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Abstract: The Riemannian geometry of the space Pm, of m × m symmetric positive definite
matrices, has provided effective tools to the fields of medical imaging, computer vision and
radar signal processing. Still, an open challenge remains, which consists of extending these tools
to correctly handle the presence of outliers (or abnormal data), arising from excessive noise or
faulty measurements. The present paper tackles this challenge by introducing new probability
distributions, called Riemannian Laplace distributions on the space Pm. First, it shows that these
distributions provide a statistical foundation for the concept of the Riemannian median, which
offers improved robustness in dealing with outliers (in comparison to the more popular concept
of the Riemannian center of mass). Second, it describes an original expectation-maximization
algorithm, for estimating mixtures of Riemannian Laplace distributions. This algorithm is
applied to the problem of texture classification, in computer vision, which is considered in the
presence of outliers. It is shown to give significantly better performance with respect to other
recently-proposed approaches.

Keywords: symmetric positive definite matrices; Laplace distribution; expectation-maximization;
Bayesian information criterion; texture classification

1. Introduction

Data with values in the spacePm, of m×m symmetric positive definite matrices, play an essential
role in many applications, including medical imaging [1,2], computer vision [3–7] and radar signal
processing [8,9]. In these applications, the location where a dataset is centered has a special interest.
While several definitions of this location are possible, its meaning as a representative of the set should
be clear. Perhaps, the most known and well-used quantity to represent a center of a dataset is the
Fréchet mean. Given a set of points Y1, · · · , Yn in Pm, their Fréchet mean is defined to be:

Mean(Y1, · · · , Yn) = argminY∈Pm

n

∑
i=1

d2(Y, Yi) (1)

where d is Rao’s Riemannian distance on Pm [10,11].
Statistics on general Riemannian manifolds have been powered by the development of different

tools for geometric measurements and new probability distributions on manifolds [12,13]. On the
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manifold (Pm, d), the major advances in this field have been achieved by the recent papers [14,15],
which introduce the Riemannian Gaussian distribution on (Pm, d). This distribution depends on two
parameters Ȳ ∈ Pm and σ > 0, and its density with respect to the Riemannian volume form dv(Y) of
Pm (see Formula (13) in Section 2) is:

1
Zm(σ)

exp

[
−d2(Y, Y)

2σ2

]
(2)

where Zm(σ) is a normalizing factor depending only on σ (and not on Ȳ).
For the Gaussian distribution Equation (2), the maximum likelihood estimate (MLE) for the

parameter Ȳ based on observations Y1, · · · , Yn corresponds to the mean Equation (1). In [15],
a detailed study of statistical inference for this distribution was given and then applied to the
classification of data in Pm, showing that it yields better performance, in comparison to recent
approaches [2].

When a dataset contains extreme values (or outliers), because of the impact of these values on
d2, the mean becomes less useful. It is usually replaced with the Riemannian median:

Median(Y1, · · · , Yn) = argminY∈Pm

n

∑
i=1

d(Y, Yi) (3)

Definition Equation (3) corresponds to that of the median in statistics based on ordering of the
values of a sequence. However, this interpretation does not continue to hold on Pm. In fact, the
Riemannian distance on Pm is not associated with any norm, and it is therefore only possible to
compare distances of a set of matrices to a reference matrix.

In the presence of outliers, the Gaussian distribution on Pm also loses its robustness properties.
The main contribution of the present paper is to remedy this problem by introducing the
Riemannian Laplace distribution while maintaining the same one-to-one relation between MLE
and the Riemannian median. This will be shown to offer considerable improvement in dealing
with outliers.

This paper is organized as follows.
Section 2 reviews the Riemannian geometry of Pm, when this manifold is equipped with the

Riemannian metric known as the Rao–Fisher or affine invariant metric [10,11]. In particular, it gives
analytic expressions for geodesic curves, Riemannian distance and recalls the invariance of Rao’s
distance under affine transformations.

Section 3 introduces the Laplace distribution L(Ȳ, σ) through its probability density function
with respect to the volume form dv(Y):

p(Y|Y, σ) =
1

ζm(σ)
exp

[
−d(Y, Y)

σ

]

here, σ lies in an interval ]0, σmax[ with σmax < ∞. This is because the normalizing constant ζm(σ)

becomes infinite for σ ≥ σmax. It will be shown that ζm(σ) depend only on σ (and not on Ȳ) for all
σ < σmax. This important fact leads to simple expressions of MLEs of Y and σ. In particular, the MLE
of Ȳ based on a family of observations Y1, · · · , YN sampled from L(Ȳ, σ) is given by the median of
Y1, · · · , YN defined by Equation (3) where d is Rao’s distance.

Section 4 focuses on mixtures of Riemannian Laplace distributions on Pm. A distribution of this
kind has a density:

p(Y|(ωµ, Yµ, σµ)1≤µ≤M) =
M

∑
µ=1

vµ p(Y|Yµ, σµ) (4)
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with respect to the volume form dv(Y). Here, M is the number of mixture components,
vµ > 0, Yµ ∈ Pm, σµ > 0 for all 1 ≤ µ ≤ M and ∑M

µ=1 vµ = 1. A new EM
(expectation-maximization) algorithm that computes maximum likelihood estimates of the mixture
parameters (vµ, Ȳµ, σµ)1≤µ≤M is provided. The problem of the order selection of the number M in
Equation (4) is also discussed and performed using the Bayesian information criterion (BIC) [16].

Section 5 is an application of the previous material to the classification of data with values
in Pm, which contain outliers (abnormal data points). Assume to be given a training sequence
Y1, · · · , Yn ∈ Pm. Using the EM algorithm developed in Section 4, it is possible to subdivide this
sequence into disjoint classes. To classify new data points, a classification rule is proposed. The
robustness of this rule lies in the fact that it is based on the distances between new observations
and the respective medians of classes instead of the means [15]. This rule will be illustrated by
an application to the problem of texture classification in computer vision. The obtained results
show improved performance with respect to recent approaches which use the Riemannian Gaussian
distribution [15] and the Wishart distribution [17].

2. Riemannian Geometry of Pm

The geometry of Siegel homogeneous bounded domains, such as Kähler homogeneous
manifolds, have been studied by Felix A. Berezin [18] and P. Malliavin [19]. The structure of Kähler
homogeneous manifolds has been used in [20,21] to parameterize (Toeplitz–) Block–Toeplitz matrices.
This led to a Hessian metric from information geometry theory with a Kähler potential given by
entropy and to an algorithm to compute medians of (Toeplitz–)Block–Toeplitz matrices by Karcher
flow on Mostow/Berger fibration of a Siegel disk. Optimal numerical schemes of this algorithm in a
Siegel disk have been studied, developed and validated in [22–24].

This section introduces the necessary background on the Riemannian geometry of Pm , the space
of symmetric positive definite matrices of size m×m. Precisely, Pm is equipped with the Riemannian
metric known as the affine-invariant metric. First, analytic expressions are recalled for geodesic
curves and Riemannian distance. Then, two properties are stated, which are fundamental to the
following. These are affine-invariance of the Riemannian distance and the existence and uniqueness
of Riemannian medians.

The affine-invariant metric, called the Rao–Fisher metric in information geometry, has the
following expression:

gY(A, B) = tr(Y−1 AY−1B) (5)

where Y ∈ Pm and A, B ∈ TYPm, the tangent space to Pm at Y, which is identified with the vector
space of m × m symmetric matrices. The Riemannian metric Equation (5) induces a Riemannian
distance on Pm as follows. The length of a smooth curve c : [0, 1]→ Pm is given by:

L(c) =
∫ 1

0

√
gc(t)(ċ(t), ċ(t)) dt (6)

where ċ(t) = dc
dt . For Y, Z ∈ Pm, the Riemannian distance d(Y, Z), called Rao’s distance in

information geometry, is defined to be:

d(Y, Z) = inf { L(c), c : [0, 1]→ Pm is a smooth curve with c(0) = Y, c(1) = Z} .

This infimum is achieved by a unique curve c = γ, called the geodesic connecting Y and Z,
which has the following equation [10,25]:

γ(t) = Y1/2 (Y−1/2ZY−1/2)t Y1/2 (7)
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Here, and throughout the following, all matrix functions (for example, square root, logarithm or
power) are understood as symmetric matrix functions [26]. By definition, d(Y, Z) coincides with
L(γ), which turns out to be:

d2(Y, Z) = tr [log(Y−1/2ZY−1/2)]2 (8)

Equipped with the affine-invariant metric Equation (5), the space Pm enjoys two
useful properties, which are the following. The first property is invariance under affine
transformations [10,25]. Recall that an affine transformation of Pm is a mapping Y 7→ Y · A, where A
is an invertible real matrix of size m×m,

Y · A = A† Y A (9)

and † denotes the transpose. Denote by GL(m) the group of m × m invertible real matrices on Pm.
Then, the action of GL(m) on Pm is transitive. This means that for any Y, Z ∈ Pm, there exists
A ∈ GL(m), such that Y.A = Z. Moreover, the Riemannian distance Equation (8) is invariant by
affine transformations in the sense that for all Y, Z ∈ Pm:

d(Y, Z) = d(Y · A, Z · A) (10)

where Y · A and Z · A are defined by Equation (9). The transitivity of the action Equation (9) and the
isometry property Equation (10) make Pm a Riemannian homogeneous space.

The affine-invariant metric Equation (5) turns Pm into a Riemannian manifold of negative
sectional curvature [10,27]. As a result, Pm enjoys the property of the existence and uniqueness of
Riemannian medians. The Riemannian median of N points Y1, · · · , YN ∈ Pm is defined to be:

ŶN = argminY

N

∑
n=1

d(Y, Yn) (11)

where d(Y, Yn) is the Riemannian distance Equation (8). If Y1, · · · , YN do not belong to the same
geodesic, then ŶN exists and is unique [28]. More generally, for any probability measure π on Pm , the
median of π is defined to be:

Ŷπ = argminY

∫
Pm

d(Y, Z)dπ(Z) (12)

Note that Equation (12) reduces to Equation (11) for π = 1
N ∑N

n=1 δYn . If the support of π is not
carried by a single geodesic, then again, Ŷπ exists and is unique by the main result of [28].

To end this section, consider the Riemannian volume associated with the affine-invariant
Riemannian metric [10]:

dv(Y) = det(Y)−
m+1

2 ∏
i≤j

dYij (13)

where the indices denote matrix elements. The Riemannian volume is used to define the integral of a
function f : Pm → R as: ∫

Pm
f (Y)dv(Y) =

∫
. . .
∫

f (Y) det(Y)−
m+1

2 ∏
i≤j

dYij (14)

where the integral on the right-hand side is a multiple integral over the m(m + 1)/2 variables, Yij
with i ≤ j. The integral Equation (14) is invariant under affine transformations. Precisely:∫

Pm
f (Y · A)dv(Y) =

∫
Pm

f (Y)dv(Y) (15)

where Y · A is the affine transformation given by Equation (9). It takes on a simplified form when
f (Y) only depends on the eigenvalues of Y. Precisely, let the spectral decomposition of Y be given by
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Y = U† diag(er1 , · · · , erm)U, where U is an orthogonal matrix and er1 , · · · , erm are the eigenvalues of
Y. Assume that f (Y) = f (r1, . . . , rm), then the invariant integral Equation (14) reduces to:

∫
Pm

f (Y)dv(Y) = cm ×
∫
Rm

f (r1, · · · , rm)∏
i<j

sinh
( |ri − rj|

2

)
dr1 · · · drm (16)

where the constant cm is given by cm = 1
m! ×ωm × 8

m(m−1)
4 , ωm = πm2/2

Γm(m/2)
and Γm is the multivariate

gamma function given in [29]. See Appendix A for the derivation of Equation (16) from Equation (14).

3. Riemannian Laplace Distribution on Pm

3.1. Definition of L(Ȳ, σ)

The Riemannian Laplace distribution on Pm is defined by analogy with the well-known Laplace
distribution on R. Recall the density of the Laplace distribution on R,

p(x|x̄, σ) =
1

2σ
e−|x−x̄|/σ

where x̄ ∈ R and σ > 0. This is a density with respect to the length element dx on R. The density of
the Riemannian Laplace distribution on Pm will be given by:

p(Y| Ȳ, σ) =
1

ζm(σ)
exp

[
−d(Y, Ȳ)

σ

]
(17)

here, Ȳ ∈ Pm, σ > 0, and the density is with respect to the Riemannian volume element Equation (13)
on Pm. The normalizing factor ζm(σ) appearing in Equation (17) is given by the integral:

∫
Pm

exp
[
−d(Y, Ȳ)

σ

]
dv(Y)

Assume for now that this integral is finite for some choice of Ȳ and σ. It is possible to show
that its value does not depend on Ȳ. To do so, recall that the action of GL(m) on Pm is transitive.
As a consequence, there exists A ∈ Pm, such that Ȳ = I.A, where I.A is defined as in Equation (9).
From Equation (10), it follows that d(Y, Ȳ) = d(Y, I.A) = d(Y.A−1, I). From the invariance property
Equation (15): ∫

Pm
exp

[
−d(Y, Ȳ)

σ

]
dv(Y) =

∫
Pm

exp
[
−d(Y, I)

σ

]
dv(Y) (18)

The integral on the right does not depend on Ȳ, which proves the above claim.
The last integral representation and formula Equation (16) lead to the following explicit expression:

ζm(σ) = cm ×
∫
Rm

e−
|r|
σ ∏

i<j
sinh

( |ri − rj|
2

)
dr1 · · · drm (19)

where |r| = (r 2
1 + · · · + r m

2 )
1
2 and cm is the same constant as in Equation (16) (see Appendix B for

more details on the derivation of Equation (19)).
A distinctive feature of the Riemannian Laplace distribution on Pm, in comparison to the Laplace

distribution on R is that there exist certain values of σ for which it cannot be defined. This is
because the integral Equation (19) diverges for certain values of this parameter. This leads to the
following definition.
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Definition 1. Set σm = sup{σ > 0 : ζm(σ) < ∞}. Then, for Ȳ ∈ Pm and σ ∈ (0, σm), the
Riemannian Laplace distribution on Pm, denoted by L(Ȳ, σ), is defined as the probability distribution
on Pm, whose density with respect to dv(Y) is given by Equation (17), where ζm(σ) is defined by
Equation (19).

The constant σm in this definition satisfies 0 < σm < ∞ for all m and takes the value
√

2 for m = 2
(see Appendix C for proofs).

3.2. Sampling from L(Ȳ, σ)

The current section presents a general method for sampling from the Laplace distribution
L(Ȳ, σ). This method relies in part on the following transformation property.

Proposition 2. Let Y be a random variable in Pm . For all A ∈ GL(m),

Y ∼ L(Ȳ, σ) =⇒ Y · A ∼ L(Ȳ · A, σ)

where Y · A is given by Equation (9).

Proof. Let ϕ : Pm → R be a test function. If Y ∼ L(Ȳ, σ) and Z = Y · A, then the expectation of ϕ(Z)
is given by:

E[ϕ(Z)] =
∫
Pm

ϕ(X · A) p(X| Ȳ, σ) dv(X) =
∫
Pm

ϕ(X) p(X · A−1| Ȳ, σ) dv(X)

where the equality is a result of Equation (15). However, p(X · A−1| Ȳ, σ) = p(X| Ȳ · A, σ) by
Equation (10), which proves the proposition.

The following algorithm describes how to sample from L(Ȳ, σ) where 0 < σ < σm. For this, it is
first required to sample from the density p on Rm defined by:

p(r) =
cm

ζm(σ)
e−
|r|
σ ∏

i<j
sinh

( |ri − rj|
2

)
, r = (r1, · · · , rm).

This can be done by a usual Metropolis algorithm [30].
It is also required to sample from the uniform distribution on O(m), the group of real orthogonal

m × m matrices. This can be done by generating A, an m × m matrix, whose entries are i.i.d. with
normal distribution N (0, 1), then the orthogonal matrix U, in the decomposition A = UT with T
upper triangular, is uniformly distributed on O(m) [29] (p. 70). Sampling from L(Ȳ, σ) can now be
described as follows.

Algorithm 1 Sampling from L(Ȳ, σ).

1: Generate i.i.d. samples (r1, · · · , rm) ∈ Rm with density p
2: Generate U from a uniform distribution on O(m)

3: X ← U†diag(er1 , · · · , erm)U

4: Y ← X.Ȳ
1
2

Note that the law of X in Step 3 is L(I, σ); the proof of this fact is given in Appendix D. Finally,
the law of Y in Step 4 is L(I.Ȳ

1
2 = Ȳ, σ) by proposition Equation (2).
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3.3. Estimation of Ȳ and σ

The current section considers maximum likelihood estimation of the parameters Ȳ and σ, based
on independent observations Y1, . . . , YN from the Riemannian Laplace distribution L(Ȳ, σ). The main
results are contained in Propositions 3 and 5 below.

Proposition 3 states the existence and uniqueness of the maximum likelihood estimates ŶN and
σ̂N of Ȳ and σ. In particular, the maximum likelihood estimate ŶN of Ȳ is the Riemannian median of
Y1, . . . , YN , defined by Equation (11). Numerical computation of ŶN will be considered and carried
out using a Riemannian sub-gradient descent algorithm [8].

Proposition 5 states the convergence of the maximum likelihood estimate ŶN to the true value of
the parameter Ȳ. It is based on Lemma 4, which states that the parameter Ȳ is the Riemannian median
of the distribution L(Ȳ, σ) in the sense of definition Equation (12).

Proposition 3 (MLE and median). The maximum likelihood estimate of the parameter Ȳ is the Riemannian
median ŶN of Y1, . . . , YN . Moreover, the maximum likelihood estimate of the parameter σ is the solution σ̂N of:

σ2 × d
dσ

log ζm(σ) =
1
N

N

∑
n=1

d(Ȳ, Yn) (20)

Both ŶN and σ̂N exist and are unique for any realization of the samples Y1, . . . , YN .

Proof of Proposition 3. The log-likelihood function, of the parameters Ȳ and σ, can be written as:

N

∑
n=1

log p(Yn| Ȳ, σ) =
N

∑
n=1

log
(

1
ζm(σ)

e−
d(Ȳ,Yn)

σ

)
= −N log ζm(σ)−

1
σ

N

∑
n=1

d(Ȳ, Yn)

As the first term in the last expression does not contain Ȳ,

argmaxȲ

N

∑
n=1

log p(Yn| Ȳ, σ) = argminȲ

N

∑
n=1

d(Ȳ, Yn)

The quantity on the right is exactly ŶN by Equation (11). This proves the first claim. Now,
consider the function:

F(η) = −N log(ζm(
−1
η

)) + η
N

∑
n=1

d(ŶN , Yn), η <
−1
σm

This function is strictly concave, since it is the logarithm of the moment generating function of a
positive measure. Note that limη→ −1

σm
F(η) = −∞, and admit for a moment that limη→−∞ F(η) = −∞.

By the strict concavity of F, there exists a unique η̂N < −1
σm

(which is the maximum of F), such that
F′(η̂N) = 0. It follows that σ̂N = −1

η̂N
lies in (0, σm) and satisfies Equation (20). The uniqueness of σ̂N

is a consequence of the uniqueness of η̂N . Thus, the proof is complete. Now, it remains to check that
limη→−∞ F(η) = −∞ or just limσ→+∞

1
σ log(ζm(

1
σ )) = 0. Clearly:

∏
i<j

sinh
( |ri − rj|

2

)
≤ AmeBm |r|



Entropy 2016, 18, 98 8 of 19

where Am and Bm are two constants only depending on m. Using this, it follows that:

1
σ

log(ζm(
1
σ
)) ≤ 1

σ
log(cm Am) +

1
σ

log
(∫

Rm
exp((−σ + Bm)|r|)dr1 · · · drm

)
(21)

However, for some constant Cm only depending on m,∫
Rm

exp((−σ + Bm)|r|)dr1 · · · drm = Cm

∫ ∞

0
exp((−σ + Bm)u)um−1du

≤ (m− 1)!Cm

∫ ∞

0
exp((−σ + Bm + 1)u)du =

(m− 1)!Cm

σ− Bm − 1

Combining this bound and Equation (21) yields limσ→+∞
1
σ log(ζm(

1
σ )) = 0.

Remark 1. Replacing F in the previous proof with F(η) = − log(ζm(
−1
η )) + ηc where c > 0 shows

that the equation:

σ2 × d
dσ

log ζm(σ) = c

has a unique solution σ ∈ (0, σm). This shows in particular that σ 7→ σ2 × d
dσ

log ζm(σ) is a bijection
from (0, σm) to (0, ∞).

Consider now the numerical computation of the maximum likelihood estimates ŶN and σ̂N
given by Proposition 3. Computation of ŶN consists in finding the Riemannian median of Y1, . . . , YN ,
defined by Equation (11). This can be done using the Riemannian sub-gradient descent algorithm
of [8]. The k-th iteration of this algorithm produces an approximation Ŷk

N of ŶN in the following way.
For k = 1, 2, . . ., let ∆k be the symmetric matrix:

∆k =
1
N

N

∑
n=1

Log
Ŷ

k−1
N

(Yn)

||Log
Ŷ

k−1
N

(Yn)||
(22)

Here, Log is the Riemannian logarithm mapping inverse to the the Riemannian exponential
mapping:

ExpY (∆) = Y1/2 exp
(

Y−1/2 ∆ Y−1/2
)

Y1/2 (23)

and ||Loga(b)|| =
√

ga(b, b). Then, Ŷk
N is defined to be:

Ŷ
k
N = Exp

Ŷ
k−1
N

(τk ∆k) (24)

where τk > 0 is a step size, which can be determined using a backtracking procedure.
Computation of σ̂N requires solving a non-linear equation in one variable. This is readily done

using Newton’s method.
It is shown now that the empirical Riemannian median ŶN converges almost surely to the true

median Ȳ. This means that ŶN is a consistent estimator of Ȳ. The proof of this fact requires few
notations and a preparatory lemma.

For Ȳ ∈ Pm and σ ∈ (0, σm), let:

E(Y| Ȳ, σ) =
∫
Pm

d(Y, Z) p(Z| Ȳ, σ)dv(Z)

The following lemma shows how to find Ȳ and σ from the function Y 7→ E(Y| Ȳ, σ).

Lemma 4. For any Ȳ ∈ Pm and σ ∈ (0, σm), the following properties hold
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(i) Ȳ is given by:
Ȳ = argminY E(Y| Ȳ, σ) (25a)

That is, Ȳ is the Riemannian median of L(Ȳ, σ).

(ii) σ is given by:
σ = Φ (E(Ȳ| Ȳ, σ)) (25b)

where the function Φ is the inverse function of σ 7→ σ2 × d log ζm(σ)/dσ.

Proof of Lemma 4. (i) Let E(Y) = E(Y| Ȳ, σ). According to Theorem 2.1 in [28], this function
has a unique global minimum, which is also a unique stationary point. Thus, to prove that
Ȳ is the minimum point of E , it will suffice to check that for any geodesic γ starting from Ȳ,
d
dt |t=0E(γ(t)) = 0 [31] (p. 76). Note that:

d
dt
|t=0E(γ(t)) =

∫
Pm

d
dt
|t=0d(γ(t), Z) p(Z| Ȳ, σ)dv(Z) (26)

where for all Z 6= Ȳ [32]:

d
dt
|t=0d(γ(t), Z) = −gȲ(logȲ(Z), γ′(0))d(Ȳ, Z)−1

The integral in Equation (26) is, up to a constant,

d
dt
|t=0

∫
Pm

p(Z| γ(t), σ)dv(Z) = 0

since
∫
Pm

p(Z| γ(t), σ)dv(Z) = 1.

(ii) Differentiating
∫
Pm

exp(− d(Z,Ȳ)
σ )dv(Z) = ζm(σ) with respect to σ, it comes that:

σ2 × d log ζm(σ)/dσ = σ2 ζ ′m(σ)

ζm(σ)
=
∫
Pm

d(Z, Ȳ)p(Z|Ȳ, σ)dv(Z) = E(Ȳ| Ȳ, σ)

which proves (ii).

Proposition 5 (Consistency of ŶN ). Let Y1, Y2, · · · be independent samples from a Laplace distribution
G(Ȳ, σ). The empirical median ŶN of Y1, . . . , YN converges almost surely to Ȳ, as N → ∞ .

Proof of Proposition 5. Corollary 3.5 in [33] (p. 49) states that if (Yn) is a sequence of i.i.d. random
variables on Pm with law π, then the Riemannian median ŶN of Y1, · · · , YN converges almost surely
as N → ∞ to Ŷπ , the Riemannian median of π defined by Equation (12). Applying this result to
π = L(Ȳ, σ) and using Ŷπ = Ȳ, which follows from item (i) of Lemma 4, shows that ŶN converges
almost surely to Ȳ.

4. Mixtures of Laplace Distributions

There are several motivations for considering mixtures of distributions in general. The most
natural approach is to envisage a dataset as constituted of several subpopulations. Another approach
is the fact that there is a support for the argument that mixtures of distributions provide a good
approximation to most distributions in a spirit similar to wavelets.

The present section introduces the class of probability distributions that are finite mixtures of
Riemannian Laplace distributions on Pm. These constitute the main theoretical tool, to be used for
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the target application of the present paper, namely the problem of texture classification in computer
vision, which will be treated in Section 5.

A mixture of Riemannian Laplace distributions is a probability distribution on Pm, whose
density with respect to the Riemannian volume element Equation (13) has the following expression:

p(Y|(vµ, Ȳµ, σµ)1≤µ≤M) =
M

∑
µ=1

vµ × p(Y| Ȳµ, σµ) (27)

where vµ are nonzero weights, whose sum is equal to one, Ȳµ ∈ Pm and σµ ∈ (0, σm) for all
1 ≤ µ ≤ M, and the parameter M is called the number of mixture components.

Section 4.1 describes a new EM algorithm, which computes the maximum likelihood estimates
of the mixture parameters (vµ, Ȳµ, σµ)1≤µ≤M, based on independent observations Y1, . . . , YN from the
mixture distribution Equation (27).

Section 4.2 considers the problem of order selection for mixtures of Riemannian Laplace
distributions. Precisely, this consists of finding the number M of mixture components in Equation (27)
that realizes the best representation of a given set of data Y1, . . . , YN . This problem is solved
by computing the BIC criterion, which is here found in explicit form for the case of mixtures of
Riemannian Laplace distributions on Pm.

4.1. Estimation of the Mixture Parameters

In this section, Y1, . . . , YN are i.i.d. samples from Equation (27). Based on these observations,
an EM algorithm is proposed to estimate (vµ, Ȳµ, σµ)1≤µ≤M. The derivation of this algorithm can be
carried out similarly to [15].

To explain how this algorithm works, define for all ϑ = {(vµ, Ȳµ, σµ)},

ωµ(Yn, ϑ) =
vµ × p(Yn| Ȳµ, σµ)

∑M
s=1 vs × p(Yn| Ȳs, σs)

, Nµ(ϑ) =
N

∑
n=1

ωµ(Yn) (28)

The algorithm iteratively updates ϑ̂ = {(v̂µ, Ŷµ, σ̂µ)} , which is an approximation of the
maximum likelihood estimate of the mixture parameters ϑ = (vµ, Ȳµ, σµ) as follows.

• Update for v̂µ: Based on the current value of ϑ̂, assign to v̂µ the new value v̂µ = Nµ(ϑ̂)
/

N.
• Update for Ŷµ: Based on the current value of ϑ̂, assign to Ŷµ the value:

Ŷµ = argminY

N

∑
n=1

ωµ(Yn, ϑ̂) d(Y, Yn) (29)

• Update for σ̂µ: Based on the current value of ϑ̂, assign to σ̂µ the new value:

σ̂µ = Φ( N−1
µ (ϑ̂)×∑N

n=1 ωµ(Yn, ϑ̂) d(Ŷµ, Yn)) (30)

where the function Φ is defined in Proposition 4.

These three update rules should be performed in the above order. Realization of the update rules
for v̂µ and σ̂µ is straightforward. The update rule for Ŷµ is realized using a slight modification of the
sub-gradient descent algorithm described in Section 3.2. More precisely, the factor 1/N appearing in
Equation (22) is only replaced with ωµ(Yn, ϑ̂) at each iteration.

In practice, the initial conditions (v̂µ0 , Ŷµ0 , σ̂µ0) in this algorithm were chosen in the following
way. The weights (vµ0) are uniform and equal to 1/M; (Ŷµ0) are M different observations from
the set {Y1, .., YN} chosen randomly; and (σ̂µ0) is computed from (vµ0) and (Ŷµ0) according to
the rule Equation (30). Since the convergence of the algorithm depends on the initial conditions,
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the EM algorithm is run several times, and the best result is retained, i.e., the one maximizing the
log-likelihood function.

4.2. The Bayesian Information Criterion

The BIC was introduced by Schwarz to find the appropriate dimension of a model that will fit a
given set of observations [16]. Since then, BIC has been used in many Bayesian modeling problems
where priors are hard to set precisely. In large sample settings, the fitted model favored by BIC ideally
corresponds to the candidate model that is a posteriori most probable; i.e., the model that is rendered
most plausible by the data at hand. One of the main features of the BIC is its easy computation, since
it is only based on the empirical log-likelihood function.

Given a set of observations {Y1, · · · , YN} arising from Equation (27) where M is unknown, the
BIC consists of choosing the parameter:

M̄ = argmaxMBIC(M)

where:
BIC(M) = LL− 1

2
× DF× log(N) (31)

Here, LL is the log-likelihood given by:

LL =
N

∑
n=1

log

(
M

∑
k=1

v̂k p(Yn|Ŷk, σ̂k)

)
(32)

and DF is the number of degrees of freedom of the statistical model:

DF = M× m(m + 1)
2

+ M + M− 1 (33)

In Formula (32), (v̂k, Ŷk, σ̂k)1≤k≤M are obtained from an EM algorithm as stated in Section 4.1
assuming the exact dimension is M. Finally, note that in Formula (33), M× m(m+1)

2 (respectively M
and M− 1) corresponds to the number of degrees of freedom associated with (Ŷk)1≤k≤M (respectively
(σ̂k)1≤k≤M and (v̂k)1≤k≤M).

5. Application to Classification of Data on Pm

Recently, several approaches have used the Riemannian distance in general as the main
innovation in image or signal classification problems [2,15,34]. It turns out that the use of this distance
leads to more accurate results (in comparison, for example, with the Euclidean distance). This
section proposes an application that follows a similar approach, but in addition to the Riemannian
distance, it also relies on a statistical approach. It considers the application of the Riemannian Laplace
distribution (RLD) to the classification of data in Pm and gives an original Laplace classification rule,
which can be used to carry out the task of classification, even in the presence of outliers. It also applies
this classification rule to the problem of texture classification in computer vision, showing that it leads
to improved results in comparison with recent literature.

Section 5.1 considers, from the point of view of statistical learning, the classification of data with
values in Pm. Given data points Y1, · · · , YN ∈ Pm, this proceeds in two steps, called the learning
phase and the classification phase, respectively. The learning phase uncovers the class structure of
the data, by estimating a mixture model using the EM algorithm developed in Section 4.1. Once
training is accomplished, data points are subdivided into disjoint classes. Classification consists of
associating each new data point to the most suitable class. For this, a new classification rule will be
established and shown to be optimal.
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Section 5.2 is the implementation of the Laplace classification rule together with the BIC criterion
to texture classification in computer vision. It highlights the advantage of the Laplace distribution in
the presence of outliers and shows its better performance compared to recent approaches.

5.1. Classification Using Mixtures of Laplace Distributions

Assume to be given a set of training data Y1, · · · , YN . These are now modeled as a realization of
a mixture of Laplace distributions:

p(Y) =
M

∑
µ=1

vµ × p(Y| Ȳµ, σµ) (34)

In this section, the order M in Equation (34) is considered as known. The training phase of these
data consists of learning its structure as a family of M disjoint classes Cµ, µ = 1, · · · , M. To be more
precise, depending on the family (vµ), some of these classes may be empty. Training is done by
applying the EM algorithm described in Section 4.1. As a result, each class Cµ is represented by a
triple (v̂µ, Ŷµ, σ̂µ) corresponding to maximum likelihood estimates of (vµ, Yµ, σµ). Each observation
Yn is now associated with the class Cµ∗ where µ∗ = argmaxµω(Yn, ν̂) (recall the definition from
Equation (28)). In this way, {Y1, · · · , YN} is subdivided into M disjoint classes.

The classification phase requires a classification rule. Following [15], the optimal rule (in the
sense of a Bayesian risk criterion given in [35]) consists of associating any new data Yt to the
class Cµ∗ where:

µ∗ = argmaxµ

{
N̂µ × p(Yt|Ŷµ, σ̂µ)

}
(35)

Here, N̂µ is the number of elements in Cµ. Replacing N̂µ with N × v̂µ, Equation (35) becomes
argmaxµ v̂µ × p(Yt|Ŷµ, σ̂µ). Note that when the weights vµ in Equation (34) are assumed to be equal,

this rule reduces to a maximum likelihood classification rule maxµ p(Yt|Ŷµ, σ̂µ). A quick look at the
expression Equation (17) shows that Equation (35) can also be expressed as:

µ∗ = argminµ

{
− log v̂µ + log ζ(σ̂µ) +

d(Yt , Ŷµ)

σ̂µ

}
(36)

The rule Equation (36) will be called the Laplace classification rule. It favors clusters Cµ having
a larger number of data points (the minimum contains − log v̂µ) or a smaller dispersion away from
the median (the minimum contains log ζ(σ̂µ)). When choosing between two clusters with the same
number of points and the same dispersion, this rule favors the one whose median is closer to Yt . If the
number of data points inside clusters and the respective dispersions are neglected, then Equation (36)
reduces to the nearest neighbor rule involving only the Riemannian distance introduced in [2].

The analogous rules of Equation (36) for the Riemannian Gaussian distribution (RGD) [15] and
the Wishart distribution (WD) [17] on Pm can be established by replacing p(Yt|Ŷµ, σ̂µ) in Equation (35)
with the RGD and the WD and then following the same reasoning as before. Recall that a WD
depends on an expectation Σ ∈ Pm and a number of degrees of freedom n [29]. For the WD,
Equation (36) becomes:

µ∗ = argminµ

{
−2 log v̂(µ)− n̂(µ) (log det (Σ̂−1(µ)Yt)− tr(Σ̂−1(µ)Yt))

}
Here, v̂(µ), Σ̂(µ) and n̂(µ) denote maximum likelihood estimates of the true parameters v(µ),

Σ(µ) and n(µ), which define the mixture model (these estimates can be computed as in [36,37]).

5.2. Application to Texture Classification

This section presents an application of the mixture of Laplace distributions to the context of
texture classification on the MIT Vision Texture (VisTex) database [38]. The purpose of this experiment
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is to classify the textures, by taking into consideration the within-class diversity. In addition, the
influence of outliers on the classification performances is analyzed. The obtained results for the RLD
are compared to those given by the RGD [15] and the WD [17].

The VisTex database contains 40 images, considered as being 40 different texture classes. The
database used for the experiment is obtained after several steps. First of all, each texture is
decomposed into 169 patches of 128× 128 pixels, with an overlap of 32 pixels, giving a total number
of 6760 textured patches. Next, some patches are corrupted, in order to introduce abnormal data into
the dataset. Therefore, their intensity is modified by applying a gradient of luminosity. For each class,
between zero and 60 patches are modified in order to become outliers. An example of a VisTex texture
with one of its patches and an outlier patch are shown in Figure 1.

(a) (b) (c)

Figure 1. Example of a texture from the VisTex database (a), one of its patches (b) and the
corresponding outlier (c).

Once the database is built, it is 15-times equally and randomly divided in order to obtain the
training and the testing sets that are further used in the supervised classification algorithm. Then,
for each patch in both databases, a feature vector has to be computed. The luminance channel is first
extracted and then normalized in intensity. The grayscale patches are filtered using the stationary
wavelet transform Daubechies db4 filter (see [39]), with two scales and three orientations. To model
the wavelet sub-bands, various stochastic models have been proposed in the literature. Among them,
the univariate generalized Gaussian distribution has been found to accurately model the empirical
histogram of wavelet sub-bands [40]. Recently, it has been proposed to model the spatial dependency
of wavelet coefficients. To this aim, the wavelet coefficients located in a p× q spatial neighborhood of
the current spatial position are clustered in a random vector. The realizations of these vectors can be
further modeled by elliptical distributions [41,42], copula-based models [43,44], etc. In this paper,
the wavelet coefficients are considered as being realizations of zero-mean multivariate Gaussian
distributions. In addition, for this experiment the spatial information is captured by using a vertical
(2 × 1) and a horizontal (1 × 2) neighborhood. Next, the 2 × 2 sample covariance matrices are
estimated for each wavelet sub-band and each neighborhood. Finally, each patch is represented
by a set of F = 12 covariance matrices (2 scales × 3 orientations × 2 neighborhoods) denoted
Y = [Y1, · · · , YF].

The estimated covariance matrices are elements of Pm, with m = 2, and therefore, they can be
modeled by Riemannian Laplace distributions. More precisely, in order to take into consideration
the within-class diversity, each class in the training set is viewed as a realization of a mixture of
Riemannian Laplace distributions (Equation (27)) with M mixture components, characterized by
(vµ, Ȳµ, f , σµ, f ), having Ȳµ, f ∈ P2, with µ = 1, · · · , M and f = 1, · · · , F. Since the sub-bands are
assumed to be independent, the probability density function is given by:

p(Y|(vµ, Ȳµ, f , σµ, f )1≤µ≤M,1≤ f≤F) =
M

∑
µ=1

vµ

F

∏
f=1

p(Yf | Ȳµ, f , σµ, f ) (37)
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The learning step of the classification is performed using the EM algorithm presented in
Section 4, and the number of mixture components is determined using the BIC criterion recalled
in Equation (31). Note that for the considered model given in Equation (37), the degree of freedom is
expressed as:

DF = M− 1 + M× F×
(

m(m + 1)
2

+ 1
)

(38)

since one centroid and one dispersion parameter should be estimated per feature and per component
of the mixture model. In practice, the number of mixture components M varies between two and five,
and the M yielding to the highest BIC criterion is retained. As mentioned earlier, the EM algorithm
is sensitive to the initial conditions. In order to minimize this influence, for this experiment, the EM
algorithm is repeated 10 times, and the result maximizing the log-likelihood function is retained.
Finally, the classification is performed by assigning each element Yt ∈ P2 in the testing set to the class
of the closest cluster µ∗, given by:

µ∗ = argminµ

{
− log v̂µ +

F

∑
f=1

log ζ(σ̂µ, f ) +
F

∑
f=1

d(Yt , Ŷµ, f )

σ̂µ, f

}
(39)

This expression is obtained starting from Equations (36) and (37), knowing that F features are
extracted for each patch.

The classification results of the proposed model (solid red line), expressed in terms of overall
accuracy, shown in Figure 2, are compared to those given by a fixed number of mixture components
(that is, for M = 3, dashed red line) and with those given when the within-class diversity is not
considered (that is, for M = 1, dotted red line). In addition, the classification performances given by
the RGD model (displayed in black) proposed in [15] and the WD model (displayed in blue) proposed
in [17] are also considered. For each of these models, the number of mixture components is first
computed using the BIC, and next, it is fixed to M = 3 and M = 1. For all of the considered models,
the classification rate is given as a function of the number of outliers, which varies between zero and
60 for each class.

Figure 2. Classification results.
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It is shown that, as the number of outliers increases, the RLD gives progressively better results
than the RGD and the WD. The results are improved by using the BIC criterion for choosing the
suitable number of clusters. In conclusion, the mixture of RLDs combined with the BIC criterion to
estimate the best number of mixture components can minimize the influence of abnormal samples
present in the dataset, illustrating the relevance of the proposed method.

6. Conclusions

Motivated by the problem of outliers in statistical data, this paper introduces a new distribution
on the space Pm of m × m symmetric positive definite matrices, called the Riemannian Laplace
distribution. Denoted throughout the paper by L(Ȳ, σ), where Ȳ ∈ Pm and σ > 0 are the indexing
parameters, this distribution may be thought of as specifying the law of a family of observations on
Pm concentrated around the location Ȳ and having dispersion σ. If d denotes Rao’s distance on Pm

and dv(Y) its associated volume form, the density of L(Ȳ, σ) with respect to dv(Y) is proportional
to exp(− d(Y,Ȳ

σ )). Interestingly, the normalizing constant depends only on σ (and not on Ȳ). This
allows us to deduce exact expressions for maximum likelihood estimates of Ȳ and σ relying on
the Riemannian median on Pm. These estimates are also computed numerically by means of
sub-gradient algorithms. The estimation of parameters in mixture models of Laplace distributions are
also considered and performed using a new expectation-maximization algorithm. Finally, the main
theoretical results are illustrated by an application to texture classification. The proposed experiment
consists of introducing abnormal data (outliers) into a set of images from the VisTex database and
analyzing their influences on the classification performances. Each image is characterized by a set of
2× 2 covariance matrices modeled as mixtures of Riemannian Laplace distributions in the space P2.
The number of mixtures is estimated using the BIC criterion. The obtained results are compared
to those given by the Riemannian Gaussian distribution, showing the better performance of the
proposed method.
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Appendix: Proofs of Some Technical Points

The subsections below provide proofs (using the same notations) of certain points in the paper.

A. Derivation of Equation (16) from Equation (14)

For U ∈ O(m) and r = (r1, · · · , rm) ∈ Rm, let Y(r, U) = U† diag(er1 , · · · , erm)U. On O(m),
consider the exterior product det(θ) =

∧
i<j θij, where θij = ∑k UjkdUik.

Proposition 6. For all test functions f : Pm → R,

∫
Pm

f (Y) dv(Y) = (m! 2m)−1 × 8
m(m−1)

4

∫
O(m)

∫
Rm

f (Y(r, U)) det(θ) ∏
i<j

sinh
( |ri − rj|

2

) m

∏
i=1

dri

This proposition allows one to deduce Equation (16) from Equation (14), since∫
O(m) det(θ) = 2mπm2/2

Γm(m/2)
(see [29], p. 70).

Sketch of the proof of Proposition 6. In a differential form, the Rao–Fisher metric on Pm is:
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ds2(Y) = tr[Y−1dY]2

For U ∈ O(m) and (a1, · · · , am) ∈ (R∗+)m, let Y = U† diag(a1, · · · , am)U. Then:

ds2(Y) =
m

∑
j=1

da2
j

a2
j
+ 2 ∑

1≤i<j≤m

(ai − aj)
2

aiaj
θ2

ij

(see [10], p. 24). Let ai = eri , then simple calculations show that:

ds2(Y) =
m

∑
j=1

dr2
j + 8 ∑

i<j
sinh2

( ri − rj

2

)
θ2

ij

As a consequence, the volume element dv(Y) is written as:

dv(Y) = 8
m(m−1)

4 det(θ)∏
i<j

sinh
( |ri − rj|

2

) m

∏
i=1

dri

This proves the proposition (the factor m! 2m comes from the fact that the correspondence
between Y and (r, U) is not unique: m! corresponds to all possible reorderings of r1, . . . , rm , and
2m corresponds to the orientation of the columns of U).

B. Derivation of Equation (19)

By Equations (16) and (18), to prove Equation (19), it is sufficient to prove that for all Y ∈ Pm,
d(Y, I) = (∑m

i=1 r2
i )

1/2 if the spectral decomposition of Y is Y = U† diag(er1 , · · · , erm)U, where U is
an orthogonal matrix. Note that d(Y, I) = d(diag(er1 , · · · , erm).U, I) = d(diag(er1 , · · · , erm).U, I.U),
where . is the affine transformation given by Equation (9). By Equation (10), it comes
that d(Y, I) = d(diag(er1 , · · · , erm), I), and so, d(Y, I) = (∑m

i=1 r2
i )

1/2 holds using the explicit
expression Equation (8).

C. The Normalizing Factor ζm(σ)

The subject of this section is to prove these two claims:

(i) 0 < σm < ∞ for all m ≥ 2;
(ii) σ2 =

√
2.

To check (i), note that ∏i<j sinh
( |ri−rj |

2

)
≤ exp(C|r|) for some constant C. Thus, for σ small

enough, the integral Im(σ) =
∫
Rm e−

|r|
σ ∏i<j sinh

( |ri−rj |
2

)
dr given in Equation (19) is finite, and

consequently, σm > 0.
Fix A > 0, such that sinh( x

2 ) ≥ exp( x
4 ) for all x ≥ A. Then:

Im(σ) ≥
∫
C

exp

(
1
4 ∑

i<j
(rj − ri)−

|r|
σ

)
dr

where C is the set of infinite Lebesgue measures:

C =
{

r = (r1, · · · , rm) ∈ Rm : ri ∈ [2(i− 1)A, (2i− 1)A], 1 ≤ i ≤ m− 1, rm ≥ 2(m− 1)A
}

Now:
1
4 ∑

i<j
(rj − ri) =

1
4

rm +
1
4
(−r1 + ∑

i<j,(i,j) 6=(1,m)

(rj − ri))
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Assume m ≥ 3 (the case m = 2 is easy to deal with separately). Then, on C, 1
4 ∑i<j(rj − ri) ≥

1
4 rm + C′ and |r|

σ ≤
(C′′+r2

m)
1
2

σ , where C′ and C′′ are two positive constants (not depending on r).
However, for σ large enough:

1
4 ∑

i<j
(rj − ri)−

|r|
σ
≥ 1

4
rm + C′ − (C′′ + r2

m)
1
2

σ
≥ 0.

and so, the integral Im(σ) diverges. This shows that σm is finite.
(ii) Note the following easy inequalities |r1 − r2| ≤ |r1| + |r2| ≤

√
2|r|, which yield

sinh( |r1−r2|
2 ) ≤ 1

2 e
|r|√

2 . This last inequality shows that ζ2(σ) is finite for all σ <
√

2. In order to
check ζ2(

√
2) = ∞, it is necessary to show:

∫
R2

exp(− |r|√
2
+
|r1 − r2|

2
)dr1dr2 = ∞ (40)

The last integral is, up to a constant, greater than
∫
C exp

(
−|r|+ |r1−r2|√

2

)
dr1dr2, where:

C = {(r1, r2) ∈ R2 : r1 ≥ −r2, r2 ≤ 0} = {(r1, r2) ∈ R2 : r1 ≥ |r2|, r2 ≤ 0}.

On C,

−|r|+ |r1 − r2|√
2

= −|r|+ r1 − r2√
2
≥ −
√

2r1 +
r1 − r2√

2
=
−r1 − r2√

2

However,
∫
C exp

(
−r1−r2√

2

)
dr1dr2 = ∞ by integrating with respect to r1 and then r2, which shows

Equation (40).

D. The Law of X in Algorithm 1

As stated in Appendix A, the uniform distribution on O(m) is given by 1
ω′m

det(θ), where

ω′m = 2mπm2/2

Γm(m/2)
. Let Y(s, V) = V† diag(es1 , · · · , esm)V, with s = (s1, · · · , sm). Since X = Y(r, U), for

any test function ϕ : Pm → R,

E[ϕ(X)] =
1

ω′m

∫
O(m)×Rm

ϕ(Y(s, V))p(s)det(θ)
m

∏
i=1

dsi (41)

Here, det(θ) =
∧

i<j θij and θij = ∑k VjkdVik. On the other hand, by Proposition 6,∫
Pm

ϕ(Y) p(Y| I, σ) dv(Y) can be expressed as:

(m! 2m)−1 × 8
m(m−1)

4
1

ζm(σ)

∫
O(m)

∫
Rm

ϕ(Y(s, V))e−
|s|
σ det(θ) ∏

i<j
sinh

( |si − sj|
2

) m

∏
i=1

dsi

which coincides with Equation (41).
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