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Abstract:

 In the analysis of contingency tables, often one faces two difficult criteria: sampled and target populations are not identical and prior information translates to the presence of general linear inequality restrictions. Under these situations, we present new models of estimating cell probabilities related to four well-known methods of estimation. We prove that each model yields maximum likelihood estimators under those restrictions. The performance ranking of these methods under equality restrictions is known. We compare these methods under inequality restrictions in a simulation study. It reveals that these methods may rank differently under inequality restriction than with equality. These four methods are also compared while US census data are analyzed.
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1. Introduction


When working with a sample contingency table, a researcher might need to adjust it based on information available from other sources. This information might come from prior surveys, censuses, established theories or other sources. Often it comes as marginal information such as row and/or column totals. For example, consider a data set where each subject is cross-classified by income (low/high) and urbanity (urban/rural), and, marginal information about income and urbanity is available from a census. One would like to adjust the sample data to conform to the desired margins from census.



For two-way contingency tables of size ([image: there is no content]), four well-known [1,2] margin-adjusting methods for estimating cell probabilities are raking (RAKE), least squares (LSQ), minimum chi-squared (MCSQ) and maximum likelihood under random sampling (MLRS). Assume that a random sample [image: there is no content] is available from a multinomial [image: there is no content] probability distribution, where [image: there is no content]. Let [image: there is no content] denote the sample cell proportions. Then RAKE finds the estimates [image: there is no content] that minimize the discrimination information,


[image: there is no content]








under the marginal constraints


∑j[image: there is no content]=πi+,∑i[image: there is no content]=π+j,i=1,…,I,j=1,…,J,



(1)




where [image: there is no content] denotes the estimators of target cell probabilities [image: there is no content], [image: there is no content], [image: there is no content] are known, [image: there is no content].



Under the same constraints (1), the methods LSQ, MCSQ, MLRS find the estimates [image: there is no content] that minimize


∑i=1I∑j=1J(pij-[image: there is no content])2pij,∑i=1I∑j=1J([image: there is no content]-pij)2[image: there is no content],-∑i=1I∑j=1Jpijln([image: there is no content]),








respectively.



Instead of given marginal totals, one might like to use restrictions of a more general nature. Consider the survey data [3] from the second National Health and Nutrition Examination Survey (NHANES II).



Table 1a shows the sample proportions and corresponding census proportions of [image: there is no content] contingency tables of income by urbanity, and Table 1b shows the sample proportions and corresponding census proportions of [image: there is no content] contingency tables of education by urbanity. We observe differences in the census and sample values, possibly due to differences in target and sampled populations. For example, in Table 1a census data, the magnitude of row totals ([image: there is no content]) is different from that of the sample data ([image: there is no content]). Similarly, in Table 1b census data, the off-diagonal entries satisfy an order relation ([image: there is no content]), but, in samples, the relation goes in the opposite direction ([image: there is no content]). If such constraints are known a priori (e.g., from census or other sources), then it is wiser to incorporate them into the analysis while adjusting the sample data.



Table 1. (a) Probability of income × urbanity and (b) probability of education × urbanity from NHANES II and the census.



	
NHANES II Data

	

	

	
1980 census






	
Income

	
Urban

	
Rural

	

	

	

	
Income

	
Urban

	
Rural

	




	
Low

	
0.3305

	
0.1955

	
0.5260

	

	

	
Low

	
0.2064

	
0.1127

	
0.3191




	
High

	
0.3200

	
0.1540

	
0.4740

	

	

	
High

	
0.4969

	
0.1840

	
0.6809




	

	
0.6505

	
0.3495

	
1.0

	

	

	

	
0.7033

	
0.2967

	
1.0




	
(n = 16,547)

	

	

	
(n = 50,644,862)




	

	

	

	

	

	
(a)

	

	

	

	




	
Education

	
Urban

	
Rural

	

	

	

	
Education

	
Urban

	
Rural

	




	
Low

	
0.4135

	
0.2682

	
0.6817

	

	

	
Low

	
0.4584

	
0.2107

	
0.6691




	
High

	
0.2360

	
0.0823

	
0.3183

	

	

	
High

	
0.2625

	
0.0684

	
0.3309




	

	
0.6495

	
0.3505

	
1.0

	

	

	

	
0.7209

	
0.2791

	
1.0




	
(n = 8962)

	

	

	
(n = 114,290,384)




	

	

	

	

	

	
(b)

	

	

	

	










Much prior work (e.g., [2]) assumed that random samples were directly taken from the [image: there is no content] with [image: there is no content] row and column margins ([image: there is no content] respectively). However, in practice, there are situations in which a random sample from the target population is inaccessible. For example, often sample units are too expensive to locate or unwilling to participate in the survey. In this case, to estimate the target cell probabilities, we have to take a random sample from a [image: there is no content] that is systematically different from the target population. Clearly, the resulting estimators are typically biased. Researchers in [3] have studied such discrepancies under marginal row and column constraints. A similar problem in a regression context can be found in [4].



It is well-known that all four margin-adjusting methods are asymptotically equivalent under simple random sampling. However, their small sample results can be different. Using simulation methods, [5] found that MCSQ is best, followed by MLRS, RAKE and LSQ, in order of performance in average root mean squared error. However, for margin adjusting, [3] found that both RAKE and MLRS dominate MCSQ; and LSQ is inferior to all three methods when the sampled population is systematically different from the target population. In this paper, we consider general linear constraints (not necessarily marginal) under inequality restrictions and study the performance of those four methods. For simulation (Section 4), we have restricted our attention to [image: there is no content] tables to facilitate comparison with Little and Wu [3].




2. Solutions from Each Method


First, we vectorize the [image: there is no content] contingency table of probabilities lexicographically, say, [image: there is no content]=([image: there is no content]) denote the [image: there is no content] target population probability vector. Thus, the pair [image: there is no content], for some [image: there is no content]. We assume that the available knowledge of the population can be expressed as r constraints as


[image: there is no content]



(2)




where [image: there is no content] denotes an [image: there is no content], matrix of constants with rank[image: there is no content], [image: there is no content] denotes the [image: there is no content] corresponding known values vector.



First, we set each of these four methods as an optimization problem. The objective function [image: there is no content] takes the form [image: there is no content] for RAKE, [image: there is no content] for LSQ, [image: there is no content] for MCSQ and [image: there is no content] for MLRS, respectively. We seek to minimize the convex function [image: there is no content] over a region ℓ defined as


[image: there is no content]



(3)




and this is known as the [image: there is no content] problem. The Kuhn–Tucker method [6] identifies an equivalent [image: there is no content] problem that could be substantially easier to solve than the primal problem (for larger [image: there is no content]).



The [image: there is no content] of the problem is defined by


L([image: there is no content],[image: there is no content])=f([image: there is no content])+[image: there is no content]T(AT[image: there is no content]-c), if λi≥0for all i,[image: there is no content]∈ℓ,








and, [image: there is no content] if [image: there is no content] for some [image: there is no content][image: there is no content] if [image: there is no content], where [image: there is no content] are called Lagrange multipliers.



Consider maximization in [image: there is no content] and minimization in [image: there is no content] of L([image: there is no content],[image: there is no content]). Suppose there exists ([image: there is no content]*,[image: there is no content]*) for which L([image: there is no content],[image: there is no content]*)≤L([image: there is no content]*,[image: there is no content]*)≤L([image: there is no content]*,[image: there is no content]),∀[image: there is no content],[image: there is no content], if and only if


∂L∂[image: there is no content]=∑s[∂f(πs)∂πs+∑i=1rλi(ait-ci)]=0,fort=1,2,…,IJ,at([image: there is no content]*,[image: there is no content]*),λi*(∑taitπt*-ci)=0,1≤i≤r,AT[image: there is no content]*-C≤0,λi*≥0,1≤i≤r,



(4)




then [image: there is no content]* is a Kuhn–Tucker vector and [image: there is no content]* is an optimal solution of the primal problem, and L([image: there is no content]*,[image: there is no content]*) is the optimal value of the L([image: there is no content],[image: there is no content]).



More generally, [image: there is no content]* is a Kuhn–Tucker vector if and only if -∞<inf[image: there is no content]L([image: there is no content]*,[image: there is no content])=inf[image: there is no content]sup[image: there is no content]L([image: there is no content],[image: there is no content])=sup[image: there is no content]inf[image: there is no content]L([image: there is no content],[image: there is no content]). The dual problem is given by sup[image: there is no content]g([image: there is no content]), where the function g is defined by g([image: there is no content])=inf[image: there is no content]L([image: there is no content],[image: there is no content]) [6]. Often, the dual problem has a nice form, and [image: there is no content]* can be found by numerical methods. Then, one can use the relation (4) to find the solution [image: there is no content]* to the primal problem.




3. Models Relating the Sampled and Target Populations


Suppose a random sample of size n is taken from the sampled population. For the [image: there is no content]th cell, let [image: there is no content],[image: there is no content] be the target and sampled probabilities, respectively. Consider the RAKE model in Equation (5), below which it specifies how the sampled and target populations are connected. Theorem 1 shows that the solution to the model in (5) are the maximum likelihood (ML) estimators under the RAKE model.



Theorem 1. Suppose the probabilities of target and sampled populations are related by


ln([image: there is no content]/[image: there is no content])=∑i=1rλi*(∑tait-ci)AT[image: there is no content]*-c≤0,λi*(∑taitπt*-ci)=0,λi*≥0,1≤i≤r.



(5)




Then [image: there is no content], given by (5), are the maximum likelihood estimates of the cell probabilities [image: there is no content] in the target population.



Proof. Consider the (primal) raking problem of minimizing ∑t=1IJ[image: there is no content]ln([image: there is no content][image: there is no content]) subject to AT[image: there is no content]-c≤0. Using an example from (p. 309, [7]), the Lagrangian for this problem is given by


L([image: there is no content],[image: there is no content])=∑t=1IJ[image: there is no content]ln([image: there is no content][image: there is no content])+∑i=1rλi(∑tait[image: there is no content]-ci),



(6)







If [image: there is no content] for all i, [image: there is no content]∈ℓ, L([image: there is no content],[image: there is no content])=-∞ if [image: there is no content] for some i, [image: there is no content]∈ℓ, L([image: there is no content],[image: there is no content])=+∞, if [image: there is no content].



To find the dual problem, define


g([image: there is no content])=inf[image: there is no content]L([image: there is no content],[image: there is no content])=inf[image: there is no content]∑t=1IJ[image: there is no content]ln[image: there is no content][image: there is no content]exp[-∑i=1rλi(ait-ci)],=-ln∑t=1IJ[image: there is no content]exp[-∑i=1rλi(ait-ci)],



(7)







If [image: there is no content], [image: there is no content], if [image: there is no content] for some i. This follows easily by Jensen’s inequality. The dual problem is sup[image: there is no content]≥0g([image: there is no content]) = -inf[image: there is no content]≥0∑t=1IJ[image: there is no content]exp-∑i=1rλi(ait-ci), from (7).



The dual problem is solved numerically (e.g., using the Newton–Raphson method), and we obtain the dual solutions [image: there is no content]=[image: there is no content]* as functions of [image: there is no content]. Differentiating L in (6) with respect to each [image: there is no content] and setting equal to zero, the primal solutions of [image: there is no content] are given by


[image: there is no content]








Assuming the counts [image: there is no content] follow a multinomial (n,[image: there is no content],∀t) distribution, the MLE of [image: there is no content] is given by τ^t=[image: there is no content]=[image: there is no content]/n. Since [image: there is no content] are functions of [image: there is no content], hence [image: there is no content] are MLEs. Thus, raking yields ML estimates for the RAKE model (5).  ☐



In general, consider the model


(πt*/[image: there is no content])α=∑i=1λi(∑t=1IJait-ci)AT[image: there is no content]*-c≤0,λi*(∑taitπt*-ci)=0,λi*≥0,1≤i≤r.



(8)







By using similar arguments as above, LSQ is ML for the LSQ model obtained by setting [image: there is no content], MLRS is ML for the MLRS model obtained by setting [image: there is no content], and MCSQ is ML for the MCSQ model obtained by setting [image: there is no content] in (8). Of course, [image: there is no content] in (8) corresponds to RAKE.



Theorem 3.1 shows that for any model α, (8) yields MLEs of [image: there is no content] for that model. If [image: there is no content] is generated from a method different from α in (8), the solution is still available, but it is not MLE under (8). Hence, it is of interest how these four different methods stack up against each other (as MLE versus not MLE) in a given situation. To address this issue, a simulation study is conducted in the next section.




4. A Simulation Study


We performed a simulation study to compare the methods in a systematic way. We restrict our attention to [image: there is no content] tables so that comparison with equality [3] is facilitated. In contrast to margin-adjusting methods (e.g., [3]) where only one parameter, e.g. [image: there is no content], is enough to consider, for inequality constraints one needs to consider all [image: there is no content],∀i,j. In this simulation, we have saught solution of the primal problem itself because the table dimensions ([image: there is no content]) are the smallest, and duality approach does not help much to reduce the necessary computation load.



We have considered two types of inequality restrictions in the simulation: isotonic and nonisotonic (see [7] for definitions). For each of the 16 designs described below, sample sizes [image: there is no content] are considered. Thus, in each of [image: there is no content] cases, for a given [image: there is no content] as the target population vector, we vary [image: there is no content] and find [image: there is no content] using (8). Then, we take multinomial random samples from this [image: there is no content] and calculate p. This process is repeated 200 times for each of 48 cases.



For isotonic constraints, we use a tree order as: [image: there is no content]≤{π12,π21}. The initial choices are [image: there is no content]=([image: there is no content],π12,π21,π22)=(.232,.232,.232,.304) or (0.231,0.303,0.264,0.202);[image: there is no content]=(λ1,λ2)=(0.5,0.5),(0,0.5),(0.1,0.1),(0.1,0.5). [The results from [image: there is no content]=(0.5,0),(0.5,0.1) are not reported because performancewise [image: there is no content]].



For isotonic constraints, closed-form solutions ([image: there is no content]*) are available for all four methods as follows. The LSQ under tree order is calculated using the algorithm on page 19 of [7], and, MLRS = LSQ. The RAKE and MCSQ values are given by least square projections of [image: there is no content] and [image: there is no content] on to the constraints of interest, and then applying the inverse of those transformations (see pages 240 and 278 of [7], respectively).



For nonisotonic constraints, we consider the constraints: [image: there is no content]+π12≤c1, [image: there is no content]+π21≤c2, where [image: there is no content] or (0.6,0.7). Here, we use [image: there is no content]=(0.184,0.216,0.416,0.184) or [image: there is no content] with [image: there is no content]=(λ1,λ2)=(0.5,0.5),(0,0.5),(0.1,0.1),(0.1,0.5).



With given [image: there is no content] and the target probabilities [image: there is no content], first we determine the sample probabilities [image: there is no content] using NEQNF of IMSL libraries of Fortran (version 7, Rogue Wave Software, Inc., Louisville, CO, USA). Then, a multinomial random sample of size n is taken from the sampled population by using the multinomial random number generator GGMTN in the IMSL subroutine library, and we calculate p.



Next, [image: there is no content]* is found for each of four methods. When there is no violation, no adjustment is needed. When there is a violation, the solution is found by using the subroutine LCONG of IMSL.



After we find the estimates [image: there is no content]*={πi*} for either constraints, we calculate the root mean squared error of the estimates as RMSE = [image: there is no content], where [image: there is no content] is the true value of the target probability. To provide a more systematic comparison between these four methods, we compute a relative RMSE (RRMSE) defined as


[image: there is no content]



(9)




where [image: there is no content] is the root mean squared error of the method that is ML under the model that generated the data, so [image: there is no content] or [image: there is no content] for each model under its corresponding method.



Figure 1, Figure 2 and Figure 3 give visual comparisons of the methods under each model, for sample sizes [image: there is no content], respectively. For each figure the horizontal reference line with 0 RRMSE corresponds to the ML estimates under the model that was used to generate the data.


Figure 1. RRMSEs for data generated under four models (a) RAKE, (b) LSQ, (c) MCSQ, (d) MLRS, when [image: there is no content]. The horizontal reference line at 0 RRMSE corresponds to ML estimates under the model.



[image: Entropy 18 00097 g001 1024]





Figure 2. RRMSEs for data generated under four models (a) RAKE, (b) LSQ, (c) MCSQ, (d) MLRS, when [image: there is no content]. The horizontal reference line at 0 RRMSE corresponds to ML estimates under the model.



[image: Entropy 18 00097 g002 1024]





Figure 3. RRMSEs for data generated under four models (a) RAKE, (b) LSQ, (c) MCSQ, (d) MLRS, when [image: there is no content]. The horizontal reference line at 0 RRMSE corresponds to ML estimates under the model.



[image: Entropy 18 00097 g003 1024]






As mentoned earlier, for each sample size a total of 16 designs are considered, 1–8 are nonisotonic and 9–16 are isotonic; these are listed below. These designs are so numbered on the horizontal axis of each of the Figure 1, Figure 2 and Figure 3.



1. Nonisotonic; [image: there is no content]+π12≤0.4,[image: there is no content]+π21≤0.4,[image: there is no content]=(0.184,0.216,0.416,0.184) with [image: there is no content]=(0.5,0.5); 2. ...[image: there is no content]=(0,0.5); 3. ...[image: there is no content]=(0.1,0.1); 4. ...[image: there is no content]=(0.1,0.5); 5. Nonisotonic; [image: there is no content]+π12≤0.6,[image: there is no content]+π21≤0.7,[image: there is no content]=[image: there is no content] with [image: there is no content]=(0.5,0.5); 6. ...[image: there is no content]=(0,0.5); 7. ...[image: there is no content]=(0.1,0.1); 8. ...[image: there is no content]=(0.1,0.5); 9. Isotonic; [image: there is no content]≤{π12,π21},[image: there is no content]=(0.232,0.232,0.232,0.304) with [image: there is no content]=(0.5,0.5); 10. ...[image: there is no content]=(0,0.5); 11. ...[image: there is no content]=(0.1,0.1); 12. ...[image: there is no content]=(0.1,0.5); 13. Isotonic; [image: there is no content]≤{π12,π21},[image: there is no content]=(0.231,0.303,0.264,0.202) with [image: there is no content]=(0.5,0.5); 14. ...[image: there is no content]=(0,0.5); 15. ...[image: there is no content]=(0.1,0.1); 16. ...[image: there is no content]=(0.1,0.5).



Overall RMSE of estimators. A crude comparison of the estimators is presented in Table 2, which gives the average RMSEs for each method over the 16 designs in each of isotonic and nonisotonic cases. Although the designs are different, this gives some illustration of the performance of the four methods. The RNDM values are obtained when the sample is taken directly from the target population. One would expect these values to be smaller than those that were generated from the sampled population, but we did not find that to be the case in our simulation study although they are pretty close.



Table 2. Average root mean square error (RMSE) over all 16 designs by method and model that generated the data.



	

	
Nonisotonic

	

	
Isotonic




	

	
RAKE

	
LSQ

	
MCSQ

	
MLRS

	

	
RAKE

	
LSQ

	
MCSQ






	
Rake

	
0.0032

	
0.0061

	
0.0069

	
0.0034

	

	
0.0089

	
0.0063

	
0.0076




	
LSQ

	
0.0038

	
0.0060

	
0.0058

	
0.0038

	

	
0.0069

	
0.0062

	
0.0062




	
MCSQ

	
0.0037

	
0.0061

	
0.0054

	
0.0038

	

	
0.0077

	
0.0065

	
0.0061




	
MLRS

	
0.0033

	
0.0068

	
0.0061

	
0.0033

	

	
0.0109

	
0.0055

	
0.0054




	
RNDM

	
0.0039

	
0.0072

	
0.0069

	
0.0053

	

	
0.0084

	
0.0080

	
0.0078










When the target and sampled populations differ, one would expect that the method that is ML under the model that generated the data would have the lowest RMSE. For nonisotonic cases, RAKE satisfies this property; although MLRS does not satisfy this property, it follows RAKE closely. The RAKE estimates had the lowest RMSE under LSQ and MCSQ models as well. Thus, RAKE estimates seem to perform best, while MLRS follows RAKE very closely in each case. For the isotonic case, however, a different picture arises. Here, the LSQ estimates had the smallest RMSEs for the data generated under the RAKE model. Both LSQ and MCSQ estimates had the smallest RMSEs when the data were generated under the respective models. For MLRS, the MLRS estimates had slightly higher RMSEs than that of MCSQs.



Figure 1, Figure 2 and Figure 3 present RRMSEs for data generated under each of the four models for all 16 problems with n = 30, 100, 1000, respectively. To interpret them, first note that smaller values of [image: there is no content] mean stronger constraints. In addition, a negative value of RRMSE reflects that bias from model misspecification is represented by lower variance than the method that is ML for the model that generated the data.



Certain reasonable patterns emerge from these figures; estimates based on the correct model dominate other methods when the sample size is large, or when the constraints are isotonic; here, the bias from model misspecification dominates RMSE. Results from nonisotonic constraints are more homogeneous. For them, LSQ turned out to be generally larger than MLRS.



Panel a of the figures summarizes results for the data generated under the RAKE model. For nonisotonic constraints, RAKE and MLRS performed similarly. For n = 30, 100, LSQ is slightly inferior to the other methods for the nonisotonic constraints with [image: there is no content] but is competitive when [image: there is no content]. RAKE seems to dominate (or close) and MCSQ performs worst (except when n = 30) of all nonisotonic constraints cases 1–8. RAKE performs slightly worse for isotonic constraints cases when n = 30, but is best again when n = 100, 1000.



Panel b of the figures summarizes results for data generated under the LSQ model. For all constraints with n 1000, LSQ and MLRS performed similarly. For n = 30, 100, LSQ is much inferior to MLRS for the nonisotonic constraints with [image: there is no content] but performs similarly when [image: there is no content]. MCSQ performs worst throughout, except for isotonic constraints with n = 30, when all three methods did better than RAKE, but this turned around when n = 100, 1000.



Panel c of the figures summarizes results for the data generated under the MCSQ model. Although for isotonic constraints LSQ = MLRS, for nonisotonic constraints, LSQ performed much worse than MLRS. The MCSQ values were close to the LSQ values for all constraints, except for isotonic constraints designs 9, 12 with n = 1000 when MCSQ is way off. Rake performed competitively with MLRS for nonisotonic cases. However, for isotonic constraints, RAKE was outperformed by other three methods for all n.



Panel d of the figures summarizes results for data generated under the MLRS model. Although for isotonic constraints MCSQ performed best for all n, with nonisotonic constraints, MCSQ is beaten by all other methods for n = 100, and by RAKE and MLRS when n = 30. LSQ performed much worse than MLRS for all nonisotonic cases. MLRS performed best for nonisotonic constraints and was close to best (MCSQ) for isotonic constraints, for all n.




5. Applying Four Methods to Real World Data


In this section, we illustrate the four methods studied in this paper using the data from [3] on the second National Health and Nutrition Examination Survey (NHANES ⨿). The data are presented in Table 1.



It is not hard to observe that in Table 1a the sample cell and marginal proportions differ considerably from the census (see Section 1). From the census values for the income case from Table 1a, we see [image: there is no content]+π12=0.3191. Hence, it is reasonable to consider [image: there is no content]+π12≤0.32; observing similar other discrepancies, we consider the following three inequality restrictions:


[image: there is no content]+π12≤0.32π12+π22≤0.30[image: there is no content]-2π12≤0,



(10)




and for the education case, we consider


[image: there is no content]+π12≤.67[image: there is no content]+π21≥.72.



(11)







For each problem, the estimates and RMSEs are computed and the results are displayed in Table 3. We consider the census proportions as the target probabilities {[image: there is no content]}.


Table 3. Proportional unexplained root mean square error (PURMSE) values for different methods under inequality restrictions for Income and education.


	Variable
	RAKE
	LSQ
	MCSQ
	MLRS





	Income
	92.88
	92.88
	98.50
	96.84



	Education
	94.58
	88.36
	93.96
	94.24









Let NHANES ⨿ data be our sample proportions [image: there is no content]. Let {[image: there is no content]} be the estimates under the constraints in (10), also under (11) (considered separately). Below, we define the adjusted RMSE, the unadjusted RMSE, and the proportional unexplained root mean square error (PURMSE), where “adjusted” means estimates under constraints, and “unadjusted” means unrestricted sample proportions.




adjustedRMSE=∑i∑j([image: there is no content]-[image: there is no content])2,



(12)






unadjustedRMSE=∑i∑j(pij-[image: there is no content])2,



(13)






PURMSE=100*unadjustedRMSE-adjustedRMSEunadjustedRMSE.



(14)





The larger value of PURMSE means that the adjusted MSEs are smaller than the unadjusted, which subsequently means that the used constraints give estimates that are quite close to the target values. Table 3 shows that all four methods perform well. Among all methods, LSQ performs comparatively the worst.




6. Conclusions


The paper [3] compared four margin-adjusting methods using equality constraints of known marginal totals for [image: there is no content] contingency tables. Here, under general linear inequality constraints, theoretical models are proposed for the differences between the sampled and target populations. To compare the performance of these four methods, a simulation is performed for the case of [image: there is no content]. Based on this simulation, we find that the performance of the methods depends on the specific type of constraints. For nonisotonic constraints, we find RAKE to perform the best, with MLRS being a close second. The MCSQ and LSQ perform worse, of which MCSQ is slightly better than LSQ. These findings are parallel to those of [3].



However, we also find that the performance ranking of the methods changes for isotonic constraints (tree order). Here, MCSQ and LSQ (= MLRS) perform better than RAKE. In addition, MCSQ is slightly better than LSQ (= MLRS). These results are very different from those of [3].



The theoretical models for the differences between the sampled and target populations, and the corresponding methods and techniques described can be extended to higher dimensions in a similar manner as in Theorem 1.



As opposed to the case under equality restrictions, the distribution of estimators under inequality constraints is not known; hence, their mean and standard errors are also not tractable. It is difficult to explain the different behavior of the estimators under isotonic and non-isotonic constraints as seen in simulation. It is well-known that estimators under isotonic constraints have special properties of partial order relations.



We have fixed the values of [image: there is no content] earlier in the simulation keeping in par with applications. This makes the choices of [image: there is no content] restricted under inequality constraints. Note that with equality constraints, once we fix [image: there is no content], all values of [image: there is no content] are fixed. This is not the case under inequality constraints. The choices of [image: there is no content],λi have to be such that the optimization problem has a solution.
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