dimensionality of Ω(X) compared to the dimensionality of X. One may wonder
now if this dramatic increase in the dimensionality of the objects of interest could be an unnecessary
complication. It is not. As long as one is interested in the stochastic dynamics, he has to consider the
infinite-dimensional space of the probability distributions regardless.

The finite-time stochastic evolution operator (SEO) in Equation (70) is known in DS theory as
the generalized transfer operator [79]. The only new element in Equation (70) is that the pullbacks in
Equation (70) are those of the inverse maps.

In the case of white (not necessarily Gaussian) noise, the noise variables at different times do not
correlate, and thus,

M̂tt′′ = 〈M∗t′′t〉Ns = 〈M∗t′t M∗t′′t′〉Ns = 〈M∗t′t〉Ns〈M∗t′′t′〉Ns = M̂tt′M̂t′t′′ , (71)

where the composition law for pullbacks in Equation (22) has been used. Unlike in Equation (22), the
time now flows from right to left, as it should. This is why the positions of the time arguments of the
finite-time SEO are swapped in Equation (70) compared to those in the corresponding pullbacks.

The quantum mechanical analogue of the finite-time SEO is the finite-time quantum evolution
operator, denoted typically as Û = e−itĤq , with Ĥq being some Hermitian Hamiltonian. The capitalized
U signifies here that the quantum evolution is unitary. The stochastic evolution is not unitary; thus,
the current notation for the finite-time SEO borrowed from reference [79] is more suitable.

One can now use the picture of the time intervals as discussed in Section 1.4. Explicitly, the time
domain of the temporal evolution, i.e., (t, t′), is a union of a large number, i.e., N � 1, of elementary
intervals, namely, (t, t′) =

⋃N−1
n=0 (tn+1, tn), where tn = t′ + n∆t and ∆t = (t− t′)/N. The law of the

infinitesimal stochastic evolution can now be found as

∂tM̂tt′ = lim
∆t→0

M̂tt′ − M̂tN−1t′

∆t
= lim

∆t→0

M̂tN tN−1 − 1̂Ω(X)

∆t
M̂tN−1t′ , (72)

where the following equality has been used:

M̂tt′ = M̂tN tN−1M̂tN−1t′ . (73)

If one now introduces the “infinitesimal” SEO as

Ĥ = lim
∆t→0

1̂Ω(X) − M̂tN tN−1

∆t
, (74)

one obtains

∂tM̂tt′ = −ĤM̂tt′ . (75)
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The integration of this differential equation with the condition M̂tt = 1̂Ω(X) leads to

M̂tt′ = e−Ĥ(t−t′). (76)

One can now introduce the time-dependent wavefunction ψ(t) = M̂tt′ψ(t′) by analogy with
the Schrödinger representation of quantum theory. Equation (75) then takes the familiar form of the
stochastic evolution equation or the generalized Fokker–Planck (FP) equation:

∂tψ(t) = −Ĥψ(t). (77)

To establish the explicit expression for the SEO in Equation (74), one recalls that the noise variable
and consequently the R.H.S. of Equation (1) are constant within all time intervals, including the last one

F (xt)|tN>t>tN−1
= FN(x) ≡ F(x) + (2Θ)1/2ea(x)ξa

N , (78)

and that

M̂tN tN−1 = 〈M∗tN−1tN
〉Ns = 〈e−∆tL̂FN 〉Ns, (79)

as follows from the definition of the Lie derivative in Equation (28). Using the linearity of the Lie
derivative in its vector field,

L̂FN = L̂F + (2Θ)1/2ξa
NL̂ea , (80)

Equations (7), (8), (74) and (79), one arrives at

Ĥ = L̂F −ΘL̂ea L̂ea . (81)

The physical meaning of the two terms in the SEO (81) is clear. The first term is the deterministic
flow along F, and the second term represents the noise-induced diffusion. The operator

L̂ea L̂ea = gij(x)
∂

∂xi
∂

∂xj + gi
1(x, dx∧, ı̂)

∂

∂xi + g0(x, dx∧, ı̂), (82)

with g0,1 being some functions of its arguments, can be called the diffusion Laplacian. This operator is a
member of the family of Laplace operators. In the general case, however, this operator is neither Hodge
(or de Rahm) Laplacian (58) nor Bochner (or Beltrami) Laplacian. Nevertheless, just as the Hodge
Laplacian, the diffusion Laplacian has the important property of being d̂-exact, i.e., L̂ea L̂ea = [d̂, ı̂iei

aL̂ea ].
The time-interval picture and the piece-wise constant noise may not appear sufficiently convincing

in the context of the Ito–Stratonovich dilemma discussed in Appendix A.1 and in the next subsection.
As such, it is worth re-deriving Equation (81) directly for the white noise picture. This can be performed
using yet another equivalent form of Equation (74):

Ĥ =

〈
lim

∆t→0

1̂Ω(X) −M∗t,t+∆t

∆t

〉
Ns

. (83)

Using Equation (35), the above equation results in

Ĥ = lim
∆t→0

∆t−1
〈∫ t+∆t

t
L̂F (τ)dτ −

∫ t+∆t

t

∫ τ1

t
L̂F (τ1)

L̂F (τ2)
dτ1dτ2 + ...

〉
Ns

. (84)

Now, using the continuous-time analogue of Equation (80)

L̂F (τ) = L̂F + (2Θ)1/2ξa(τ)L̂ea , (85)
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together with 〈ξa(t)〉Ns = 0 and Equation (5), one readily arrives at

Ĥ = L̂F − CΘL̂ea L̂ea , (86)

where

C = 2 lim
∆t→0

∆t−1
∫ t+∆t

t

∫ τ1

t
δ(τ1 − τ2)dτ1dτ2. (87)

The subtle point here is that the upper limit of the integration over τ2 is exactly at the peak of the
δ-function, i.e., τ2 = τ1. The δ-function, no matter how narrow, is a symmetric function of its argument,
i.e., δ(τ1 − τ2) = δ(τ2 − τ1), and its integral over its entire domain is unity. Therefore,

∫ τ1
t δ(τ1 − τ2)dτ2

must be interpreted as 1/2. Consequently, C = 1, and the SEO in Equation (86) is the same operator
obtained earlier in Equation (81) within the piece-wise constant picture of the noise.

The conventional Fokker–Planck (FP) equation for the TPD is simply Equation (77) for the D-forms.
Its explicit expression can be readily found. Using the Cartan Formula (43) and noting that d̂ψ(D) = 0
for any ψ(D) ∈ ΩD(X) so that L̂Gψ(D) = ∂/∂xiGiψ(D) for any vector field G ∈ TX, one finds that the
FP equation is

∂tψ
(D)(x, t) = −

(
∂

∂xi Fi(x)−Θ
∂

∂xi ei
a(x)

∂

∂xj ej
a(x)

)
ψ(D)(x, t). (88)

This is the well-known FP equation in the so-called Stratonovich interpretation of SDEs.
This brings the discussion to the Ito–Stratonovich dilemma addressed next.

3.2. Ito–Stratonovich Dilemma

The Ito–Stratonovich dilemma [87–91] is a well-known ambiguity in the exact form of the
FP operator that appears when an SDE is looked upon as a continuous time limit of a related
stochastic difference equation. A discussion of this issue can begin by rewriting the original SDE (1) in
an equivalent form

dx(t) = F(x(t))dt + (2Θ)1/2ea(x(t))dW a(t), (89)

whereW a(t) = dξa(t)/dt is introduced to emphasize that ξ is “integrable” in a certain mathematical
sense so that the SDE is well defined.

The classical view on SDEs is through the continuous-time limit of the related stochastic difference
equations (SdE):

∆xn = F(xn−1 + α∆xn)∆t + (2Θ)1/2ea(xn−1 + α∆xn)∆W a
n. (90)

Here, ∆xn = xn− xn−1, with xn and xn−1 being the DS variables at two consecutive time moments;
tn = tn−1 + ∆t; and ∆W a

n = ξa
n∆t, with ξa

n being the noise variable acting between tn and tn−1;
moreover, the parameter α ∈ (0, 1) controls at which point of the elementary time step the R.H.S. of
the SdE is evaluated. There are three major choices for α in the literature: the Ito choice, i.e., α = 0, of
the starting point xn−1; the Stratonovich choice, i.e., α = 1/2, of the mid-point (xn + xn−1)/2; and the
Kolmogorov or “isothermal” choice, i.e., α = 1 [92], of the final point xn.

As shown in Appendix A.1, the FP equation of the continuous-time limit of the SdE is Equation (88)
with the shifted flow vector field:

Fi → Fi
α = Fi + 2Θ(α− 1/2)(ei

a)′ je
j
a. (91)

It is also shown in Appendix A.1 that if, instead of observing the SdE as a formal equation
(implicitly) defining the increment ∆x, one considers a continuous-time flow with the piece-wise
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constant noise from Figure 1, the freedom in choosing α disappears, and one must always use the
Stratonovich choice of α = 1/2. This explains why the approximation-free derivation in the previous
subsection led to the Stratonovich FP Operator (88). The point is that the SDE was believed to define
a continuous-time flow on X. The action induced by this flow on the exterior algebra can be given by
what can be called the stochastic flow equation (SFE)

dψ(t) = −
(
L̂Fdt + (2Θ)1/2L̂ea dW a(t)

)
ψ(t). (92)

This equation is just as well defined as the original SDE (89). Indeed, the transition from
Equation (89) to (92) uses only the two following fundamental properties: diffeomorphisms defined
as ẋ = F induce the (time-reversed) action on Ω defined by ∂tψ = −L̂Fψ, and the Lie derivative is
linear in its argument, L̂C1F1+C2F2 = C1L̂F1 + C2L̂F2 , where F1,2 are some (differentiable) vector fields
on X and C1,2 are constants. Therefore, if the SDE together with dW a is well defined, then the SFE is
also well defined.

One way to understand why the FP operator for Equation (92) does not depend on the
interpretation of the noise is as follows. As is clear from Equation (91), the FP operator for Equation (89)
is independent of the interpretation of the SDE when the noise is additive, i.e., when the e are
independent of the position of X so that the factor (2Θ)1/2ea, to which the noise is coupled in
Equation (89), is independent of time. Similarly, the factor (2Θ)1/2L̂ea , to which the noise is coupled in
Equation (92), is always independent of time even for the position-dependent e, which renders the FP
operator derived from Equation (84) noise-interpretation independent.

Within the classical view on SDEs as a continuous-time limit of SdEs, no interpretation can in
principle have a qualitative mathematical advantage over the others. This follows from the mere fact
that different interpretations can be transformed among themselves by a mere shift of the flow vector
field in accordance with Equation (91). Indeed, consider, for example, an Ito SDE and a Stratonovich
SDE with the flow appropriately shifted such that the FP operators of the two models are the same.
These two models define the same stochastic model, and there is simply no room to accommodate any
mathematical advantage of one model over the other.

In other words, the classical theory of SDEs has an intrinsic redundancy in the sense that each
stochastic model has infinitely many representatives corresponding to different interpretations of the
SDE. This redundancy can only be removed if there existed a reference point outside the classical view
of SDEs as a continuous-time limit of α-parameterized SdEs. The SFEs introduced above may serve as
this external reference point. If this point of view is adopted, it must be said that the Ito–Stratonovich
dilemma is resolved in favor of the Stratonovich interpretation of SDEs because Stratonovich SDEs provide
the same FP operator as the corresponding SFEs. Within this framework, one would state that the
continuous-time limit of two SdEs with the same F and e but with different α is two different SDEs
with shifted flow vector fields. This point of view is summarized in Figure 4.

Supporting this proposition, it can be mentioned that the Stratonovich approach is more natural
from a mathematical point of view (see, e.g., [93] and the references therein). On the side of physics, the
Stratonovich interpretation is superior because all noise sources are never white; rather, they have finite
correlation times, and in the white-noise limit, the colored-noise SDEs become Stratonovich SDEs [90].
Furthermore, it is experimentally established that the Stratonovich approach is more accurate in regard
to the numerical simulations of physical models [94]. Simultaneously, the only known advantage of
the Ito interpretation of being “respective” of the Markovian property is a misinterpretation of the fact
that the SdEs with α 6= 0 define the increment as a function of the initial point implicitly, as discussed
at the end of Appendix A.1.
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Figure 4. A diagram summarizing the relations among SDEs, SdEs, and SFEs. An SDE can be
interpreted as a continuous-time limit of an α-family of a corresponding SdE. In the continuous
time limit, the SdE corresponds to an SFE with the α-dependent flow vector field. The Ito (α = 0),
Stratonovich (α = 1/2), and "isothermal" (α = 1) [92] choices of α are explicitly given. The Stratonovich
interpretation of SDEs has one distinct advantage in that the flow vector field of the original SDE is the
same as that of the corresponding SFE.

The resolution of the Ito–Stratonovich dilemma, however, is a purely mathematical problem, and
the above picture should only be viewed as one of the scenarios of its possible solution. Fortunately,
it is not important for further discussion whether the Ito–Stratonovich dilemma is resolved at this
point. To liberate the STS from the burden of the Ito–Stratonovich dilemma, one can always think
that the STS is a theory of SFEs and not of SDEs. If one is interested in the STS of the Ito or any other
interpretation of the SDE, all he has to do is to shift the flow vector field accordingly.

The Ito–Stratonovich dilemma will be readdressed in Section 4.4, where it will be shown that
the Stratonovich interpretation of SDEs is equivalent to the Weyl symmetrization rule, whereas the
so-called Martingale property of the Ito interpretation is equivalent to the unphysical convention of
placing all the momentum operators after all the position operators. It will also be reestablished that
different interpretations of SDEs can be transformed among themselves by a shift of the flow vector
field and that this result is correct for the entire SEO and not only for the FP operator as discussed here.

3.3. Properties of the Stochastic Evolution Operator

In this subsection, some of the most important properties of the eigensystem of the SEO are
discussed. For simplicity, it is assumed that the phase space is closed, the noise-induced metric gij is
positive definite everywhere on X, Θ > 0 so that the SEO is elliptic, and Ĥ is diagonalizable, with
a discrete spectrum bounded from below. It is natural to believe that most of the claims here hold true
or are at least transformative to more general classes of models.
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3.3.1. Fermion Number Conservation

The SEO is of “zeroth” degree, i.e., degĤ = 0 (see the definition of the degree of an operator in
Equation (40)). This means that it does not mix wavefunctions of different degrees. As a result, the
operator of the degree of the differential form in Equation (47) is commutative with the SEO:

[k̂, Ĥ] = 0. (93)

As noted in Section 2.4, the differentials of wavefunctions can be viewed as fermions. Therefore,
k̂ can be interpreted as the number of fermions, and Equation (93) reflects the conservation of
this quantity.

Yet another method of expressing the idea of the conservation of the number of fermions is to
note the block-diagonal structure of Ĥ:

Ĥ = diag(Ĥ(D), Ĥ(D−1), ..., Ĥ(0)), (94)

where

Ĥ(k) : Ωk(X)→ Ωk(X) (95)

is the projection of Ĥ onto Ωk(X).

3.3.2. Completeness

The SEO is a real operator. Therefore, its spectrum consists of real eigenvalues and pairs of
complex conjugate eigenvalues that are called Ruelle–Pollicott resonances in DS theory. This form
of the spectrum is a sufficient condition for Ĥ to be pseudo-Hermitian [62]. As a pseudo-Hermitian
operator, Ĥ has a complete bi-orthogonal eigensystem

Ĥψn = Enψn, ψ̄n Ĥ = ψ̄nEn, (96a)

∑n |ψn〉〈ψn| = 1̂Ω(X), 〈ψn|ψm〉 =
∫

X
ψ̄n ∧ ψm = δnm, (96b)

where ψ and ψ̄ are the right and left eigenfunctions (or rather eigenforms), and the bra-ket notation is

|ψn〉 ≡ ψn ∈ Ωkn(X) and 〈ψn| ≡ ψ̄n ∈ ΩD−kn(X). (97)

Here, kn is the eigenvalue of the operator of the degree of a wavefunction:

k̂|ψn〉 = kn|ψn〉. (98)

As noted in the previous subsection, the degree of a wavefunction is a “good quantum number”
because k̂ is commutative with H and consequently the both operators can be simultaneously
diagonalized.

The eigenstates of a given degree, say, k, provide a complete bi-orthogonal eigensystem on Ωk(X)

such that the resolution of unity on Ωk(X) is

∑n,kn=k |ψn〉〈ψn| = 1̂Ωk(X). (99)

The bra-ket combination of an eigenstate of any degree is a D-form,

ψ̄n ∧ ψn = Pn ∈ ΩD(X), (100)

which has the meaning of the TPD associated with this eigenstate.
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3.3.3. Pseudo-Time-Reversal Symmetry

The pseudo-Hermitianity of the SEO is closely related to the pseudo-time-reversal symmetry of
the model. To begin the discussion of this symmetry, one needs the explicit expression for Ĥ† that can
be established as follows. The defining property of Ĥ† is given by Equation (55):∫

X
?φ∗ ∧ Ĥψ =

∫
X
?(Ĥ†φ)∗ ∧ ψ. (101)

One notes now that the Lie derivative is a differentiation, i.e.,

L̂G (ψ1 ∧ ψ2) = (L̂Gψ1) ∧ ψ2 + ψ1 ∧ (L̂Gψ2) (102)

for any ψ1,2 ∈ Ω(X) and any vector field G ∈ TX. In addition,∫
X
L̂Gψ(D) =

∫
X
(d̂ı̂G + ı̂G d̂)ψ(D) =

∫
X

d̂(ı̂Gψ(D)) = 0 (103)

because d̂ψ(D) = 0 for any ψ(D) ∈ ΩD(X). The last two formulas lead to the conclusion that, for any
ψ1 ∧ ψ2 ∈ ΩD, ∫

X
ψ1 ∧ (L̂Gψ2) =

∫
X
(−L̂Gψ1) ∧ ψ2. (104)

This equality can now be used to rewrite the Left Hand Side (L.H.S.) of Equation (101) as∫
X
?φ∗ ∧ Ĥψ =

∫
X
?(?−1ĤT ? φ)∗ ∧ ψ, (105)

where

ĤT = −L̂F −ΘL̂ea L̂ea . (106)

Here, ?−1 is the inverse of the Hodge star defined in Section 2.3.3, and the following has been used:

?−1ĤT ? φ∗ = (?−1ĤT ? φ)∗ (107)

because both ĤT and ? are real. Equations (101) and (105) give

Ĥ† = ?−1ĤT ? . (108)

The next goal is to examine the properties of the model with respect to the time-reversal operation.
One first notes that Equation (106) is the SEO of the SDE obtained from Equation (1) by reversing the
flow of time:

ẋ = −F (x). (109)

In other words, the “naive”reversal of time

T : F → −F, ea → −ea (110)

has the following effect on the SEO:

T : Ĥ → ĤT (111)

in the original stochastic evolution in Equation (77).



Entropy 2016, 18, 108 23 of 66

Let us recall now that the time reversal in quantum mechanics is also accompanied by swapping
bras and kets. This is needed because the information of the system’s past and future are stored in
the kets and bras, respectively, whereas the past and future are interchanged by the time reversal.
This bra-ket swapping in the STS is accomplished using the Hodge star

T : Ĥ → Ĥ† = ?−1ĤT?, (112)

where T = ?T denotes the composition of the operations.
In Section 5, it will be discussed that the structure of the wavefunction of the supersymmetric

ground states is such that the coordinate directions with/without differentials correspond to the
stable/unstable (local) variables. On the other hand, the time reversal makes the stable variables
unstable and vice versa. Therefore, this operation must act on a wavefunction in such a way
that, in the directions with/without differentials, the wavefunction loses/acquires differentials.
This understanding strengthens the above relation between the time-reversal operation and the
Hodge star operation, which acts on a wavefunction in exactly this manner.

Clearly, an operation T does not seem to be a symmetry of the model because Ĥ 6= Ĥ† for
pseudo-Hermitian Ĥ. Nevertheless, the stochastic evolution defined by Ĥ† may turn out to be
physically equivalent to that defined by Ĥ. On a mathematical level, this “equivalency” means that
there exist

η : Ωk(X)→ Ωk(X) (113)

such that

η : Ĥ† → Ĥ = η−1Ĥ†η. (114)

The existence of such η is the definitive property of all pseudo-Hermitian operators. Therefore, the
model does possess the so-called ηT-symmetry:

ηT : Ĥ → Ĥ = (?η)−1ĤT ? η. (115)

The operator η can be called the Hilbert space metric. It relates the bras and the Hodge duals of
the eigenstates as

〈ψn| = (ψk|ηkn, (116)

where the notation (ψk| ≡ ?ψ∗k was previously introduced in Equation (53). From the orthogonality
property in Equation (96b), one finds

〈ψn|ψm〉 = (ψk|ψm)ηkn = δmn. (117)

In other words, η is the inverse of the “overlap” matrix, i.e., of (the transpose of) the matrix of the
inner products of the kets of the eigenstates.

The ηT operation acts on a wavefunction as

ηT : ψ 7→ η−1 ?−1 ψ∗. (118)

If ψT,n is an eigenstate of the time-reversed SDE (109),

ĤTψT,n = EnψT,n, (119)
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then ηT(ψT,n) is an eigenstate of the original SDE (1) although with a complex conjugate eigenvalue,

ĤηT(ψT,n) = E∗n ηT(ψT,n). (120)

It can be said that the eigenstates with complex eigenvalues (the Ruelle–Pollicott resonances)
break the ηT symmetry. If one such eigenstate is a ground state of the model, the ηT symmetry
can be said to be spontaneously broken because the ground state of the time-reversed SDE has a
different eigenvalue.

Equation (115) can also be rewritten as

Ĥ(k) = (?η)−1Ĥ(D−k)
T ? η. (121)

That is, Ĥ(k) and Ĥ(D−k)
T are related by the similarity transformation ?η. This immediately

suggests that the two operators are isospectral:

spec(Ĥ(k)) = spec(Ĥ(D−k)
T ). (122)

This result will be used later in the discussion of the possible forms of the SEO spectra in
Section 3.3.8.

Up to this moment, it was not specified what phase-space metric g is being used. This phase space
metric, or X-metric for short, enters the above formulas through the definition of the Hodge dual in
Equation (45). What has been said so far in this subsection is correct for any “good enough” X-metric.
In other words, one has a freedom in choosing g. This freedom can in principle be used for the
simplification of the explicit expressions for g-dependent objects such as Ĥ† and η. For g-independent
objects, such as Ĥ, ĤT, the Eigensystem (96), and the composition ?η, the choice of g is unimportant.

3.3.4. Topological Supersymmetry

The SEO is d̂-exact, i.e., it has the form of a bi-graded commutator

Ĥ = [d̂, ˆ̄d], (123)

where

ˆ̄d = Fi ı̂i −Θei
a ı̂iL̂ea . (124)

The exterior derivative is commutative with the SEO:

[d̂, Ĥ] = 0. (125)

This can be observed from the nilpotency property of the exterior derivative, i.e., d̂2 = 0, leading
to the conclusion that d̂ commutes with any d̂-exact operator: [d̂, [d̂, X̂]] = 0, ∀X̂.

The commutativity of an operator with the SEO indicates that this operator is a symmetry of
the model. The reason why d̂ is a symmetry can be explained as follows. The finite-time SEO is
a stochastically averaged pullback induced by the SDE-defined diffeomorphisms. Therefore, the
finite-time SEO commutes with d̂ because any pullback induced by a diffeomorphism is commutative
with d̂. In other words, this symmetry is a consequence of the fact that continuous(-time) dynamics
preserves the continuity of the phase space, as previously mentioned in Section 1.3.

Note also that not all possible evolution operators that commute with d̂ are necessarily d̂-exact as
in Equation (123). A d̂-exact evolution operator implies more than simply the commutativity with d̂.
As will be discussed below, the additional implication of a d̂-exact evolution operator is that all the
d̂-symmetric eigenstates have a zero eigenvalue.
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In terms of the fermionic variables of Section 2.4, the exterior derivative substitutes commuting
or bosonic variables with anticommuting or fermionic ones. Therefore, it can be identified as
a supersymmetry.

3.3.5. Topological Supersymmetry vs. N = 2 Supersymmetry

The topological supersymmetry operator is the same for all SDEs. The operator does not contain
any information on the specifics of dynamics, which in turn are solely encoded in the other fermionic
operator, i.e., ˆ̄d, in Equation (124). One way to look at this operator is as the operator of the current of
the probability density. This point of view is at least partially correct, as is evident from the stochastic
evolution equation for top differential forms

∂tψ
(D) = −d̂( ˆ̄dψ(D)) = −d̂j, (126)

which can be recognized as a continuity equation for the total probability density, and the R.H.S. is the
divergence of the current of the probability density: j = ˆ̄dψ(D) ∈ Ω(D−1).

The current operator is not a supersymmetry of the model. The operator lacks the important
property of being nilpotent, i.e., ˆ̄d2 6= 0, and thus is not commutative with the SEO:

[Ĥ, ˆ̄d] = [d̂, ˆ̄d2] 6= 0. (127)

Only for a very special class of models is this operator nilpotent and consequently
a supersymmetry of the model. The best known examples from this class of models are the Langevin
SDEs and the Hamilton models, i.e., models that have been studied in the literature almost exclusively
in the context of the relation between supersymmetry and stochastics. The reason why these models
have received most of the scientific attention is that only when ˆ̄d2 = 0 can the model be said to be
N = 2 supersymmetric. In particular, the evolution operator is a square of N = 2 mixed-degree
fermionic operators,

q̂1 = d̂ + ˆ̄d, and q̂2 = i(d̂− ˆ̄d), (128)

and

Ĥ = q̂2
1 = q̂2

2 only if ˆ̄d2 = 0. (129)

In the general case, however, Equation (129) is incorrect, and the model can only be identified
as a member of the family of the cohomological field theories for which the evolution operator is
a bi-graded commutator with the topological supersymmetry operator, as in Equation (123). In other
words, the difference between general form SDEs and Langevin SDEs and/or Hamilton models
is the same as the difference between topological quantum mechanics (see, e.g., [95]) and N = 2
supersymmetric quantum mechanics (see, e.g., [96]).

In addition, note that, to identify a model as a cohomological field theory, one must also
require that the ground states of the model be supersymmetric. In the STS, however, the ground
states are not supersymmetric in the most interesting situations with the spontaneously broken
topological supersymmetry. Therefore, the identification of the STS as a cohomological field theory is
technically inaccurate.

It is well known that N = 2 supersymmetry leads to the pairing of the non-supersymmetric
eigenstates into boson-fermion doublets, whereas all the supersymmetric eigenstates are singlets with
exactly zero eigenvalues. In the next Section 3.3.6, it will be shown that the topological supersymmetry
tailors the same structure of the eigensystem.
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3.3.6. Boson-Fermion Pairing of Eigenstates

From the group-theoretic point of view, the topological supersymmetry is a continuous
one-parameter group of transformations

Ĝs = (Ĝ−s)
−1 = esd̂ = 1 + sd̂, s ∈ R, (130)

of which the SEO is invariant:

Ĝs ĤĜ−s = Ĥ. (131)

As in the case of any other symmetry, the eigenstates must be irreducible representations of
this group. There are only two types of irreducible representations of this symmetry: most of the
eigenstates are non-d̂-symmetric “bosonic-fermionic” doublets or pairs of eigenstates, and some of the
eigenstates are d̂-symmetric singlets.

Each pair of non-d̂-symmetric eigenstates, which will be denoted as |ϑ〉 and |ϑ′〉, can be defined
via a single bra-ket pair, i.e., |ϑn〉 and 〈ϑn|, such that

〈ϑn|d̂|ϑn〉 = 1, (132)

so the bra-ket pairs of the non-d̂-symmetric pairs of eigenstates can be given as

|ϑn〉 = |ϑn〉, 〈ϑn| = 〈ϑn|d̂, (133)

and

|ϑ′n〉 = d̂|ϑn〉, 〈ϑ′n| = 〈ϑn|. (134)

Here, the expression 〈ϑn|d̂ must be understood as a differential form ϑ̄n such that
∫

X ϑ̄n ∧ d̂γ =∫
X ϑ̄n ∧ γ for any γ, where the barred notation for the bras in Equation (96b) has been used. Using the

standard relation
∫

d̂(γ1 ∧ γ2) = 0, valid for all γ1,2, it can be easily established that, up to a sign, the
differential form ϑ̄n = d̂ϑ̄n.

The orthogonality relations for the ϑ are

〈ϑn|d̂|ϑk〉 = δnk, 〈ϑn|ϑk〉 = 0. (135)

These relations can be derived from the structure of the non-d̂-symmetric eigenstates in
Equations (133) and (134) as follows. Consider an eigen-bra 〈ϑn| ∈ ΩD−k. There are two types
of eigen-kets of degree k that can potentially overlap with 〈ϑn| non-trivially: |ϑn1

〉 ∈ Ωk and the d̂-exact
eigen-kets d̂|ϑn2

〉 ∈ Ωk with |ϑk〉 ∈ Ωk−1. The eigensystem is bi-orthogonal; thus, only one eigen-ket
can provide a non-zero overlap with 〈ϑn|. As observed from Equation (132), this eigen-ket is d̂-exact.
All the other kets must have zero overlap with 〈ϑn| because they correspond to different eigenvalues
of the SEO, which has no spectral degeneracy in the most general situation. As long as this argument
is valid in the most general case of no spectral degeneracy, it is always valid even in the case where
there is spectral degeneracy due to some additional symmetry of the model or accidentally.

The pairing of the non-supersymmetric eigenstates into the boson-fermion doublets can be
demonstrated as follows. Consider the complete set of the eigenstates of Ĥ(0), i.e., |ϑn0

〉 ∈ Ω0,
where n0 is the label running over all these eigenstates. Consider also the set of d̂-exact states, i.e.,
|ϑ′n0
〉 = d̂|ϑn0

〉 ∈ Ω1. These are the eigenstates of Ĥ(1) with the same eigenvalues as |ϑn0
〉 because d̂

commutes with Ĥ. This set is incomplete in Ω1, and there exists another set of eigenstates of Ĥ(1), i.e.,
|ϑn1
〉 ∈ Ω1, with n1 being yet another label running over this new set of eigenstates. Unlike |ϑ′n0

〉, |ϑn1
〉

are not d̂-closed, i.e., the operator d̂ does not annihilate them in general. Once again, one considers
the set of the d̂-exact eigenstates of Ĥ(2), |ϑ′n1

〉 = d̂|ϑn1
〉 ∈ Ω2. This recurrent procedure terminates at
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ΩD, the eigenstates of which are all d̂-closed. At the end of this procedure, almost all (see below) the
eigenstates are non-supersymmetric pairs related by d̂.

A similar procedure exists for bras. The only difference is that the procedure runs in the opposite
direction, i.e., from 〈ϑnD

| to 〈ϑn0
|, because ϑ̄nk

∈ ΩD−k, as observed from Equation (96b), and
consequently 〈ϑnk

|d̂ is an eigen-bra of Ĥ(k−1) and not of Ĥ(k+1), as could be incorrectly expected.
The boson-fermion pairing procedure does not count eigenstates that are non-trivial in the

de Rahm cohomology, in other words, the eigenstates that are d̂-closed but that are not d̂-exact, i.e.,

d̂|θk〉 = 0, but |θk〉 6= d̂|·〉. (136)

These eigenstates are the supersymmetric or d̂-symmetric singlets. Their bras are also non-trivial
in the de Rahm cohomology:

〈θk|d̂ = 0, but 〈θk| 6= 〈·|d̂. (137)

An important property of the supersymmetric eigenstates is that the expectation value of any
d̂-exact operator vanishes on these eigenstates:

〈θk|[d̂, X̂]|θl〉 = 0. (138)

Note now that the SEO is a d̂-exact operator. Therefore, all the d̂-symmetric eigenstates have zero
eigenvalues: 0 = 〈θk|Ĥ|θk〉 = Eθk 〈θk|θk〉 = Eθk .

Each de Rahm cohomology class must provide one d̂-symmetric eigenstate of the form

|θk〉 = |hk〉+ d̂|·〉, (139)

where |hk〉 is the harmonic differential form from this particular class of the de Rahm cohomology.
That this is true can be demonstrated using perturbation theory, as done in Appendix A.2.
The statement that each de Rahm cohomology class provides one d̂-symmetric eigenstate must be
correct even outside the domain of the applicability of the perturbation theory. This follows from
the “completeness argument”: if it is not so, then the eigensystem of the pseudo-Hermitian SEO is
incomplete, which contradicts the theory of pseudo-Hermitian operators.

3.3.7. Topological Supersymmetry and N = 2 Pseudo-Supersymmetry

In Section 3.3.5, it was discussed that, in the general case, ˆ̄d is not a supersymmetry of the
model. Nevertheless, the second supercharge does exist. Although its explicit form may not be easy
to establish, the second supercharge can be easily constructed out of the eigensystem of the model.
Using the notations in Equations (133) and (134), the SEO can be given as

Ĥ = ∑n

(
|ϑn〉En〈ϑn|d̂ + d̂|ϑn〉En〈ϑn|

)
= [d̂, d̂‡], (140)

where the second supercharge of the model is

d̂‡ = ∑n |ϑn〉En〈ϑn|. (141)

The two operators d̂‡ and ˆ̄d must differ by a d̂-closed piece, i.e.,

[d̂, d̂‡ − ˆ̄d] = 0, (142)

because Equations (123) and (140) define the same SEO.
Just like ˆ̄d, this operator has fermionic degree −1. Unlike ˆ̄d, the second supercharge is nilpotent,

i.e., (d̂‡)2 = 0, as can be verified using Equation (135), and commutative with the SEO, i.e., [Ĥ, d̂‡] =
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[d̂, (d̂‡)2] = 0, as follows from Equation (140) and the nilpotency of this operator. Moreover, with the
introduction of the generalization of the two operators in Equation (128), ˆ̃q1 = d̂+ d̂‡ and ˆ̃q2 = i(d̂− d̂‡),
the SEO can be given a form similar to that in Equation (129): Ĥ = ˆ̃q2

1 = ˆ̃q2
2.

The second supercharge is responsible for the same boson-fermion pairing of the
non-supersymmetric eigenstates. Its effect on the eigenstates is in essence opposite that of d̂:

d̂‡|ϑ′n〉 = En|ϑn〉, d̂‡|ϑn〉 = 0, and d̂‡|θk〉 = 0, (143)

where the notations from Equations (133) and (134) have been used. This operator can be visualized in
Figure 5 as reverse arrows representing d̂. In other words, the second supercharge does not contain
any additional information on the supersymmetric structure of the SEO, and for this reason, it will
not be considered in this paper any further. It must be noted, however, that in situations in which
there exists an operator η such that d̂‡ = η−1d̂†η and d̂ = η−1 (̂d‡)†η, the model can be said to
possess N = 2 pseudo-supersymmetry [62]. It is an open question under what conditions the N = 2
pseudo-supersymmetry is present and what its relation is with the pseudo-time reversal symmetry
discussed in Section 3.3.3.

k = 0

k = 1

k = 2

c )b )
R e E n

a ) I m E n

�d

k = 3

Figure 5. The three possible types of spectra of the SEO for an SDE on a three-dimensional sphere.
The spectra are given separately for the four degrees indicated by the parameter k on the left. The zeroth-
and third-degree cohomology classes of the 3-sphere provide two supersymmetric eigenstates, indicated
as thick dots at the origin for the k = 0 and k = 3 spectra. The ground states are represented as the
leftmost filled (blue or black) dots. (a) The case of thermodynamic equilibrium when the topological
supersymmetry is unbroken because the ground states are supersymmetric; (b,c) The cases of
spontaneously broken supersymmetry when the ground states have nonzero eigenvalues and are thus
non-supersymmetric; The ground state is ambiguous in case (c) because there are two Ruelle–Pollicott
resonances with the same lowest real part of its eigenvalue. In Section 4.6, it is discussed that it is
possible to view only one of these eigenstates as the ground state. Thin dotted arrows represent the
action of d̂ that couples all the non-d̂-symmetric eigenstates into boson-fermion pairs.

3.3.8. Thermodynamic Equilibrium and Stochastic Poincaré–Bendixson Theorem

In Section 3.3.6 above, it was argued that each de Rahm cohomology class must provide
one supersymmetric eigenstate. Whether this is true is not important for further discussion. What is
important is the existence of the supersymmetric state of thermodynamic equilibrium (TE), i.e., the
steady-state (zero-eigenvalue) TPD: ψTE ∈ Ω(D) (in DS theory the TE state is known as the invariant
measure). Its presence can be established through the physical version of the completeness argument.
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Indeed, all the non-d̂-symmetric eigenstates from ΩD(X) are d̂-exact, i.e., they are of Type (134). This
means that the integral of all such eigenstates over X is zero:

∫
X d̂ϑ = 0. On the other hand, a

wavefunction from ΩD(X) has the meaning of the TPD. The integral of a meaningful TPD over X must
not vanish. This suggests that at least one d̂-symmetric eigenstate from ΩD(X) must exist for physical
models. It can also be shown that the bra of the TE state is a constant function: ψ̄TE = const ∈ Ω0(X).

It is also an important piece of understanding that the TE state is always the “ground state” for ΩD.
In other words, among all the eigenstates from ΩD, it has the smallest real part of its eigenvalue, which
is zero, of course. Indeed, imagine that this is not true and that there exists an eigenstate from ΩD(X)

such that its eigenvalue is real and negative. As mentioned in the previous paragraph, the integral of
the ket of such a non-d̂-symmetric eigenstate over X vanishes. Thus, the ket of this eigenstate must be
negative somewhere on X. One can now take a random TPD and evolve it in time sufficiently long.
This will eventually lead to the situation whereby the TPD will become negative somewhere on X due
to the dominant contribution from this presumably existing non-d̂-symmetric eigenstate. The negative
TPD is not physical. Thus, it can be concluded that, for physical models, this situation is not realizable,
and there are no eigenstates in ΩD with real negative eigenvalues. In a similar manner, one can rule
out the possibility that there is a pair of Ruelle–Pollicott resonances in ΩD with a negative real part of
their eigenvalues. Thus, for physical models, the TE state is the “ground state” in ΩD.

The same reasoning applies to the SEO (106) of the time-reversed SDE (109). Combined with
the fact that specĤ(0) = specĤ(D)

T , which follows from Equation (122), this observation suggests that
Ĥ(0) also never breaks the supersymmetry, i.e., the supersymmetric zero-eigenvalue eigenstate is the
ground state in Ω0. The ket of this ground state of Ω0 is a constant function on X.

This brings the discussion to the Poincaré–Bendixson theorem stating that smooth deterministic
flows can be chaotic only in three-plus dimensions (see, e.g., [97]). The above analysis of the SEO
spectra seemingly leads to the stochastic version of this theorem. Indeed, as long as Ĥ(D) and Ĥ(0) do
not break the topological supersymmetry as discussed in the two previous paragraphs, the overall
supersymmetry cannot be spontaneously broken unless the dimensionality of the phase space is three
or higher. This can be straightforwardly deduced from Figure 5. Clearly, if the dimensionality of the
phase space is less than three, at least one eigenstate of a pair of the non-supersymmetric eigenstates
(the degrees of which differ by one) with a negative real part of their eigenvalue must be either in ΩD

or Ω0, which contradicts the above properties of the spectra of Ĥ(D) and Ĥ(0).

3.3.9. Realizable Spectra

The properties of the SEO discussed previously limit its possible spectra to only the three types
given in Figure 5. A natural question that may arise at this point is whether there exist other general
limitations on the possible forms of the SEO spectra. For example, the spectra of the type in Figure 5c
do appear somewhat suspicious because the pair of the Ruelle–Pollicott resonances are two equally
good candidates for the title of the ground state. Furthermore, in DS theory, there are theorems stating
that, for a certain class of models that mimic chaotic behavior, namely, the so-called expanding models,
the eigenvalues of the ground states must be real [79].

There are no other limitations. To convince oneself, one needs at least one example for each of the
two types of SEO spectra with spontaneously broken supersymmetry (Figure 5b,c). These examples
must not necessarily be analytical. Well-established numerical examples are sufficient. Such examples
exist in the theory of the magnetohydrodynamical phenomenon of kinetic dynamo (KD), as was very
recently found in [98] and discussed briefly in Appendix A.3. Thus, both types of the supersymmetry
breaking spectra in Figure 5 are realizable.
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3.4. Witten Index

One of the fundamental partition-function-like objects is the ”sharp trace” of the finite-time SEO
known in supersymmetric quantum theory as the Witten index:

Wtt′ = Tr(−1)k̂M̂tt′ = Tr(−1)k̂e−Ĥ(t−t′) = ∑n(−1)kn e−En(t−t′). (144)

It was previously established that all the eigenstates with non-zero eigenvalues are
non-d̂-symmetric. They come in pairs of even and odd degrees. Thus, their contributions cancel
out from the Witten index. Only d̂-symmetric eigenstates with zero eigenvalue contribute to the Witten
index, which is thus independent of the duration of the time evolution:

Wtt′ ≡W = ∑D
k=0(−1)kbk, (145)

where bk is the number of d̂-symmetric states of degree k. If one believes that each de Rahm
cohomology class provides one d̂-symmetric state, then bk are the Betti numbers, and W equals
the Euler characteristic of X, Eu(X).

The next goal is to discuss the physical meaning of Equations (144) and (155) and provide
an alternative proof of W = Eu(X) by identifying it with the stochastic Lefschetz index. This can be
performed using the fermionic variables in Section 2.4. The pullback in Equation (27) can be given as

M∗t′tψ(xχ) =
∫

dDx′dDχ′M∗t′t(xχ, x′χ′)ψ(x′χ′), (146)

M∗t′t(xχ, x′χ′) = δD(x′ −Mt′t(x))δD(χ′ − TMt′t(x)χ′), (147)

where the bosonic and fermionic δ-functions substitute the arguments x′ and χ′ by Mt′t(x) and
TMt′t(x)χ, respectively, with TMtt′(x) being the tangent map in Equation (16).

Following stochastic averaging, one arrives at the finite-time SEO in the following representation:

M̂tt′(xχ, x′χ′) = 〈M∗t′t(xχ, x′χ′)〉Ns. (148)

The Witten index in Equation (144) takes the form of the trace of the finite-time SEO with periodic
boundary conditions for both the commuting and anticommuting variables:

W =
∫

dDxdDχM̂tt′(xχ, xχ) =

〈
∑

x=Mt′ t(x)

det(1̂TX − TMt′t(x))
|det(1̂TX − TMt′t(x))|

〉
Ns

= ∑D
k=0(−1)k

〈
∑

x=Mt′ t(x)

mk(x)
|det(1̂TX − TMt′t(x))|

〉
Ns

, (149)

where the characteristic polynomial formula det(1̂ + λTMt′t(x)) = ∑D
k=0 λkmk(x) has been

utilized, with

mk(x) = ∑
i1<i2<...<ik

det


TMt′t(x)i1

i1
. . . TMt′t(x)i1

ik
...

. . .
...

TMt′t(x)ik
i1

. . . TMt′t(x)ik
ik

 . (150)

The denominator in Equation (149) originates from the integration over the bosonic variables,
whereas mk can be viewed as a fermionic trace over Ωk(X). Indeed, the basis of the differentials
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in Ωk(X), which the fermionic variables represent, is given by the Ck
D ordered combinations of the

differentials: dxi1 ∧ ...∧ dxik , i1 < ... < ik. Thus, the trace of the fermionic variables over Ωk(X) is

Tr f erm
Ωk(X)

M∗t′t = ∑
i1<...<ik

ı̂ik ...ı̂i1 d(Mt′t(x))i1 ∧ ...∧ d(Mt′t(x))ik

= ∑
i1<...<ik

∂

∂χik
...

∂

∂χi1
TMt′t(x)i1

ĩ1
χĩ1 ...∧ TMt′t(x)ik

ĩk
χĩk = mk(x), (151)

where d(Mtt′(x)) is defined in Equation (15). One arrives now at

W = ∑D
k=0(−1)kTrΩk(X)〈M

∗
t′t〉Ns, (152)

which is yet another version of Equation (144).
The Witten index in Equation (149) can be given as

W = 〈IL〉Ns , (153a)

where

IL = ∑
x=Mtt′ (x)

sign det(1̂TX − TMt′t(x)) (153b)

is known as the Lefschetz index of the map Mt′t. The Lefschetz–Hopf theorem states that, under some
general conditions,

IL = ∑D
k=0(−1)DTrHk(X)M∗t′t, (154)

where the trace is over the de Rahm cohomology Hk(X). In the limit t′ → t, when Mtt′ → IdX, the
Lefschetz index reduces to the signed sum of the Betti numbers, i.e., to the Euler characteristics of X.
On the other hand, it was previously established that W is independent of t. This leads to the conclusion
that the Witten index equals the Euler characteristic of X for any duration of temporal evolution.

The topological character of W can be qualitatively understood in the following manner
(see Figure 6). For each noise configuration, there may exist many periodic solutions of the SDE,
i.e., fixed points of Mt′t. As one gradually varies the noise configuration, periodic solutions appear
and disappear in pairs with the positive and negative determinants of the matrix 1̂TX − TMt′t. The
constant IL, however, remains the same. Up to this constant, W represents the (normalized) partition
function of the stochastic noise.

{ ξ(t )}

x , { x ( t ) }

Figure 6. Schematic representation of the topological character of the Witten index. The vertical axis
represents noise configurations. The horizontal axis represents the phase space X for the Lefschetz
index interpretation of the Witten index in Section 2.4 or the space of all the closed paths in X for the
Mathai–Quillen interpretation in Section 4.1. As one gradually varies the noise configuration, the fixed
points of the SDE-defined diffeomorphism appear and disappear in pairs with positive (filled dots)
and negative (hollow dots) determinants. As a result, the sum of the signs of the determinants is
independent of the noise configuration.



Entropy 2016, 18, 108 32 of 66

The interpretation of the Witten index as the partition function of the noise is important for the
following reason. The noise partition function is a very fundamental object of a stochastic model, and
it must certainly have its representative in the theory. Clearly, this representative exists only if one
views the differential forms of all degrees as the Hilbert space and not simply the TPD (top differential
forms), as in the conventional approach to SDEs. Without viewing the differential forms of all degrees
as the rightful wavefunctions of the model, the partition function of the noise would not have its
representative in the theory, and such a situation is clearly somewhat suspicious because, as previously
mentioned, the partition function of the noise is one of the fundamental objects of the model, i.e., the
object that appears at the level of the very formulation of stochastic dynamics.

3.5. Dynamical Partition Function

Yet another fundamental object is the dynamical partition function (DPF) and/or the ”counting
trace’ of the finite-time SEO:

Ztt′ = TrM̂tt′ = Tre−Ĥ(t−t′) = ∑n e−En(t′−t). (155)

By analogy with Equation (149), the DPF is the trace of the finite-time SEO with
periodic/anti-periodic boundary conditions for the bosonic/fermionic variables:

Ztt′ =
∫

dDxdDχM̂tt′(x(−χ), xχ) =

〈
∑

x=Mt′ t(x)

det(1̂TX + TMt′t(x))
|det(1̂TX − TMt′t(x))|

〉
Ns

= ∑D
k=0

〈
∑

x=Mt′ t(x)

mk(x)
|det(1̂TX − TMt′t(x))|

〉
Ns

= Tr〈M∗t′t〉Ns, (156)

where the m are defined in Equation (150).
The physical meaning of the DPF is observed in the limit of the infinitely long temporal

evolution. Consider models in which the absolute values of the eigenvalues of the tangent map
Spec(TMt′t) = (µ1(t, t′), ..., µD(t, t′)), in the long-time limit t − t′ → ∞, are such that |µi(t, t′)| ≈
eλi(t′−t), with λ being the stochastic versions of the (global) Lyapunov exponents. The class of models
that satisfy this condition must certainly exist in the deterministic limit as follows from the classical
DS theory.

In the assumption that none of the λ vanish, one has, in the limit of t− t′ → ∞,

Ztt′ =

〈
∑

x=Mt′ t(x)

det(1̂TX + TMt′t(x))
|det(1̂TX − TMt′t(x))|

〉
Ns

=

〈
∑

x=Mt′ t(x)

∏D
i=1(1 + µi(t, t′))

|∏D
i=1(1− µi(t, t′))|

〉
Ns

≈
〈

∑
x=Mt′ t(x)

∏i,λi<0 µi(t, t′)
|∏i,λi<0 µi(t, t′)|

〉
Ns

≤
〈

∑
x=Mt′ t(x)

|∏i,λi<0 µi(t, t′)|
|∏i,λi<0 µi(t, t′)|

〉
Ns

=

〈
∑

x=Mt′ t(x)
1

〉
Ns

= 〈# of fixed points of Mt′t〉Ns .

In other words, in this class of models, the DPF grows slower than the stochastically averaged
number of fixed points of the SDE-induced diffeomorphisms or, equivalently, of the number of periodic
solutions of the SDE.
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At this point, it must be stressed that, in this and previous subsections, the summation over the
fixed points of the SDE-defined diffeomorphisms (see, e.g., Equation (149)) has been used as if these
fixed points were isolated in X. This is not true in general. The fixed points of the diffeomorphisms
may appear in submanifolds of X, with the Morse–Bott flow vector fields being one example of this
situation. How to count the fixed points in this general situation using the standard methodology of
DS theory used in this subsection is not clear. This problem, however, does not exist in the operator
representation of the theory considered previously as well as in its path integral representation in the
next section.

It is also important to discuss the fundamental difference between the dynamical partition function
of the STS and the thermodynamic partition function in statistical (quantum) physics. The latter is
defined as Tre−βĤq , where Ĥq is a Hermitian Hamiltonian of a quantum model and β is the inverse
temperature. Equation (155) has a very similar appearance. Furthermore, in the literature on, e.g.,
N = 2 supersymmetric quantum mechanics, it is often said Equation (155) is the result of the Wick
rotation of the “real” time of evolution, i.e., t→ i× t ∼ β. This is not so from the point of view of the
STS. The time t in Equation (155) is the original time of the stochastic evolution and not that of the
Schrödinger evolution. This explains the absence of the imaginary unity in the exponent. The direct
quantum analogue of Equation (155) is the generating functional Tre−itĤq .

3.6. Topological Supersymmetry Breaking, Chaos, and Dynamical Entropy

In models with the type of SEO spectra given in Figure 5b, the DPF grows exponentially in the
long-time limit:

Zt0|t→∞ ≈ 2e|ReEg |t, (157)

where the factor of 2 comes from the d̂-degeneracy of the non-d̂-symmetric ground state and Eg is the
ground state’s eigenvalue, i.e., the eigenvalue with the smallest and negative real part. For the type of
spectra in Figure 5c, one has

Zt0|t→∞ ≈ 4 cos(ImEgt)e|ReEg |t, (158)

where the pair of the Ruelle–Pollicott resonances with the least real part of their eigenvalues provides
the dominant contribution in the long time limit.

It can be recalled that, in deterministic chaotic DSs, the number of periodic solutions grows
exponentially with time in the long time limit. The rate of this exponential growth is related to the
concept of dynamical entropy (see, e.g., [97]). This exponential growth is provided by the infinite
number of unstable periodic orbits with arbitrary large periods, which constitute strange or fractal
attractors [77]. This exponential growth is basically the reason why chaotic dynamics is sometimes
identified as complex dynamics. This term is borrowed from information theory. There, a problem
is identified as complex if the number of elementary operations needed to obtain its solution grows
exponentially with the ”size” of the problem.

As demonstrated in Section 3.5, for a wide class of models, the number of periodic solutions grows
faster than the DPF. For spectra given in Figure 5b,c, the stochastically averaged number of periodic
solution grows at least exponentially and the supersymmetry is spontaneously broken because the
ground states are non-d̂-symmetric as they have non-zero eigenvalues. Thus, one concludes that the
stochastic generalization of the concept of deterministic chaos is the spontaneous breakdown of the
topological supersymmetry. Even more convincing evidence that this is indeed so will be provided in
Section 4.7, where it will be shown that the spontaneous breakdown of topological supersymmetry
must always be accompanied by the emergence of the long-term memory of perturbations that must
be associated with the famous butterfly effect.

In DS theory, there exists the so-called Shub conjecture (see, e.g., [99] and the references therein),
stating that, for a sufficiently smooth map M : X → X, the spectral radius of M∗ : H∗(X) → H∗(X),
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where H∗ denotes the homology group, provides a lower bound for the topological entropy, i.e., the
central measure of chaos (see, e.g., [100,101] and the references therein). The spectral radius of the
finite-time stochastic evolution operator 〈M∗0t〉Ns = e−tĤ is (up to a sign) the real part of its ground-state
eigenvalue, which can therefore be recognized as the stochastic generalization of the lower bound for
the topological entropy in the Shub conjecture. Thus, if the real part of the ground-state eigenvalue is
negative, the topological entropy is positive, and the model must be identified as chaotic.

As a conclusion of this section, it can be stressed that the stochastic chaos is the opposite or rather
complementary concept of that of the thermodynamic equilibrium, i.e., to the situation with unbroken
supersymmetry when the supersymmetric state of the thermodynamic equilibrium discussed in
Section 3.3.8 is among the ground states of the model, as in Figure 5a. Indeed, the supersymmetry can
be spontaneously broken or unbroken but not both at the same time.

4. Path Integral Representation

Path integrals are a powerful analytical tool that can greatly simplify various tasks that otherwise
would be tedious. They represent a component of the mathematical foundation of quantum theory and
have also been used in the studies of stochastic dynamics (see, e.g., [102] and the references therein).
In the case of the STS, the path integral representation of the theory addressed in this section (see
Figure 7) allows particularly for the generalization of the theory to models with noise of any form, not
simply Gaussian white noise.

B ( t 1 ) , χ( t 1 )B ( t 2 ) , χ( t 2 )B ( t N ) , χ( t N )

t = t N
t ’ = t 0t N - 1 t 2

∆t
t i m e

. . .ξ( t N ) ξ( t 2 ) ξ( t 1 )

t 1

x ( t ) , c ( t ) x ( t N - 1 ) , χ( t N - 1 ) x ( t 2 ) , χ( t 2 ) x ( t 1 ) , χ( t 1 ) x ( t ’ ) , c ( t ’ )
Figure 7. Path integral representation of the finite-time stochastic evolution operator (SEO). Each
time slice tn hosts a boson-fermion pair of variables x(tn) ∈ X and χ(tn) ∈ TXx(tn). In between the
time slices, there are pairs of Lagrange multipliers and fermionic momenta from the cotangent space
B(tn), χ̄(tn) ∈ TX∗x(tn)

or TX∗x(tn−1)
(in the continuous time limit, this choice makes no difference), as

well as the noise variables ξ(tn). The time flows from right to left, as explained at the end of Section 2.3.1.
The finite-time SEO is obtained by integrating out all the variables except x(t), χ(t) and x(t′), χ(t′).
Further integration over x(t), χ(t) with the periodic boundary conditions x(t) = x(t′), χ(t) = χ(t′)
results in the Witten index W, whereas the integration with the anti-periodic boundary conditions for
the fermionic variables x(t) = x(t′), χ(t) = −χ(t′) results in the dynamical partition function Z.

4.1. Finite-Time Stochastic Evolution Operator

In the discrete-time picture introduced in Section 3.1, the domain of the temporal evolution is
split into N � 1 segments with boundaries at tn = t′ + n∆t, ∆t = (t− t′)/N, tN ≡ t and t0 ≡ t′. The
finite-time SEO can be given as the stochastically averaged composition of pullbacks at each time
segment:

M̂tt′ = 〈M∗t′t〉Ns = 〈M∗tN−1tN
M∗tN−2tN−1

. . . M∗t0t1
〉Ns, (159)

where the composition law for the pullbacks from Equation (22) has been used multiple times.
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At each time moment, one can now introduce a copy of the phase space and a pair of bosonic and
fermionic variables x(tn), χ(tn) so that Equation (159) can be given as

M̂tt′(x(t)χ(t), x(t′)χ(t′)) =
〈

M∗tN−1t(x(t)χ(t), x(tN−1)χ(tN−1))×

×
N−1

∏
n=1

dDx(tn)dDχ(tn)M∗tn−1tn(x(tn)χ(tn), x(tn−1)χ(tn−1))

〉
Ns

, (160)

where the pullbacks on the R.H.S. are combinations of the bosonic and fermionic δ-functions, as in
Equation (147).

To exponentiate the bosonic δ-function, one introduces an additional bosonic variable called the
Lagrange multiplier or bosonic momentum from the cotangent space of X B(tn) ∈ TX∗x(tn)

:

δD(x(tn−1)−Mtn−1tn(x(tn))) =
∫ dDB(tn)

(2π)D e−iBi(tn)(x(tn−1)−Mtn−1tn (x(tn)))i
.

In a similar manner, one can exponentiate the fermionic δ-function using Identity (66) and
introducing the fermionic momentum from the cotangent space χ̄ ∈ TX∗x :

δD(χ(tn−1)− M̂tn−1tn χ(tn)) =
∫

dD(iχ̄(tn))e
iχ̄i(tn)(χ(tn−1)−M̂tn−1tn (x(tn))χ(tn))i

.

Here, the imaginary unity is needed to bring the model to the form conventional in the literature
on cohomological field theories.

In the continuous-time limit, i.e., N → ∞, ∆t→ 0, one has

Mtn−1tn(x(tn))
i ≈ xi(tn)− ∆tF i(x(tn)), (162a)

(TMtn−1tn(x(tn))χ(tn))
i ≈ χi(tn)− ∆tTF i

j (x(tn))χ
j(tn), (162b)

where TF (x) is introduced in Equation (30). Combining the above representation of the δ-functions
and Equation (162), one arrives at

M̂tt′(x(t)χ(t), x(t′)χ(t′)) = 〈
∫∫

D′ΦeS̃(x(t)χ(t)...x(t′)χ(t′))〉Ns. (163)

Here,

S̃(Φ) = lim
N→∞

i ∑N
n=1 ∆t

(
Bi(tn)

(
x(tn)− x(tn−1)

∆t
−F (x(tn))

)i

−χ̄i(tn)

(
χ(tn)− χ(tn−1)

∆t
− TF (x(tn))χ(tn)

)i
)

,

= i
∫ t

t′
dτ
(

Bi(τ)(ẋ(τ)−F (x(τ)))i − χ̄i(τ)(χ̇(τ)− TF (x(τ))χ(τ))i
)

(164)

is the action of the model, Φ = (x, χ, B, χ̄) denotes the collection of the original and additional fields,
and the dots in Equation (163) denote all the intermediate variables over which the path integration
occurs with the differential

D′Φ = lim
N→∞

dDB(tN)

(2π)D d(iχ̄D(tN))∏N−1
n=1 d4DΦ(tn), (165)
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where

d4DΦ(tn) = dDx(tn)dDχ(tn)
dDB(tn)

(2π)D dD(iχ̄(tn)). (166)

The action can be expressed in the so-called Q-exact form

S̃(Φ) = {Q, Ψ̃(Φ)}, (167)

where

Ψ̃(Φ) = lim
N→∞

∑N
n=1 ∆t

(
iχ̄i(tn)

(
x(tn)− x(tn−1)

∆t
−F (x(tn))

)i
)

,

= i
∫ t

t′
dτχ̄i(τ)(ẋ(τ)−F (x(τ)))i (168)

is known as the gauge fermion and the curly brackets denote the operator of the
topological supersymmetry:

{Q, Ψ̃} = lim
N→∞

(
∑N

n=0 χi(tn)
∂

∂xi(tn)
+ ∑N

n=1 Bi(tn)
∂

∂χ̄i(tn)

)
Ψ,

=
∫ t

t′
dτ

(
χi(τ)

δ

δxi(τ)
+ Bi(τ)

δ

δχ̄i(τ)

)
Ψ. (169)

This operator is the path integral version of the exterior derivative. In particular, it has
similar properties: it is nilpotent, i.e., {Q, {Q, X(Φ)}} = 0 for any X(Φ), and it is a bi-graded
differentiation, i.e.,

{Q, XY} = {Q, X}Y + (−1)deg(X)X{Q, Y}, (170)

where X and Y are some functionals of Φ, and deg(X) is the degree of X defined as the difference
between the numbers of χs and χ̄s in X. Equation (170) is the path integral version of Equation (42).

To perform the stochastic averaging, one can first separate the noise term in the action as

S̃(Φ) = S0(Φ) +
∫ t

t′
dτya(τ)ξ

a(τ), S0(Φ) = {Q, Ψ0(Φ)}, (171)

with

Ψ0(Φ) = i
∫ t

t′
dτχ̄i(τ)(ẋ(τ)− F(x(τ)))i, (172)

and

ya(τ) = {Q,−i(2Θ)1/2χ̄i(τ)ei
a(x(τ))}. (173)

As a next step, one can integrate out the noise field, which is no longer assumed to be Gaussian
white. The noise, however, remains assumed physical so that the path integration over all the noise
configurations remains well defined.

Integrating out the noise transforms Equation (163) into the following form:

M̂tt′ =
∫∫

D′ΦeS(Φ), (174a)
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where the arguments of the finite-time SEO are dropped for brevity and the new action

S(Φ) = log〈eS̃(Φ)〉Ns = S0(Φ) + log〈e
∫ t

t′ dτya(τ)ξa(τ)〉Ns

= S0(Φ) + ∑∞
k=1

1
k!

∫ ( k

∏
i=1

dτiyai (τi)

)
ca1...ak
(k) (τ1...τk),

with c(k) being the irreducible correlators of the noise. The zeroth-order term in the Taylor series
vanishes because the partition function of the noise is assumed normalized, i.e., for y = 0, one has
log〈e0〉Ns = log1 = 0.

Now, using the property of the nilpotency of Q, the differentiation rule in Equation (170) and the
fact that all y in Equation (173) are Q-exact, one arrives at

S(Φ) = {Q, Ψ(Φ)}, (174b)

where the new gauge fermion

Ψ(Φ) = ∑∞
k=0 Ψk(Φ), (174c)

with Ψ0 defined in Equation (172) and

Ψk(Φ) = −i
∞

∑
k=1

(2Θ)
1
2

k!

∫
(

k

∏
i=1

dτi)χ̄i(τ1)ei
a1
(x(τ1))ya2(τ2)...yak (τk)

×ca1...ak
(k) (τ1...τk) (174d)

for k ≥ 1. In other words, even after stochastic averaging, the action is Q-exact.

4.2. Interpretations of Stochastic Quantization

AQ-exact action as in Equation (174) is a definitive feature of cohomological field theories [44–48].
Their standard path integral representations include periodic boundary conditions (PBC) for the
fermionic variables. This is related to the fact that the PBC are consistent with the Q-operator:

{Q, Ψ(Φ)}PBC ≡ {Q, Ψ(Φ)}|x(t)=x(t′),χ(t)=χ(t′) = {Q, Ψ(Φ)PBC}. (175)

This equality and Equations (149) and (174) lead to

W =
∫∫

PBC
DΦe{Q,Ψ(Φ)} =

∫∫
DΦe{Q,Ψ(Φ)PBC}, (176)

where the path integration is over

DΦ = dDx(t)dDχ(t)D′Φ, (177)

with D′Φ defined in Equation (165).
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The integrand in Equation (176), i.e., e{Q,Ψ}, belongs to a class of mathematical objects known
as Mathai–Quillen forms. Its integral is of a topological character that can be clarified by rewriting
Equation (176) as

W = 〈
∫∫

PBC
DΦeS̃(Φ)〉Ns

=

〈∫∫
closed paths

Dx

(
∏

τ

δ(ẋ(τ)−F (x(τ)))

)
Det(∂τ − TF (x(τ)))

〉
Ns

= 〈 ∑
closed solutions of SDE

sign Det(∂τ − TF (x(τ)))〉Ns. (178)

Here, the functional δ-function in the second line, which emerges from integrating out the field B,
limits the path integration only to the periodic solutions of the SDE with a fixed noise configuration.
The functional determinant of the infinite-dimensional matrix of the functional derivatives of the SDE
appears from integrating out the fermionic fields χ, χ̄. The third line is the path integral analogue of
the Lefschetz index in Equation (153).

Equation (178) has the meaning of the infinite-dimensional generalization of the Poincaré–Hopf
theorem. The later states that, under certain and general conditions and for a vector field with isolated
critical points, the sum of the indices of the critical points, i.e., the signs of the determinant of the
matrix of the derivatives of the vector field, equals the Euler characteristic of the manifold. In the case
of Equation (178), the objects in the Poincaré–Hopf theorem are recognized as follows. The manifold
is the space of all the closed paths (periodic boundary conditions). The vector field is the SDE with
a fixed noise configuration. The critical points are the periodic solutions of this SDE.

The constant resulting from the summation in the last line of Equation (178) is independent of the
configuration of the noise. In other words, as one varies the noise configuration, the periodic solutions
of the SDE appear/disappear in pairs with the opposite signs of their determinants. This situation can
be illustrated graphically similarly to the interpretation of W in the previous section as the stochastically
averaged Lefschetz index (see Figure 5).

Equation (178) is the functional of the Parisi–Sourlas stochastic quantization [31] generalized to
SDEs of any form. One way to look at the stochastic quantization is as at the gauge-fixing procedure.
In other words, one starts with an empty theory, or rather with a theory with the trivial action
Scl = 0, and then “fixes the gauge” by adding a Q-exact piece to it. This reduces the integration
over all possible closed paths only to the closed solutions of the SDE. From this point of view, the
fermionic fields of the model must be recognized as the Fadeev–Popov ghosts, the Q-operator as the
Becchi–Rouet–Stora–Tyutin (BRST) (super-)symmetry, the closed solutions of the SDE that contribute to
Equation (178) as the Gribov copies, and Ψ as the gauge fermion, i.e., the term that has been introduced
previously. Note also that, while the topological symmetry is equivalent to the BRST symmetry in
stochastic quantization, this is not so in cohomological gauge field theories where Q is said to be a
BRST-like symmetry.

It is worth stressing that it is a typical mistake in the literature to treat the functional of the
Parisi–Sourlas stochastic quantization (178), i.e., the Witten index, as the generating functional, with
the help of which various expectation values and correlators can be calculated. The actual generating
functional and/or the DPF corresponds to the anti-periodic boundary conditions (APBC) for the
fermionic fields, as discussed in Section 3.5. These boundary conditions are not consistent with
the Q-operator

{Q, Ψ(Φ)}APBC ≡ {Q, Ψ(Φ)}|x(t)=x(t′),χ(t)=−χ(t′) 6= {Q, Ψ(Φ)APBC}.

As a result, the topological character is lost for the DPF

Zt′t =
∫∫

APBC
DΦe{Q,Ψ(Φ)} 6=

∫∫
DΦe{Q,Ψ(Φ)APBC}. (179)



Entropy 2016, 18, 108 39 of 66

Note that this does not mean that the model described by the DPF no longer has the topological
supersymmetry. The topological supersymmetry is not a property of the DPF but rather of the most
fundamental object in the theory, the finite-time SEO. Equation (179) simply means that this particular
object, i.e., the DPF, that we construct from the finite-time SEO is not of topological character.

The fundamental difference between the DPF and the Witten index can be best revealed in the
limit of the infinitely long temporal evolution. There (see Section 4.5 below), only the ground states
contribute to the DPF, whereas only the d̂-symmetric states contribute to W. Thus, the difference
between W and Z is particularly pronounced under the conditions of the spontaneously broken
topological supersymmetry when the ground states of the model are non-d̂-symmetric.

4.3. Generalization to Spatially Extended Models

The class of models under consideration can be generalized further to spatially extended models.
These models are defined by the following stochastic (partial) (integro-)differential equations:

ẋ(rt) = F(x, rt) + (2Θ)1/2e(x, rt)ξ(rt) = F (x, ξ, rt), (180)

where r is the spatial coordinate of the “base-space”. In the general case, the flow vector field and
the veilbeins are temporarily and spatially non-local functionals of x(rt) that may also have explicit
dependences on the base-space coordinates rt. The relation between the spatially extended models
defined by Equation (180) and the previously discussed models with time being the only base-space
coordinate is the same as the relation between quantum nonlinear sigma models (or field theories) and
quantum mechanics. In other words, Equation (180) is the infinite-dimensional version of Equation (1).
The phase space now is the infinite-dimensional space of all possible configurations x(r).

The stochastic quantization procedure of Equation (180) is along the same lines, the action is
Q-exact with the topological supersymmetry operator

Q =
∫

drdτ

(
χi(rτ)

δ

δxi(rτ)
+ Bi(rτ)

δ

δχ̄i(rτ)

)
, (181)

and the gauge fermion before integrating away the noise variables is

Ψ̃(Φ) = i
∫

drdτχ̄i(rτ) (ẋ(rτ)−F (x, ξ, rτ))i . (182)

After integrating out the noise, one arrives at a model with a Q-exact action.

4.4. Weyl–Stratonovich Symmetrization and Martingale

The story of stochastic quantization would not be complete without a discussion on how the
path integral representation can be turned back into the operator representation. The exercise to be
conducted in this subsection will reveal a close relation between the Ito–Stratonovich dilemma (see
Appendix A.1 and the end of Section 3.1) and the Weyl symmetrization rule of quantum theory.

Models with Gaussian white noise are of interest herein. The gauge fermion can be acquired from
Equation (174d), and recalling that the only irreducible correlator of the Gaussian white noise is the
one given in Equation (5),

Ψ =
∫

dτ
(

iχ̄i(τ)ẋi(τ)− d̄(Φ(τ))
)

, (183)

where

d̄(Φ) = iχ̄iFi(x)−Θiχ̄iei
a(x){Q, iχ̄je

j
a(x)}

= iχ̄i

(
Fi(x)−Θei

a(x)
(

ej
a(x)(iBj) + ej

a′ l(x)χl(iχ̄j)
))

(184)



Entropy 2016, 18, 108 40 of 66

is the path integral version of Operator (124).
Accordingly, the action is

S = {Q, Ψ} =
∫

dτ
(

iBi(τ)ẋi(τ)− iχ̄i(τ)χ̇
i(τ)− H(Φ(τ))

)
, (185)

where

H(Φ) = {Q, d̄(Φ)}. (186)

This function is the stochastic analogue of the Hamilton function in the path integral representation
of quantum mechanics and can thus be called the stochastic Hamilton function (SHF). The SHF (186) is
the path integral version of the SEO (81). In particular, Equations (43), (81) and (186) reveal that Q
is the path integral version of the commutator with the exterior derivative, whereas iχ̄i is that of the
interior multiplication and/or the fermionic momentum operator in Equation (60).

Consider now infinitesimal temporal evolution between tn−1 and tn = tn−1 + ∆t. In the
continuous-time limit ∆t → 0, the path integral representation of the infinitesimal stochastic
evolution is

ψ(xχtn) =
∫ dDB

(2π)D dDiχ̄dDydD ϕeiBi(x−y)i−iχ̄i(χ−ϕ)i−∆tH(Bχ̄xαχα)

×ψ(yϕt). (187)

Here, for the sake of brevity, the notations are different from those in Figure 7. The relation with the
notations in Figure 7 is as follows: x, χ ≡ x(tn), χ(tn), B, χ̄ ≡ B(tn), χ̄(tn) and y, ϕ ≡ x(tn−1), χ(tn−1).
Other notations introduced in Equation (187) are xα = (1− α)y + αx and χα = (1− α)ϕ + αχ, with
the parameter α being from Appendix A.1 and Figure 4. This parameter determines at which point
of the elementary evolution the function H is evaluated: α = 0 and α = 1/2 correspond to the Ito
and Stratonovich choices of the very beginning and the mid-point, respectively. The reason why
the different possible choices of α have not been discussed before in the context of the path integral
representation of the STS is because, in obtaining the path integral representation, the choice of α

makes no difference. It is only when going from the path integral representation back to the operator
representation that different choices of α lead to different SEOs, as will be observed below.

Using Equation (187), the infinitesimal evolution of the wavefunction can be given as

∂tψ(xχt) = lim
∆t→0

(∆t)−1(ψ(xχt1)− ψ(xχt)). (188)

The Taylor expansion of the exponent in the R.H.S. of Equation (187) in ∆t results in

∂tψ(xχt) = −
∫ dDB

(2π)D dD(iχ̄)dDydD ϕeiBi(x−y)i−iχ̄i(χ−ϕ)i

×H(Bχ̄xαχα)ψ(yϕt). (189)

This representation of the stochastic evolution equation highlights the roles of the variables
involved: the first integration over y and ϕ transforms the wavefunction into the Fourier space, where
B and χ̄ are diagonal, whereas the consequent integration over B and χ̄ transforms the wavefunction
back into the real space where x and χ are diagonal. The straightforward conclusion from this
observation is that, in the real space, B and χ̄ are the operators of the bosonic and fermionic momenta

iB̂i = ∂/∂xi, i ˆ̄χi = ∂/∂χi. (190)

The sign in front of the bosonic momentum is unambiguous because this operator acts on the
ordinary commuting variables. In contrary, the sign in front of the fermionic momentum operator
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is ambiguous or rather can be established unambiguously only by a tedious exercise of carefully
tracking all the signs associated with the relative positions of the anticommuting variables and their
differentials. There is a simpler way, however, of accomplishing this task. One can demand that the
bi-graded commutator of the exterior derivative in the operator representation act in the same way as
the operator of the Q-differentiation in the path integral representation. In other words, because

{Q, (xi, χi, Bi, ˆ̄χi)} = (χi, 0, 0, Bi), (191)

which is just another version of Equation (169),

[d̂, (x̂i, χ̂i, B̂i, ˆ̄χi)] = (χ̂i, 0, 0, B̂i). (192)

It can be readily verified that the choice of sign in Equation (190) satisfies this requirement.
Another important observation from Equation (189) is related to the order of operators. Both the

variables x and y (and χ and ϕ) in the path integral representation correspond to the operator x̂ (and χ̂)
in the operator representation of the theory. The difference between, say, x and y is that y acts on the
wavefunction before the momentum operators B, whereas x acts after B. In particular, if H included
a term Bix

j
α, this term in the operator representation would become

Bix
j
α

B→B̂−→ (1− α)B̂i x̂j + αx̂j B̂i. (193a)

The same can be said about fermionic operators, with the only correction being that the
symmetrization must be bi-graded, i.e.,

χ̄iχ
j
α

χ̄→ ˆ̄χ−→ (1− α) ˆ̄χiχ̂
j − αχ̂j ˆ̄χi. (193b)

This reveals that if, in the Ito case (α = 0), all the momentum operators must act after all the
position operators, in the Stratonovich case (α = 1/2), the operators must be symmetrized in the
bi-graded manner. This symmetrization is the well-known Weyl quantization rule in quantum theory.
There, it guarantees that any real Hamilton function in the path integral representation results in
a Hermitian Hamiltonian in the operator representation of the theory. If one could now establish that
the Weyl–Stratonovich bi-graded symmetrization of the stochastic Hamilton Function (186) results in
the SEO in Equation (81), it would mean that the Weyl–Stratonovich quantization is a correct choice
because Equation (81) was obtained without approximations and outside the path integral formulation
of the theory (see Section 3.1).

This is indeed true, as will be demonstrated next. To facilitate the procedure of establishing
the expression for the SEO, one can utilize the “commutativity” of the operation of the bi-graded
symmetrization and the substitution of the momenta fields by their corresponding operators:[

H(Φ)|Bχ̄→B̂ ˆ̄χ

]
sym

= [H(Φ)]sym

∣∣∣
Bχ̄→B̂ ˆ̄χ

, (194)

where the bi-graded symmetrization of H(Φ) follows the same rules described above, with the only
difference being that the fields Φ are not operators; rather, they are c-numbers. Two other useful
observations are that

[{Q, X1X2...}]sym =
{
Q, [X1X2...]sym

}
, (195)

where X are some arbitrary functions of Φ, and

{Q, X}|Bχ̄→B̂ ˆ̄χ =
[
d̂, X|Bχ̄→B̂ ˆ̄χ

]
, (196)
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as follows from Equations (191) and (192). Using these properties and Equation (186), one obtains

Ĥ =
[

H(Φ)|Bχ̄→B̂ ˆ̄χ

]
sym

=
[
d̂, ˆ̄d
]

, (197)

where

ˆ̄d =
[

d̄(Φ)
∣∣
Bχ̄→B̂ ˆ̄χ

]
sym

, (198)

with d̄(Φ) given in Equation (184).
One can now proceed straightforwardly starting with the expression,

ˆ̄d =

[
∂

∂χi

(
Fi(x)−Θei

a(x)
(

ej
a(x)

∂

∂xj + ej
a′ l(x)χl ∂

∂χj

))]
sym

.

The symmetrization in the first term related to the flow vector field is trivial because all the
operators commute so that

ˆ̄d =
∂

∂χi Fi(x)−Θd̂∗, (199)

where

d̂∗ =
[

∂

∂χi ei
a(x)L̂ea

]
sym

=
1
2

(
∂

∂χi ei
a(x)L̂ea + L̂ea

∂

∂χi ei
a(x)

)
, (200)

with

L̂ea =

[
ej

a(x)
∂

∂xj + ej
a′ l(x)χl ∂

∂χj

]
sym

=
1
2

((
ej

a(x)
∂

∂xj +
∂

∂xj ej
a(x)

)
+ ej

a′ l(x)
(

χl ∂

∂χj −
∂

∂χj χl
))

= ej
a(x)

∂

∂xj + ej
a′ l(x)χl ∂

∂χj =

[
d̂, ei

a
∂

∂χi

]
(201)

being the Lie derivative along ea (see Equation (43)). As can be straightforwardly verified, L̂ea and
∂

∂χi ei
a(x) commute in Equation (200) so that

d̂∗ =
∂

∂χi ei
a(x)L̂ea . (202)

This operator is the stochastic analogue of the codifferential d̂†, through which the Hodge
Laplacian is defined as 4̂H = [d̂, d̂†]. In the stochastic quantization case, the diffusion Laplacian
is defined similarly as 4̂ = [d̂, d̂∗].

Using Equations (199) and (197), the Cartan Formula (43), and the exterior differentiation Rule (42),
one arrives at

Ĥ = L̂F −ΘL̂ea L̂ea , (203)

in agreement with Equation (81). This result shows that the Stratonovich approach to SDEs is equivalent
to the bi-graded Weyl symmetrization rule.

The Ito interpretation of SDEs (α = 0) in turn corresponds to what is known as the martingale
property. This property is often formalized by such formulas as 〈 f (y)(x− y)〉 = 0, where the averaging
is assumed over the noise variable ξn. From the point of view of the STS, expectation values such as the
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one above make no sense unless one specifies the bra and ket of the expectation value. Nevertheless, the
martingale property does find its realization in the STS through the unphysical rule for the operator
ordering that all the momenta operators are on the left of all the position operators, as seen from
Equation (193). In quantum mechanics, such an ordering rule will lead to a non-Hermitian Hamiltonian
in the general case.

Using this martingale operator ordering rule, one can now find the SEO for the Ito interpretation
of SDEs. Again, to facilitate the derivation, one notes that Equation (194) are also correct for the
martingale ordering. Thus, the Ito SEO is also d̂-exact, i.e.,

ĤIto = [d̂, ˆ̄dIto], (204)

and the Ito version of Operator (198) is

ˆ̄dIto =
[

d̄(Φ)
∣∣
Bχ̄→B̂ ˆ̄χ

]
mart

, (205)

with the subscript “mart” denoting the martingale ordering. One can now proceed straightforwardly
as follows:

ˆ̄dIto =

[
∂

∂χi

(
Fi(x)−Θei

a(x)
(

ej
a(x)

∂

∂xj + ej
a′ l(x)χl ∂

∂χj

))]
mart

=
∂

∂χi

(
Fi(x)−Θ

∂

∂xj ei
a(x)ej

a(x) + Θej
a′ l(x)

∂

∂χj χl
)

=
∂

∂χi

(
Fi(x)−Θ(ei

a(x))′ je
j
a(x)−Θei

a(x)
(

ej
a(x)

∂

∂xj + ej
a′ l(x)χl ∂

∂χj

))
=

∂

∂χi

(
Fi

0(x)−Θei
a(x)L̂ea

)
,

where F0 is the shifted flow vector field defined in Equation (91).
The previous equation and Equations (199) and (202) clearly show that the only difference between

the Weyl–Stratonovich SEO (197) and the Ito SEO (204) is the shifted flow vector field. This finding is
in accordance with the discussion in Section 3.2, which stated that different interpretations of SDEs can
be transformed between each other by a shift of F. The importance of this result is that it was obtained
for the entire SEO and not only for the FP operator acting on only top differential forms, as done in
Appendix A.1.

4.5. Generating Functional and Correlators

Various correlators and expectation values in the theory can be established through the
introduction of the generating functional

Ztt′(J) =
∫∫

APBC
DΦe{Q,Ψ}+

∫
dτ Jα(τ)Oα(Φ(τ)). (206)

Here, the periodic/anti-periodic boundary conditions for the bosonic/fermionic fields are
used, and Jα is a set of external “probing” fields coupled to the system via a set of operators Oα,
sometimes called observables. We now present a few examples of observables with the corresponding
probing fields:

J f (τ) f (x(τ)), JBi (τ)Bi(τ), Jχi (τ)χi(τ), Jχ̄i (τ)χ̄i(τ), ... (207)

where f (x) is a function on X. In models with linear phase spaces, an observable of the form Jxi xi, with
Jxi ∈ TX∗, can also be used. The generating Functional (206) can be thought of as the DPF perturbed
by probing fields. In particular, Ztt′(0) = Ztt′ .
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In practice, what one is interested in is the limit of the infinitely long evolution

Z(J) = lim
t±=±∞

Zt+t−(J). (208)

The limit here does not exist for interesting cases of the spontaneously broken supersymmetry
because the DPF grows exponentially in this limit (see Equation (157)). Taking this limit must always
be the very last operation after other manipulations are already performed. For example, the following
notation for the family of correlators

〈Oαk (tk)...Oα1(t1)〉 = Z(0)−1 δkZ(J)
δJα1(t1)...δJαk (tk)

∣∣∣∣∣
J=0

=

∫∫
APBC DΦ Oαk (tk)...Oα1(t1)e{Q,Ψ(Φ)}∫∫

DΦe{Q,Ψ(Φ)} (209)

must be understood as

〈Oαk (tk)...Oα1(t1)〉 = lim
t±=±∞

Zt+t−(0)
−1 δkZt+t−(J)

δJα1(t1)...δJαk (tk)

∣∣∣∣∣
J=0

. (210)

The next goal now is to pass to the operator representation of the theory. Again, models with the
Gaussian white noise will be considered.

Previously, the following relations were established for the DPF:

Ztt′(0) =
∫∫

APBC
e{Q,Ψ} = TrM̂tt′ = Tre−Ĥ(t−t′). (211)

Their analogue for the generating functional is

Ztt′(J) =
∫∫

APBC
DΦe{Q,Ψ}+

∫
dτ Jα(τ)Oα(Φ(τ)) = TrT e−

∫ t
t′ Ĥ(τ)dτ , (212)

where

Ĥ(τ) = Ĥ − Jα(τ)Ôα, (213)

T denotes chronological ordering, and Ôα ≡ [Oα(Φ̂)]sym, i.e., the operator version of O(Φ)

symmetrized in accordance with the Weyl–Sratonovich bi-graded symmetrization rule discussed in
the previous subsection. The chronological ordering in Equation (212) is needed because Ĥ(τ) and
different τ do not commute so that the order of operators is important. The chronologically ordered
exponent in Equation (212) can be given in the form of the formal Taylor series similar to Equation (35),

T e−
∫ t

t′ Ĥ(τ)dτ = 1̂Ω(X) −
∫ t

t′
dτ1Ĥ(τ1) +

∫ t

t′
dτ1

∫ τ1

t′
dτ2Ĥ(τ1)Ĥ(τ2) + ...

To establish the operator representation of Correlators (210), one first performs the chronological
ordering in the denominator of Equation (210):

δkZt+t−(J)
δJα1(t1)...δJαk (tk)

∣∣∣∣∣
J=0

=
∫∫

APBC
DΦ Oαk (tk)...Oα1(t1)e{Q,Ψ}

= (−1)p
∫∫

APBC
DΦ Oα′k (t′k)...O

α′1(t′1)e
{Q,Ψ},
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where t′k > t′k−1... > t′1 is the chronologically ordered permutation of t1...tk. Accordingly, α′1...α′k is
the same permutation of α1...αk, and (−1)P is the sign that may appear if this permutation is odd for
fermionic operators. Further,

= (−1)p
∫∫

APBC
DΦ Oα′k (t′k)...O

α′1(t′1)e
{Q,Ψ}

= (−1)pTrM̂t+t′k
Ôα′kM̂t′kt′k−1

...M̂t′2t′1
Ôα′1M̂t′1t−

= (−1)p ∑
n
〈ψn|e−(t

+−t′k)EnÔα′kM̂t′kt′k−1
...M̂t′2t′1

Ôα′1 e−(t
′
1−t−)En |ψn〉,

where 〈ψn|M̂t+t′k
= 〈ψn|e−(t

+−t′1)En and M̂t′1t− |ψn〉 = e−(t
′
1−t−)En |ψn〉 have been used.

The contribution from each eigenstate includes a factor e−(t
+−t−)En . In the limit of the infinitely

long temporal evolution t± → ±∞, only the contribution from the ”ground” states with the least
real part of their eigenvalue, i.e., ReEn = Γg = minnReEn, survive. All other eigenstates provide
exponentially vanishing contributions that can be neglected. Therefore,

= (−1)p ∑g〈ψg|e−(t
+−t′k)EgÔα′kM̂t′kt′k−1

...M̂t′2t′1
Ôα′1 e−(t

′
1−t−)Eg |ψg〉. (214)

For the spectra presented in Figure 5a,b, the eigenvalue of the ground states is unique, and the
situation is relatively simple. For example, the partition function takes the following form:

Zt+t−(0) = ∑g〈ψg|e−(t
+−t−)Eg |ψg〉 = Nge−(t

+−t−)Eg , (215)

where Ng is the number of the groundstates. When Eg 6= 0, Ng = 2 because the ground states are
the bosonic-fermionic pair. In the case Eg = 0, i.e., the situation of unbroken supersymmetry, the
ground states are d̂-symmetric, and Ng must be the sum of the Betti numbers because each de Rahm
cohomology class must provide one d̂-symmetric eigenstate.

Using Equations (214) and (215), the Correlators (210) take the following form:

〈Oαk (tk)...Oα1(t1)〉 = N−1
g (−1)p ∑

g
〈ψg|e−(t

−−t′k)Ôα′k ...Ôα′1 e−(t
′
k−t−)|ψg〉

= N−1
g (−1)p ∑

g
〈ψg|M̂t−t′k

Ôα′k ...Ôα′1M̂t′1t− |ψg〉

= N−1
g ∑

g
〈ψg|M̂t−t+T

(
Ôαk (tk)...Ôα1(t1)M̂t+t−

)
|ψg〉, (216)

where the time arguments of the operators Ô(t) do not suggest that these operators have
explicit dependence on time but rather indicate the moments of time that these operators act on
the wavefunction.

In the Heisenberg representation, the wavefunctions are viewed independent of time, and the
temporal evolution is passed onto the operators that now have explicit time dependences:

Ô→ ÔH(t) = e(t−t∗)ĤÔe−(t−t∗)Ĥ , (217)

with t∗ being some reference time moment. In this representation, Equation (216) is even simpler:

〈Oαk (tk)...Oα1(t1)〉 = N−1
g ∑g〈ψg|T

(
Ôαk

H (tk)...Ô
α1
H (t1)

)
|ψg〉. (218)

Note that the correlators are independent of the choice of the reference time t∗ in Equation (217)
because the model is time-translation invariant. This suggests, in particular, that the expectation values
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of all operators that have no explicit dependence on time are time independent. Indeed, one can chose
t∗ = t so that ÔH(t) = Ô = O(Φ̂). Equation (218) then gives

〈O(t)〉 = N−1
g ∑g〈ψg|ÔH(t)|ψg〉 = N−1

g ∑g〈ψg|Ô|ψg〉. (219)

The time independence of these expectation values can be interpreted as the ergodicity of the
model. Thus, the ergodicity in STS is the property that the stochastic expectation values in the limit
of infinitely long temporal evolution are those over the ground state(s). Models with the spectra in
Figure 5a,b are automatically ergodic.

For operators that are functions on X, i.e., O(t) = f (x(t)) ∈ Ω0(X), the expectation value has the
following form:

〈 f (x(t))〉 = ∑g

∫
X

f (x)P̄g(x), (220)

where Pg(x) = ψ̄g(x) ∧ ψg(x)/Ng ∈ ΩD(X) is the TPD averaged over the ground states. The time
independence of Pg(x) can be misinterpreted here as though the model is in the state of thermodynamic
equiliubrium. In other words, the ergodicity can be mistaken for thermodynamic equilibrium. It
is actually very common in the literature that the ergodicity and be confused with thermodynamic
equilibrium. If the ergodicity and thermodynamic equilibrium were indeed equivalent, the concept of
the “ergodic theory of chaos” [85] would not make sense (see also the last paragraph of Section 3.6).
In other words, ergodicity is not equivalent to thermodynamic equilibrium.

The point here is that the TPD in Equation (220) is not the wavefunctions themselves but rather
the bra-ket combination. This situation is similar to that in quantum theory, where it is the bra-ket
combinations of the eigenstates that are the TPDs. The fact that this combination (the diagonal
element of the density matrix) is stationary in time by no means implies that the eigenstate itself has
zero eigenvalue.

For models with spectra given in Figure 5c, the situation is more subtle because there is a pair of
Ruelle–Pollicott resonances with two different eigenvalues, i.e., Eg and E∗g , with the same ”attenuation
rate” ReEg = ReE∗g = minnReEn. These states are equally good candidates for the title of the ground
state of the model. In the limit of the infinitely long temporal evolution, the DPF is Zt+−t− ≈
4cos(t+ − t−)ImEge|ReEg |(t+−t−). This invalidates Equations (215) and (218) unless some additional
arguments can circumvent this problem.

The same problem concerning the identification of the ground state exists in quantum theory.
There, the finite-time quantum evolution operator is Ût+t− = e−(iĤq)(t+−t−), where Ĥq is some
Hermitian Hamiltonian with real spectra. To ensure that the generating functional in the long time
limit receives contribution only from the ground state(s) with the lowest possible eigenvalue of Ĥq, one
can Wick-rotate time “a little”, i.e., t→ t + i0+, with 0+ being a vanishingly small positive constant.
This approach can be borrowed for the STS, as illustrated in Figure 8. After Wick rotating time a
little, only the ground states with the least “energy”, i.e., ImEn, survive the limit of the infinitely long
temporal evolution. Once this is done, the passage from Equations (210) to (216) and all the later
formulas become valid.

As already mentioned in Section 3.3.3, the SEO possesses the ηT-symmetry, and each eigenstate
with a complex eigenvalue must break this symmetry. By declaring one of the Ruelle–Pollicott
resonances as the ground state of the model, one seemingly breaks the ηT-symmetry spontaneously, as
discussed in Section 3.3.3. The physical implications of this mechanism of spontaneous ηT-symmetry
breaking is not clear at this moment to the present author.
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Figure 8. (a) In quantum theory, the ground state is the one with the lowest energy. This can be
justified by Wick rotating time a “little”, i.e., t→ t + i0, so that in the limit of infinitely long temporal
evolution, the generating functional Zt = Tre−iĤt receives a contribution only from the ground state
with the least eigenvalue: Zt|t→∞ → e−iHgt; (b) A similar approach can be used in the supersymmetric
theory of stochastics (STS). If a Ruelle–Pollicott resonance has the smallest attenuation rate ReE , the
ground state can be thought to be the one with the smallest ImE , i.e., the parameter analogous to the
quantum energy.

4.6. One Way to a Unique Ground State

At this point of the discussion of the STS, the ground states are not unique for all three types of
spectra given in Figure 5. Indeed, for models with unbroken topological supersymmetry, there may be
many supersymmetric states, each of which may be viewed as a ground state of the model. For models
with spontaneously broken topological supersymmetry (Figure 5b,c), the non-d̂-symmetric ground
state is doubly degenerate because it is a boson-fermion pair of eigenstates.

The ground state can be made unique using yet another additional reasoning. This reasoning
follows from the analysis of the supersymmetric states of the integrable models in the deterministic
limit in Section 5.3.1. There, it will be discussed that the supersymmetric states of integrable
deterministic models are the so-called Poincaré duals of the global unstable manifolds of the flow.
One example of this situation is given in Figure 9 for the case of the Langevin SDE on a 2D torus.
In this model, there are four supersymmetric states, each being the Poincaré dual of the global unstable
manifolds of the four critical points denoted as A, B, C and D. The corresponding bras of these
supersymmetric states are the Poincaré duals of the global stable manifolds. The expectation value of
a function in Equation (220) reads

〈 f (x(t))〉 = 4−1( f (A) + f (B) + f (C) + f (D)), (221)

where the fact that the bra-ket combination of each of these supersymmetric states is a δ-functional
TPD on the corresponding critical points has been used.

On the other hand, it is intuitively clear that this expectation value must equal f (A). To bypass
this controversy, one can propose to view the ground state with the maximal number of fermions as
the true ground state of the model. This rule can be called the principle of “minimal knowledge” for
the following reason. The presence of a fermion in a wavefunction means that the wavefunction is a
distribution in the corresponding bosonic variable, whereas the absence of a fermion suggests that
the corresponding bosonic variable is not “thermalized” so that something else (e.g., the bra of the
wavefunction or an external observer) must know with certainty the value of this bosonic variable. In
other words, the more fermions a wavefunction has, the less external knowledge one needs to view
the wavefunction as a “complete” probability distribution.

With this principle at hand, the ground state of the model is unique. When the topological
supersymmetry is unbroken, the ground state is the TE state. For the broken supersymmetry case,
the ground state is d̂-exact, i.e., |ϑ′G〉 = d̂|ϑG〉, where the notations of Equation (134) have been used.
Now that the ground state is unique, the correlators take the familiar field-theoretic form of the
”vacuum” correlators:

〈Oαk (tk)...Oα1(t1)〉 = 〈ϑ′G|T
(
Ôαk

H (tk)...Ô
α1
H (t1)

)
|ϑ′G〉. (222)
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Figure 9. The global ground states of the Langevin SDE on a torus in the deterministic limit and
with the Langevin potential being the “height”. There are four global ground states in each of the
four cohomology classes. Each ground state is the Poincaré dual of a global unstable manifold of one
of the four critical points denoted as A, B, C, and D. The bras of the ground state are the Poincaré
duals of the corresponding global stable manifolds. The bra-ket combination for each ground state is
a delta-functional distribution on the corresponding critical point. As discussed in Section 4.6, among
these four ground states, the one corresponding to the critical point A must be considered the true
ground state of the model. This is the ground state of the thermodynamic equilibrium.

4.7. Response and the Butterfly Effect

Of special interest are the correlators that reveal the response of the model to external
perturbations. To understand what these response correlators are, one notes that the only physical
way to perturb a model is to perturb it on the level of the SDE. This can be done with the following
modification of the flow vector field in Equation (1):

Fi(x(t))→ Fi(x(t))− Jc(t) f c,i(x(t)), (223)

where Jc(t), c = 1, 2..., is a set of probing fields and f is a set of predetermined vector fields. The action
of the model transforms accordingly:

{Q, Ψ} → {Q, Ψ}+
∫

dτ Jc(t)
{
Q, iψ̄i(τ) f c,i(x(τ))

}
. (224)

The methodology of Section 4.5 applies, with the perturbation operators or observables being

Lc(t) = {Q, iψ̄i(t) f c,i(x(t))}. (225)

Here, the notation is switched from O to L to note that these perturbation operators are Lie
derivatives in the operator representation:

L̂c = [d̂, ı̂ f c ], (226)

with ı̂ f c = f c,i(x(t))∂/∂χi. In the Heisenberg representation,

L̂c
H(t) = [d̂, ı̂ f c ,H(t)] (227)

because d̂ is commutative with Ĥ so that d̂H(t) = e(t−t∗)Ĥ d̂e(t−t∗)Ĥ = d̂. The expression for the
response correlators follows now from Equation (222):

〈Lck (tk)...Lc1(t1)〉 = 〈ϑ′G|T
(
L̂ck

H(tk)...L̂
c1
H(t1)

)
|ϑ′G〉 = 〈ϑ′G|[d̂, R̂]|ϑ′G〉, (228)

with

R̂ = T
(

ı̂ f ck ,H(tk)L̂
ck−1
H (tk−1)...L̂

α1
H (t1)

)
. (229)
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Here, the fact that a product of the d̂-exact Lie derivatives from Equation (227) is a d̂-exact operator
itself, as can be shown using the fact that d̂ is a nilpotent (bi-graded) differentiation, has been used.

When the topological supersymmetry is unbroken and the ground state is d̂-symmetric,
the response correlators in Equation (228) vanish by the definition of the d̂-symmetric states in
Equation (138). In other words, in the infinitely long temporal evolution limit, the model does
not respond to perturbations. It can be said that the model forgets perturbations.

On the contrary, if the topological supersymmetry is spontaneously broken, some of the
perturbation correlators do not vanish. This can be interpreted as though the model “remembers”
perturbations even in the limit of the infinitely long temporal evolution. This is how the STS
reveals the famous butterfly effect. It is worth noting that the butterfly effect was previously often
viewed as an intrinsic part of the definition of (deterministic) chaos, whereas within the STS, it is
a derivable consequence.

The butterfly effect derived above is a part of a more general statement known as the Goldstone
theorem. This theorem states that a model must exhibit a long-range order under the conditions of the
spontaneous breakdown of a continuous global symmetry. In spatially extended models, this tailors
the existence of a gapless excitation called the Goldstone–Nambu boson for bosonic symmetries and
the goldstino for supersymmetries. This long-range order associated with the d̂-symmetry breaking is
the DLRO discussed in the Introduction.

5. Classification of Ergodic Stochastic Dynamics

5.1. Transient vs. Ergodic Dynamics

Before turning to the discussion of ergodic dynamics, it is worth addressing the following issue.
One important type of dynamics is called transient dynamics. Roughly speaking, transient dynamics
begins at one point of the phase space and ends at another point. Physical examples of transient
dynamics include various quenches as well as processes that can be identified as “slow” quenches,
e.g., the Barkhausen effect and crumpling paper. Another example is glasses: it is often said that
(at non-zero temperature) a glass will eventually crystallize. This crystallization process, however,
may take a very long time, and at the moment of observation, an external observer observes transient
(noise-assisted) dynamics from some initial point in the phase space corresponding to the disordered
lattice to the state of crystallization.

It is well known that quenches and other transient processes also exhibit the long-range dynamical
behavior (LRBD). One example is the power-law statistics of the Barkhausen jumps in ferromagnets.
The mathematical origin of this LRDB has never been explained in the general case. For quenches
across phase transitions, this LRDB is often attributed to the “criticality” of the DS, i.e., to the proximity
of the phase transition. This may be a misleading explanation because quenches that are not across
a phase transition also exhibit LRDB, and the criticality arguments are not valid for them. At the same
time, it is natural to expect that the origin of LRDB must be the same for all quenches.

Within the STS, this LRDB is the result of the intrinsic breakdown of the topological
supersymmetry within instantons. More specifically, it has been shown [44] that a model must
be log-conformal when instantons condense, i.e., when the dynamics is a composite instanton or rather
a composition of fundamental instantons.

Transient dynamics is often referred to as out-of-equilibrium dynamics. The same term is often
used for the characterization of chaotic behavior. In these two situations, the term “out-of-equilibrium”
has two different meanings. In one case, it means non-ergodic dynamics out of the global ground
state of the DS, whereas in the second case, it denotes dynamics out of the d̂-symmetric state of the
thermodynamic equilibrium but within the global non-d̂-symmetric ground state. This second type of
the “out-of-equilibrium” dynamics is often called “self-sustained” dynamics, i.e., happening forever.

In this section, only ergodic or self-sustained dynamics is addressed. Transient dynamics is
beyond the scope of this paper. It is worth mentioning, however, that in some cases (glasses, for
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example) it must be possible to map transient dynamics in a model onto an ergodic dynamics in
another model with the spontaneously broken supersymmetry.

5.2. Unstable Manifolds and Ground States: Langevin SDEs

In this subsection, the relation between d̂-symmetric ground states in the weak noise limit and
unstable manifolds of flow vector fields will be discussed. It is convenient to start the discussion with
Langevin SDEs - the most studied class of SDEs closely related to N = 2 supersymmetric quantum
mechanics (see, e.g., [103]). For simplicity, the noise-induced metric is assumed to be Euclidean:
ei

a = δi
a, gij = δij. The flow vector field Fi(x) = −δijU′ j(x) is defined via the Langevin potential U(x),

and U′ j = ∂U/∂xj. The SEO of this model is given by Equation (123), with

ˆ̄d =
∂

∂χi δij
(
−U′ j −Θ

∂

∂xj

)
. (230)

The similarity transformation Â→ ÂU = eU/(2Θ) Âe−U/(2Θ) acts on the SEO as

Ĥ → ĤU = Θ[d̂U , d̂†
U ], (231)

where

d̂U = eU/(2Θ)d̂e−U/(2Θ) = χi
(

∂

∂xi −U′i/2Θ
)

, (232)

ˆ̄dU =
∂

∂χi δij
(
−U′ j/2−Θ

∂

∂xj

)
= Θd̂†

U , (233)

with (χi)† = δij∂/∂χj and (∂/∂xi)† = −∂/∂xi.
Because Ĥ and ĤU are related via a similarity transformation, their spectra are identical. As to

the eigenstates, they are related as

|ψ〉 = e−U/2Θ|ψU〉, and 〈ψ| = 〈ψU |eU/2Θ. (234)

Up to the factor Θ, the operator ĤU is the Hermitian Hamiltonian of N = 2 supersymmetric
quantum mechanics. Its spectrum is real and non-negative. This implies that the topological
supersymmetry is never broken in this class of models as long as there exists at least one d̂-symmetric
ground state of the thermodynamic equilibrium (see Section 3.3.8).

In the single-variable case with the harmonic potential U = ωx2, the zero-eigenvalue ground
state of ĤU is (see, e.g., Section 10.2.4 in [103])

ψg,U = ?ψ̄∗g,U ∝

{
χe−|ω|x

2/2Θ, ω > 0,
e−|ω|x

2/2Θ, ω < 0.
(235)

Here, the relation between bras and kets is trivial because ĤU is Hermitian. In terms of the
eigensystem of the original non-Hermitian Ĥ, the bra and ket are different. Using Equation (234),
one has

ψg ∝

{
χe−|ω|x

2/Θ, ω > 0,
1, ω < 0,

and ψ̄g ∝

{
1, ω > 0,

χe−|ω|x
2/Θ, ω < 0.

(236)

These are the ground state wavefunctions of the two models in Figure 3. For the stable variable
case (ω > 0), the ket of the ground state is the narrow distribution around the stationary position
x = 0, and the bra is not a distribution; rather, it is a constant function. In the unstable case (ω < 0),
the bra and ket are switched.



Entropy 2016, 18, 108 51 of 66

This analysis can be extended now to multiple-variable Langevin SDEs. Consider a vicinity of a
non-degenerate critical point where the Langevin potential can be approximated as a quadratic
form. With the appropriate coordinate rotation, this quadratic form can be diagonalized as
U = ∑i ωi(xi)2/2, ωi 6= 0, i = 1...D. The wavefunction of the (local) d̂-symmetric ground state
factorizes in all coordinates, and each coordinate provides a factor of the Form (236). As a result,
the wavefunction is a narrow distribution in stable variables and is a constant function in unstable
variables of the unstable manifold of this critical point, as illustrated in Figure 10.

s

a

b
| ss |

Figure 10. The bra 〈s| and ket |s〉 of the perturbative (or local supersymmetric) ground state on a saddle
point s are the Poincaré duals of the local stable and unstable manifolds, respectively. The small gray
arrows in the transverse directions represent differentials/fermions. For integrable (non-chaotic) flow
vector fields, local unstable/stable manifolds can be glued into the global unstable/stable manifolds
indicated as closed dashed curves from the two first homology classes of the phase space, which is
assumed here to be a 2D torus. The exterior derivative annihilates the Poincaré duals of the closed
global unstable manifolds (see Figure 11), which in this case is the wavefunction of (one of) the global
d̂-symmetric ground state(s).

�d�d

Figure 11. The operator of the exterior derivative acts on Poincaré duals of submanifolds (a curve and
a disk given as examples) as the boundary operator would have acted on the submanifolds themselves.

The so-emerged wavefunctions are known as Poincaré duals. They appear in one version of
Poincaré duality stating that, for each k-dimensional submanifold ck, there exists a differential form
ψ

ck
∈ Ω(D−k) such that

∫
ck

ϕ(k) =
∫

X ϕ(k) ∧ ψ
ck

for all ϕ(k) ∈ Ω(k). Using this terminology, the bra and

ket of the local d̂-symmetric ground state on a non-degenerate critical point of a Langevin SDE and in
the weak noise limit are the Poincaré duals of the local stable and unstable manifolds, respectively.

The local unstable manifolds have boundaries on the lower dimensional local unstable manifolds
of more stable critical points. For example, in Figure 10, the local unstable manifold of the unstable
critical point (s) terminates at the stable critical points (a) and (b).

The collection of the local unstable manifolds of different dimensionality is known as the Morse
complex, whereas the collection of the corresponding perturbative (or local) d̂-symmetric states is
known as the Morse–Witten complex. The operator d̂ acts on the perturbative d̂-symmetric states as
the boundary operator would have acted on the local unstable manifolds themselves (see Figure 11).
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The local unstable manifolds have boundaries and the corresponding perturbative d̂-symmetric ground
states are non-d̂-symmetric in the global sense because d̂ does not annihilate them. For example, the
ket of the perturbative ground state of the critical point (s) in Figure 10 satisfies

d̂|ψs〉 = |ψa〉 − |ψb〉. (237)

To obtain the global d̂-symmetric ground states, one must glue local unstable manifolds into the
global unstable manifolds with no boundaries. The Poincaré duals of the global unstable manifolds
are the global d̂-symmetric ground states of the model. The discussion can be generalized to the
Morse–Bott situation, in which critical points of the gradient flow vector field are not isolated but form
closed submanifolds of X. In this case, the local d̂-symmetric states must be complemented by the
factors from the de Rahm cohomology of these critical submanifolds.

5.3. Deterministic Models

5.3.1. Integrable Models

The existence of the well-defined global (un)stable manifolds that are said to provide foliations of
the phase space is essentially the definition of the integrability of a flow vector field in the sense of
DS theory. From the point of view of the STS, the Poincaré duals of these unstable manifolds are the
kets of the global d̂-symmetric ground states. These global d̂-symmetric ground states are invariant
with respect to the (deterministic) flow. Indeed, by definition, an (un)stable manifold consists of points
that remain on it at all times of the flow. Therefore, a Poincaré dual being a constant function on
an (un)stable manifold is unchanged by the flow. The squeezing in the transverse directions will
provide a corresponding Jacobian from the δ-functional dependence on the transverse coordinates.
This Jacobian will be compensated in the supersymmetric manner by the Jacobian provided by the
corresponding transformation of the differentials/fermions. As a result, the Poincaré duals of the
global (un)stable manifolds are invariant under the flow, i.e., they have zero eigenvalues. That these
states are d-symmetric follows trivially from the fact that the global (un)stable manifolds have no
boundaries. This picture suggests that the integrability of the flow vector field must be equivalent to
the unbroken topological supersymmetry in the corresponding STS.

Each de Rahm cohomology class may contain more than one global d̂-symmetric ground state.
This can be the case only in the strict deterministic limit for the following reason. Each of such
d̂-symmetric ground states is a superposition of one d̂-symmetric ground state and a d̂-exact piece.
This means that pairs of non-d̂-symmetric states accidentally have zero eigenvalues. Any noise will
introduce exponentially weak tunneling effects that must lift this accidental degeneracy, leaving only
one d̂-symmetric ground state in each de Rahm cohomology class.

The example of the global supersymmetric eigenstates for the Langevin SDE in the deterministic
limit on a 2D torus is given in Figure 9. In Section 4.5, this example was used to argue that, among
all the supersymmetric states of a model with unbroken supersymmetry, one should choose the state
of the thermodynamic equilibrium as the true ground state, within which various correlators and
observables should be calculated.

5.3.2. Chaotic Models

The next goal is to analyze qualitatively the structure of the ground states in chaotic or
non-integrable deterministic models. These ground state(s) must represent the dynamics on fractal
or strange attractors. Just like in the integrable models above, strange attractors are formed by the
intersection of the stable and unstable manifolds. The bra/ket of the ground state must represent
(or rather be) the Poincaré duals of these manifolds. The (un)stable manifolds in chaotic deterministic
models are not well-defined topological manifolds however. They can fold on themselves in
a recursive manner, as illustrated for the class of models known as “homoclinic tangle” in Figure 12a.
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The straightforward attempt to construct a Poincaré dual for such an unstable manifold leads to the
ambiguity in the orientation of the manifold at the point of the accumulation of self-folding.

c )b )a )

Figure 12. (a) Poincaré section of the unstable manifold of the deterministic chaotic behavior known
as homoclinic tangle. The unstable manifold recursively folds on itself and accumulates at the origin,
where its orientation is ambiguous unless the wavefunction vanishes, as indicated by the fading width
of the curve. This coordinate dependence on the position on the unstable manifold suggests that d̂
does not annihilate the would-be Poincaré dual, and thus, the topological supersymmetry is broken;
(b) Schematic representation of the unstable manifold in the Rössler model in the topological theory
of chaos (see, e.g., [77]). The manifold is a branching manifold with self-intersection. The ground
state’s wavefunction must be its Poincaré dual modified by a continuous function that vanishes at the
self-intersection. Such a wavefunction is non-d̂-symmetric, and the topological supersymmetry must
be broken; (c) Strange attractors consist of an infinite number of unstable periodic orbits, some of which
have non-orientable local unstable manifolds. The would-be Poincaré dual must have such a coordinate
dependence that circling around the orbit produces a sign change. This functional dependence on the
position of the orbit also suggests that the topological supersymmetry is broken.

This ambiguity has its analogues in quantum theory. For example, a non-rotationally symmetric
electron wavefunction on a rotationally symmetric atom (p, d, f, ... orbitals) would be ambiguous at
the origin if it did not vanish there, which is always the case. For the same reason, in the theory of
superfluids, the superfluidic order parameter of the Bose condensate at the core of a vortex must vanish.

In the case of the homoclinic tangle in Figure 12a, the ambiguity of the Poincaré dual of the
unstable manifold can be remedied by modifying it with a continuous function that vanishes at the
origin. This will introduce the coordinate dependence along the unstable manifold, and this coordinate
dependence automatically suggests that the wavefunction is not annihilated by d̂; thus, the ground
state wavefunction representing the unstable manifold is non-d̂-symmetric.

Another way to see that the ground state in a chaotic model is non-d̂-symmetric can be borrowed
from the topological theory of chaos [77]. There, the global unstable manifold is qualitatively
represented by a branched manifold that has self-intersections (see Figure 12b). The action by d̂
on the Poincaré dual of this branched manifold is the Poinaré dual of its self-intersection. Thus, such
a wavefunction is non-d̂-symmetric.

Yet another way to convince oneself that chaotic deterministic models have non-d̂-symmetric
ground states is to recall that strange attractors contain an infinite number of unstable periodic orbits
with arbitrary large periods. Some of these orbits have non-orientable local unstable manifolds, as
illustrated in Figure 12c. The Poincaré duals of these local unstable manifolds must be modified by
such coordinate dependence that going along the periodic orbit changes the sign of the wavefunction.
Again, such a wavefunction is non-d̂-symmetric.

The above qualitative analysis of the ground states of the deterministic chaotic models is only
an indication that the topological supersymmetry breaking must be the field-theoretic essence of
deterministic chaos. The rigorous proof of this statement is given by Equation (157), which establishes
the exponential growth of periodic solutions, being definitive for chaos, as well as by the emergence of
the butterfly effect discussed in Section 4.7.
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5.4. Stochastic Models: Two Types of “Border of Chaos”

In deterministic models, the d̂-symmetry is spontaneously broken or not depending on whether
its flow vector field is non-integrable (chaotic) or integrable in the sense of DS theory. The stochastic
generalization of this picture is the subject of interest in this subsection.

One important thing to note is that in the high-temperature limit, the SEO (81) is dominated by the
diffusion Laplacian. In a wide class of models (e.g., torsion-free vielbeins [75]) the diffusion Laplacian
equals the Hodge Laplacian (58). The latter has real and non-negative spectra, which correspond
to the unbroken d̂-symmetry, so that the d̂-symmetry must always be unbroken at sufficiently large
temperatures. Only models of this type are of interest here. It can be said that the noise destroys the
DLRO at sufficiently high temperatures in this class of models.

Two qualitatively different types of the “border of chaos” exist for this class of models
(see Figure 13). For the first type, the d̂-broken phase gradually narrows with increasing temperature,
which corresponds to the situation discussed, e.g., in [29]. The second type (Figure 13b) is more
involved. There, the d̂-broken phase first widens with increasing temperature before shrinking. In other
words, there exists a phase with an integrable flow vector field on one hand and with d̂-symmetry
spontaneously broken on the other. This peculiar phase can be called noise-induced chaos (N-phase)
because the supersymmetry can be restored by decreasing the temperature. In the deterministic limit,
the N-phase collapses into the boundary of the deterministic chaos.

XT
N

Θb )  

B i f . p .C
T

Θa )  

B i f . p .C

Figure 13. Two types of the “border of chaos”. (a) In type I, there are only two phases: the chaotic phase
(C) and the phase of the thermodynamics equilibrium (T). In the low-temperature limit, the topological
supersymmetry of the C-phase is broken by the non-integrable flow vector field. As the temperature
increases, the border moves to the “right” because the noise has the tendency to destroy the DLRO;
(b) In type-II phase diagrams, there is an additional phase of the noise-induced chaos (N) where the
flow vector field is integrable but where the topological supersymmetry is spontaneously broken by
the condensation of (anti-)instantons, i.e., the noise-induced tunneling processes between, e.g., different
attractors. One type of dynamical behavior in the N-phase is such that an external observer sees
a sequence of unpredictable jumps between patterns of “regular” behavior and/or attractors. This type
of dynamics can be recognized as that of self-organized criticality. At higher temperatures, the sharp
boundary between the N- and C-phases must smear out into a crossover because the perturbative
supersymmetric ground states overlap significantly, and it is not possible for an external observer to
tell one (anti-)instantonic process from another. The N- and C-phases must merge into a complicated
phase (X) with the spontaneously broken topological supersymmetry.

5.4.1. Low-Temperature Regime and Self-Organized Criticality

In the low-temperature regime of the type-II phase diagram, the d̂-broken phase consists of
two major subphases: the ordinary chaotic phase (C-phase), where the d̂-symmetry is broken by
the non-integrable flow vector field, and the N-phase, where the d̂-symmetry is broken by some
other mechanism. There are two other known mechanisms for the spontaneous breakdown of
a symmetry. The first one is an anomaly, i.e., the possibility that a symmetry is broken by perturbative
or fluctuational corrections. Supersymmetries, however, are difficult to break via anomaly. This fact is
related to the so-called supersymmetry non-renormalization theorems [104,105]. This suggests that
the d̂-symmetry breaking in the N-phase must be due to the other mechanism. This other mechanism
of supersymmetry breaking is known as the condensation of (anti-)instantonic configurations [50].
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Due to the renormalization theorems, the “dynamical” supersymmetry breaking by (anti-)instantons
is considered as one of the most reliable mechanisms of supersymmetry breaking in high-energy
physics models.

In case of stochastic dynamics, these (anti-)instantonic configurations are the tunneling processes
that appear due to the noise-induced and exponentially weak overlap between perturbative ground
states on unstable manifolds. One of the effects that the noise-induced tunneling processes will provide
is the removal of the degeneracy of the deterministic zero-eigenvalue eigenstates representing Poincaré
duals of “parallel” global unstable manifolds within the same de Rahm cohomology class discussed
in the last paragraph of Section 5.3.1. As a result, each de Rahm cohomology class will have only
one d̂-symmetric eigenstate, whereas other eigenstates will acquire (exponentially small) non-zero
eigenvalues. This removal of degeneracy does not necessary suggest that d̂-symmetry is spontaneously
broken. Clearly, the very existence of the noise-induced tunneling processes is insufficient. Indeed, for
a Langevin SDE (see Section 5.2) with a Langevin potential with multiple local minima, the tunneling
processes between these local minima certainly exist at non-zero temperatures. Nevertheless, the
d̂-symmetry is never broken for this class of models. In other words, the weak-noise tunneling
processes can only help the spontaneous d̂-symmetry breaking in models with flow vector fields that
are close to being chaotic on their own. This is why the N-phase resides on the “border of chaos”.

The physical picture of one type of dynamics in the N-phase is as follows. The fluctuating
dynamics is mostly around unstable manifolds such as point attractors or limit cycles. The dynamics
is sporadically interrupted by noise-induced tunneling processes or jumps between different attractors.
Because it is the noise-induced tunneling processes that break the d̂-symmetry, the jumps must exhibit
signatures of long-range dynamical behavior such as the power-law statistics. This power-law statistics
of jumps, or avalanches as they also called in the literature, is a well-established phenomenon with the
Richter scale for earthquakes being perhaps the best known example.

The ubiquitous power-law statistics of avalanches in nature was previously proposed to explain
via the concept of self-organized criticality [18]. There, the power-law statistics is believed to be
the signature of a gapless soft mode (see discussion in Section 1.2) associated with the ongoing
phase transition into chaos, whereas the conspicuous contradiction with the fact that, unlike phase
transitions, the N-phase has a finite width is circumvented by postulating of the existence of a
mysterious force that fine-tunes the parameters of the stochastic model into the phase transition into
chaos. This understanding of the essence of stochastic dynamics in the N-phase is all but scientific.
The Goldstone mode explanation by the STS discussed above resolves this issue.

5.4.2. High-Temperature Regime

In the previous discussion of the weak-noise regime, the concept of noise-induced tunneling
processes is well defined because the overlap between the perturbative ground states is exponentially
weak. As a result, an external observer will be able to differentiate between tunneling process.
At higher temperatures, the overlap is no longer weak, and it may become difficult for an external
observer to differentiate between tunneling events. This suggests that the sharp boundary between
the C- and N-phases must smear out into a crossover. Note that the boundary between the N- and
C-phases is not a d̂-symmetry-breaking phase transition; thus, its disappearance does not contradict
any symmetry-based argument.

It can be said that, above a certain temperature, the C- and N-phases must merge into
a complicated phase with spontaneously broken d̂-symmetry. In Figure 13b, this phase is indicated as
an X-phase. Borrowing from the terminology of high-energy physics, one way to identify this phase is
as stochastic chaos in the “strongly coupled” regime, where strong coupling would mean the strong
overlap between the perturbative ground states.
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6. Conclusions and Outlook

This paper offers a brief introduction to the current state of the recently proposed
approximation-free supersymmetric theory of stochastic differential equations (STS). This theory
provides several novel theoretical insights into stochastic dynamics. It establishes a rigorous stochastic
generalization of the concept of dynamical chaos, which is found to be the phenomenon of the
spontaneous breakdown of topological or de Rahm supersymmetry that all SDEs possess. This paper
also reveals that stochastic chaos is complementary to thermodynamic equilibrium, corresponding
in turn to the unbroken topological supersymmetry. Being the low-symmetry or the ordered phase,
the chaotic phase has what can be called a dynamical long-range order, whereas the phase of the
thermodynamic equilibrium does not. The presence of this order is the reason why many natural,
engineered, and social DSs exhibit emergent long-range dynamical behavior such as 1/ f noise,
i.e., long-term memory effects; the butterfly effect, i.e., sensitivity to the initial conditions; and the
algebraic, i.e., scale-free, statistics of sudden or instantonic processes. These and a few other qualitative
findings, such as the clarification of the concept of ergodicity, are the main outcomes of the STS so far.
Further work on the STS may lead to more specific and valuable results. As is discussed next, one of
the most fruitful directions of further investigation is the work on the methodology of the identification
of the dynamical long-range order parameter and construction of the low-energy effective theory
(LEET) for it in spatially extended models such as hydrodynamical models.

The most important qualitative aspect of dynamics under the conditions of the spontaneous
breakdown of a global symmetry occupies a reduced phase space. In other words, this aspect occurs
in a reduced number of “low-energy” variables called the order parameter, and the LEETs are the
theories describing this dynamics. In ferromagnets, for instance, the order parameter is the (local)
magnetization of the electron liquid, and the LEET (or rather the equations of motion of the LEET) is the
Landau–Lifshitz–Gilbert equation. In superconductors, the order parameter is the wavefunction of the
Bose–Einstein condensate of the Cooper pairs, and the LEET is the corresponding Ginzburg–Landau
theory. In solids, in which the global translational symmetry is broken by the lattice structure, the
order parameter is the local displacement of atoms from their average positions in the lattice, and
the LEET is the low-energy theory describing, say, the propagation of transverse sound, which is the
Goldstone–Nambu particle in this case.

Concerning chaotic DSs, the most important variables are the unstable and/or unthermalized
variables of the wavefunction of the non-d-symmetric ground state. It is in these variables that
a chaotic DS exhibits the infinite memory of perturbations. The local order parameter must be
the gapless fermions or goldstinos that are the supersymmetric partners of the unstable bosonic
variables. In spatially extended nonlinear models, the unstable variables must be the moduli of
the solitonic configurations consisting of fundamental solitons such as kinks, domain walls, and
vortices. The processes of the creation/annihilation of (pairs of) the fundamental solitons are the
(anti-)instatonic processes, the condensation of which is the essence of the noise-induced chaotic phase
discussed in Section 5.4.1. One of the candidates for such models is a two-dimensional vortex-mediated
turbulence, wherein the goldstinos must be the supersymmetric partners of the spatial positions of
the (anti-)vortices.

It is intuitively appealing to believe that the dynamical long-range order of the spontaneously
broken topological supersymmetry must at least partially possess some global or topological features.
These features may appear on the level of the inter-goldstino interactions. In the above example of
the vortex-mediated 2D turbulence, the interaction that remembers the braining between the vortices
may as well be approximated as a (chiral) gauge field. Such an LEET would appear somewhat
reminiscent of the Schwartz-type topological field theories used in models related to the concept of
topological quantum computing. Somewhere down this line of thinking it may turn out that some
complex DSs may be useful for the purposes of natural computing. Thus, the development of the
methodology of the LEET for the STS may prove fruitful from the point of view of the recent search for
new computational paradigms.
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Apart from the methodology of the LEET, there are many other open questions in the STS,
even in the interpretational side of the theory. For example, what happens to the wavefunction
when one observes/measures variables? It was argued in Section 2.2 that one of the possible (local)
interpretations of the wavefunction is that of a generalized probability distribution. Therefore, one may
as well expect that the wavefunction may change suddenly upon observation in a Bayesian update
manner. If this is indeed true, yet another question arises of how this change is related to wavefunction
collapse in quantum theory. Hopefully, future work will reveal answers to these and other open
questions in the STS. It would also be interesting to see how the STS relates to other modern approaches
to stochastics such as Stochastic Thermodynamics [106–110].
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Abbreviations

The following abbreviations are used in this manuscript:

DLRO dynamical long-range order

DPF dynamical partition function

DS dynamical system

FP operator Fokker–Planck operator

KD kinematic dynamo

LRDB long-range dynamical behavior

ODE ordinary differential equation

SdE stochastic difference equation

SDE stochastic differential equation

SEO stochastic evolution operator

SFE stochastic flow equation

STS supersymmetric theory of stochastics

TPD total probability distribution

Appendix A.

Appendix A.1. Differential vs. Difference Equations: Ito–Stratonovich Dilemma

The goal of this Appendix is to derive the FP equation for the SdE (90). The latter can be given
a more compact form,

∆x
∆t

= Fn(x + α∆x), (238)

where the subscripts are dropped in xn−1 and ∆xn, which herein are simply x and ∆x, and

Fn(x) = F(x) + (2Θ)1/2ea(x)ξa
n. (239)

Now, it is assumed that, at time moment tn−1, the model is described by the total probability
function Pn−1(x). The expectation value of some function f : X → R is given at this time moment as

f (tn−1) =
∫

f (x)Pn−1(x)dDx. (240)
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At tn = tn−1 + ∆t, this expectation value becomes

f (tn) =

〈∫
f (x + ∆x)Pn−1(x)dDx

〉
Ns

, (241)

where the stochastic averaging is over ξn. After this stochastic averaging is performed, Equation (241)
takes the following form:

f (tn) =
∫

f (x)Pn(x)dDx, (242)

where

Pn(x)dDx = (1̂− ∆tĤ(D) + ...)Pn−1(x)dDx, (243)

with dots denoting terms of higher order in ∆t and Ĥ(D) being the sought after FP operator. In the
continuous-time limit, the above expression can be given the familiar form of the FP equation:

∂tP(t)dDx = −Ĥ(D)P(t)dDx. (244)

The task now it to establish the explicit expression for Ĥ(D).
It is understood that, for small ∆t, ∆x is also small. In other words, the Taylor expansion of ∆x

in ∆t begins with the first-order term. Equation (243) also seemingly implies that it suffices to retain
only terms of first order in ∆t. This would indeed be true if it was not for the stochastic averaging
over ξn. This averaging will transform the terms that are second order in ∆t and contain two ξ into
the first-order terms in ∆t, as is clear from Equation (7). Therefore, the Taylor expansion up to second
order in ∆x must suffice for the derivation of the FP operator.

The Taylor expansion of f in Equation (241) up to second order in ∆x gives

f (tn) =

〈∫
f (x + ∆x)Pn−1(x)dDx

〉
Ns

=

〈∫ (
f (x) + f′i(x)∆xi + (1/2) f′ij(x)∆xi∆xj + ...

)
Pn−1(x)dDx

〉
Ns

=
∫

f (x)
〈

1̂− ∂

∂xi ∆xi + (1/2)
∂2

∂xi∂xj ∆xi∆xj + ...
〉

Ns
Pn−1(x)dDx. (245)

Here, f′ j ≡ ∂ f /∂xi and similar for f′ij = ∂2 f /∂xi∂xj, and the partial integration has been used.
The next step is to Taylor expand ∆x up to second order in ∆t and substitute this expansion into

the above expression. Using Equation (238), one has

∆xi = F i
n∆t + α(F i

n)′ jF
j
n∆t2 + ... (246)

Substituting this expression into Equation (245), using Equation (239), and performing the
stochastic averaging over ξn with the help of Equation (7), one arrives at

f (tn) =
∫

f (x)(1̂− ∆tĤ(D)
α + ...)Pn−1(x)dDx, (247)

with the FP operator being

Ĥ(D)
α = − ∂

∂xi Fi
α(x)−Θ

∂

∂xi ei
a(x)

∂

∂xj ej
a(x) (248)

and with the α-dependent flow vector field from Equation (91).
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In the above derivation of the FP operator, SdE (246) was used as a formal equation defining ∆x.
One can take an alternative view on stochastic dynamics in which the dynamics is continuous in
time and the noise is piece-wise constant, as given in Figure 1. For a fixed noise configuration,
one has a continuous trajectory x(t), defined by ẋ = Fn(x(t)) with the initial condition x(tn−1) = xn1 .
Now, there is no freedom in choosing α because ∆x is uniquely defined by the evolution according to
the Picard-Lindelöf theorem. In particular, ∆x has a unique Taylor expansion in ∆t:

∆xi =
∂xi

∂t

∣∣∣∣
∆t=0

∆t +
1
2

∂2xi

∂2t

∣∣∣∣
∆t=0

∆t2 + ... (249)

The first coefficient here is determined from the SDE itself,

∂xi

∂t

∣∣∣∣
∆t=0

= F i
n(x), (250)

whereas the second coefficient is obtained via one differentiation of the SDE over time

∂2xi

∂2t

∣∣∣∣
∆t=0

=
∂F i

n(x)
∂t

∣∣∣∣
∆t=0

= F i
n′ j(x)

∂xi

∂t

∣∣∣∣
∆t=0

= F i
n′ j(x)F j

n(x); (251)

thus, the quantity in Equation (249) becomes

∆xi = F i
n(x)∆t +

1
2
F i

n′ j(x)F j
n(x)∆t2 + ... (252)

Comparing this equation with Equation (246), one concludes that the Stratonovich choice of
α = 1/2 must always be used for the continuous-time picture of temporal evolution.

Concerning the Ito interpretation of SDEs, it is often said that, unlike all other interpretations, the
Ito approach respects the Markovian property in the sense that the increment ∆xn or, equivalently,
the final point xn = xn−1 + ∆xn is a function of only xn−1 and not of xn. This advantage of Ito SDEs,
however, is a misinterpretation. Indeed, the very statement that xn is a function of itself for α > 0 does
not make sense from the point of view of functional dependence. This sentence only tells us that xn as
a function of xn−1 is given only implicitly by Equation (90). For a fixed noise variable ξn, the final point
xn together with the increment ∆xn is always a function of xn−1 only. Its explicit expression is given by
Equation (246) up to second order in ∆t, the only accuracy relevant in the continuous-time limit.

Furthermore, the Markovian property of stochastic processes is concerned not with the trajectories
(the variables xn and xn−1) but rather with the temporal evolution of TPDs. In application to the
SdEs (90), the Markovian property means that the TPD at time moment tn depends on the TPD at the
previous time moment tn−1 only and not on the TPD at earlier time moments. As clearly observed
from Equation (243), which is correct for all α, all the interpretations of SDEs satisfy this requirement of
Markovianity. In other words, Ito SDEs are just as Markovian as SDEs in all the other interpretations.

In other words, the only advantage of the Ito interpretation is the relative ease of its numerical
implementation because the increment as a function of xn−1 is given explicitly by the Ito SdE.
This convenience for numerical implementations, however, does not have any significance from
the mathematical point of view.

Appendix A.2. Perturbative Supersymmetric Eigenstates

The correspondence between supersymmetric states and de Rahm cohomology classes can be
established using standard perturbation theory. The first step is to recall that the Hodge Laplacian
from Equation (58) has a real and non-negative spectrum. Each de Rahm cohomology class provides
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one d̂-symmetric harmonic eigenstate from the kernel of the Hodge Laplacian used previously in
Equation (139):

4̂H |hk〉 = 0, 〈hk|4̂H = 0. (253)

All the other eigenstates of the Hodge Laplacian are non-d̂-symmetric and have real and positive
eigenvalues. By analogy with Equations (133) and (134), these non-d̂-symmetric pairs of eigenstates of
4H can be denoted as

|ζn〉 = |ζn〉, 〈ζn| = 〈ζn|d̂, (254a)

and

|ζ ′n〉 = d̂|ζn〉, 〈ζ
′
n| = 〈ζn|, (254b)

and their eigenvalues ∆n > 0.
One can now split the SEO into two parts as

Ĥ = Ĥ0 + V̂, Ĥ0 = Θ4̂H , V̂ = [d̂, v̂], v̂ = ˆ̄d−Θd̂†, (255)

and view V̂ as a perturbation. The “zeroth-order” SEO, i.e., Ĥ0, is elliptic, whereas the perturbation
operator is only linear in spatial derivatives: V̂ = f̂ i ∂

∂xi + ĝ. This implies that the perturbation series
must be well defined, e.g., convergent, at least for some class of models and for sufficiently large Θ.

Because V̂ is d̂-exact, the following is true:

〈ζn|V̂|hk〉 = 〈ζn|d̂[d̂, v̂]|hk〉 = 0,

〈ζn|V̂|ζ ′m〉 = 〈ζn|d̂[d̂, v̂]d̂|ζm〉 = 0,

〈hk|V̂|hi〉 = 〈hk|[d̂, v̂]|hi〉 = 0,

〈hk|V̂|ζ ′i〉 = 〈hk|[d̂, v̂]d̂|ζ i〉 = 0,

where Equation (254) have been used. Using these equalities, it is now clear that, to all orders of the
perturbation series, each harmonic form remains a d̂-symmetric eigenstate

|θn〉 = |hn〉+ d̂|θ̃n〉, (256)

where

|θ̃n〉 = ∑n1
|ζ̃n1〉

1
−Θ∆n1

(
〈ζ̃n1 |V̂|hn〉

+∑n2

1
−Θ∆n2

〈ζ̃n1 |V̂d̂|ζ̃n2〉〈ζ̃m2 |V̂|hn〉+ ...
)

. (257)

Similarly, the bra of this d̂-symmetric state is

〈θn| = 〈hn|+ 〈θ̃n|d̂. (258)

Thus, within the domain of the applicability of the perturbation theory, each de Rahm cohomology
class provides one supersymmetric eigenstate.

Appendix A.3. Kinematic Dynamo as an Example of Both Types of Supersymmetry-Breaking Spectra

In this Appendix, it is discussed how the theory of KD is related to STS and how this relation
provides examples of the two supersymmetry-breaking spectra in Figure 5b,c.
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The KD is a part of the more general hydromagnetodynamical phenomenon of the magnetic
dynamo. The latter is the ability of a moving conducting medium to generate and/or sustain a magnetic
field [111]. Many astrophysical objects exhibit magnetic dynamos, including galaxies [112,113], galaxy
clusters [114], stars [115], and planets, including the Earth [116]. In turn, the KD is the linear regime of
a magnetic dynamo when a relatively weak magnetic field is generated by a stationary flow of the
conducting medium. The KD is realized, e.g., in the early stages of the formation of galaxies.

The temporal evolution of the magnetic field within the KD effect is governed by the
induction equation

∂tB = ∂̂× v× B + η4̂B. (259)

Here, ∂̂ is the gradient operator of the Euclidean space X = R3; 4̂ = ∂̂i ∂̂i is the standard Laplace
operator; × denotes the vector product; ∂̂× is the curl of a vector; B is the magnetic field vector; v is
the vector field of the underlying flow of the conducting medium; and η = 1/σµ is the magnetic
diffusivity, with σ and µ being the electrical conductivity and permeability, respectively. The first term
represents the well-known magnetohydrodynamical phenomenon of the “freezing” of the magnetic
field into the conducting medium, whereas the second term is the magnetic field diffusion.

In the theory of KD, the “phase space” is non-compact R3. On the other hand, in this paper,
compact (and closed) phase spaces are under consideration. This problem can be circumvented.
The point is that the spatial structures of the KD magnetic fields have local support, and one can
always compactify the phase space into the 3D sphere at spatial infinity without affecting the structure
of the KD magnetic fields.

Equation (259) can be presented in a coordinate-free form. Instead of the vector B, one can
equivalently use the 2-form representing the magnetic field

B =
1
2!
Bijdxi ∧ dxj = d̂A, (260)

where A = Aidxi is the 1-form of the vector potential. In components, Bij, called the magnetic field
tensor, is

Bij = εijkBk = ∂i Aj − ∂j Ai =

 0 Bz −By

−Bz 0 Bx

By −Bx 0

 ,

where εijk is the antisymmetric Levi-Civita tensor. Equation (259) can now be expressed as

∂tBi = eipq∂̂peqklvkBl + η4̂Bi.

Lowering and raising the indexes in the Euclidean space has no effect on the values of the
components of the antisymmetric tensor, e.g., eijk = eijk. Using the identity

eqkleipq = det

(
δi

k δ
p
k

δi
l δ

p
l

)
(261)

and ∂iBi = 0, Equation (259) can be rewritten as

∂tBi = −∂̂jvjBi + Bjvi
′ j + η4̂Bi,

where vi
′ j = ∂jvi. Now, using

Bi =
1
2

eiklBkl ,
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the induction equation can be further transformed as

∂t
1
2

eiklBkl = −∂̂jvj 1
2

eiklBkl +
1
2

ejklBklvi
′ j + η4̂1

2
eiklBkl .

Multiplying both sides of this equation by eiab and summing over index i, one arrives at

∂tBab = −∂̂jvjBab +
1
2

eiabejklBklvi
′ j + η4̂Bab.

Using the identity

eiabejkl = det

 δ
j
i δ

j
a δ

j
b

δk
i δk

a δk
b

δl
i δl

a δl
b

 ,

one has

∂tBab = −∂̂jvjBab +
1
2

(
2Babvj

′ j − 2Bjbvj
′a − 2Bajv

j
′b

)
+ η4̂Bab,

or

∂tBab = −
(

vj∂̂jBab + vj
′aBjb + Bajv

j
′b

)
+ η4̂Bab.

The first term here is the Lie derivative applied to the 2-form (260). Therefore, Equation (259) can
also be given as

∂tB = −ĤKDB, ĤKD = L̂v − η4̂. (262)

This result is rather natural. As previously mentioned, the first term in the R.H.S. of Equation (259)
is the infinitesimal temporal evolution of the magnetic field “frozen” into the conducting medium.
This freezing is the evolution solely due to the flow along v, and such an evolution is given by the Lie
derivative. This also explains why the Lie derivative is also known as the physical derivative.

The Laplacian in the Euclidean space is given as

4̂ = −[d̂, d̂†], (263)

where d̂† = −ıiδij∂j is the codifferential operator defined in Equation (57). Thus, the KD evolution
operator is

ĤKD = [d̂, ˆ̄d], (264)

where

ˆ̄d = ı̂v − η ı̂iδij∂̂j

and where the identity δij = δi
aδ

j
a has been used. It is now clear that Equation (264) is the SEO of the

following SDE:

ṙi = vi + (2η)1/2δi
aξa(t), (265)

with ξ(t) ∈ R3 being Gaussian white noise.
This is the result needed to establish that the supersymmetry-breaking spectra of both types

in Figure 5b,c are realizable. Indeed, it is well established that the eigenvalues of the KD operator
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with the lowest real part can be not only negative but also complex (see, e.g., [117] and the references
therein). The complex eigenvalues indicate that the spatial structure of the growing magnetic field is
also rotating.
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