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Abstract: Preference analysis is a class of important issues in ordinal decision making. As available
information is usually obtained from different evaluation criteria or experts, the derived preference
decisions may be inconsistent and uncertain. Shannon entropy is a suitable measurement of
uncertainty. This work proposes the concepts of preference inconsistence set and preference
inconsistence degree. Then preference inconsistence entropy is introduced by combining preference
inconsistence degree and Shannon entropy. A number of properties and theorems as well as two
applications are discussed. Feature selection is used for attribute reduction and sample condensation
aims to obtain a consistent preference system. Forward feature selection algorithm, backward feature
selection algorithm and sample condensation algorithm are developed. The experimental results
show that the proposed model represents an effective solution for preference analysis.
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1. Introduction

Multiple attribute decision making refers to making preference decisions between available
alternatives characterized by multiple, usually conflicting, attributes [1]. A multiple attributes decision
making system can be depicted by using the alternative performance matrix, where element xij is
the rating of alternative i with respect to attribute j. A weight vector is designed to indicate the
significance of every attribute. Various methods for finding weights can be found in the literature,
such as the analytic hierarchy process (AHP) method [2], weighted least squares method [3], Delphi
method [4], the entropy method, multiple objective programming [5,6], principal element analysis [6],
etc. Ordinal decision making is a class of important issues in multiple attribute decision making where
the conditional attributes and the decision are all ordinal. There are numerous applications associated
with an assignment of objects evaluated by a set of criteria to pre-defined preference-ordinal decision
classes, such as credit approval, stock risk estimation, and teaching evaluations [7]. The alternative
performance matrix and weights vector method cannot reflect the ordinal nature of decisions based on
conditional attributes, therefore, is not a suitable tool for ordinal decision making.

Preference analysis is a class of important issues in ordinal decision making. Preference relations
are very useful in expressing a decision maker’s preference information in decision problems in
various fields. During the past years, the use of preference relations has received increasing attention,
and a number of studies have focused on this issue, and various types of preference relations have
been developed, such as, multiplicative preference relation introduced by Saaty [2], incomplete
multiplicative preference relation introduced by Harker [8], interval multiplicative preference relation
introduced by Saaty and Vargas [9], incomplete interval multiplicative preference relation introduced
by Xu [10], triangular fuzzy multiplicative preference relation introduced by Van Laarhoven and
Pedrycz [11], fuzzy preference relation introduced by Luce and Suppes [12], incomplete fuzzy
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preference relation introduced by Alonso et al. [13], interval fuzzy preference relation introduced
by Xu and Herrera et al., and linguistic preference relation introduced by Herrera et al. [14–16].

One task of preference analysis is to predict a decision maker’s preference according to available
information. A lot of methods for preference analysis can be found in the literature. Greco et al.
introduced a dominance rough set model that is suitable for preference analysis [17,18]. They extracted
dominance relations from multiple criteria, and constructed similarity relations and equivalence
relations from numerical attributes and nominal features respectively. In [19], Hu et al. developed
a rough set model based on fuzzy preference by integrating fuzzy preference relations with fuzzy
rough set model, and generalized the dependency to compute relevance between the criteria and
decision and obtain attribute reductions. In ordinal decision making, there exists a basic assumption
that better conditions should result in better decisions, which usually holds for a single criterion. For
multi-criteria ordinal decision system, however, the decision is made considering various sources
of information which is usually obtained from different evaluation criteria or experts and thus the
decision preference might be inconsistent with some criteria.

Preference inconsistence leads to decision uncertainty. One of the decision uncertainty measures
which have been proposed by researchers is the Shannon entropy concept. The entropy concept is used
in various scientific fields. In transportation models, entropy acts as a measure of dispersal of trips
between origin and destinations. In physics, the word entropy has important physical implications
as the amount of “disorder” of a system. Also the entropy associated with an event is a measure
of the degree of randomness in the event. The concept of Shannon’s entropy has an important role
in information theory and is used to refer to a general measure of uncertainty [1]. In preference
analysis, some methods based on entropy have been introduced in the literature. Abbas presented
an optimal question-selection algorithm to elicit von Neumann and Morgenstern utility values by
using information theory and entropy-coding principles for a set of ordered prospects of a decision
situation [20]. Lotfi extended the Shannon entropy method to interval data for obtaining the weights
of criteria of a multiple attributes decision making problem [1]. Yang and Qiu proposed the expected
utility-entropy (EU-E) measure of risk and a decision making model about preference orderings among
gambles based on expected utility and entropy of an action involving risk [21]. Abbas introduced
an analogy between probability and utility through the notion of a utility density function and
illustrate the application of this analogy to the maximum entropy principle [22]. A normative method
was presented to assign unbiased utility values when only incomplete preference information was
available about the decision maker [23]. In this research, Shannon entropy has been expanded to
preference inconsistence entropy and then is used to measure the uncertainty of preference decision to
conditional attributes.

Based on this idea, the contributions of this work include: (1) this paper defines a preference
inconsistence set and preference inconsistence degree, and some properties are given; (2) based
on preference inconsistence degree and Shannon entropy, the notion of preference inconsistence
entropy is proposed; (3) relative attribute significance is defined, feature selection is investigated,
and meanwhile, a forward feature selection algorithm and backward feature selection algorithm
are developed; (4) a sample condensation algorithm is also given; (5) finally, some experiments are
completed to verify the proposed approach. The experimental results show that relative attribute
significance based on preference inconsistence entropy can reflect the significance of features in
a preference decision and the developed feature selection and sample condensation algorithms are
helpful to make the data set preference consistent.

The remainder of the paper is organized as follows: Section 2 provides a brief overview of
preference relations and Shannon entropy, and some basic formulas that will be used in the remaining
sections of this paper are given. In Section 3, the concepts of preference inconsistence degree and
preference inconsistence entropy (PIE) are proposed. Some properties of PIE are discussed and
a series of theorems are put forward. Section 4 presents two applications of PIE: feature selection and
sample condensation. Relative attribute significance is defined. A forward feature selection algorithm
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and backward feature selection algorithm as well as sample condensation algorithm are developed.
Numerical experiments are reported in Section 5. Finally, Section 6 wraps up with conclusions.

2. Preliminary Knowledge

In this section, we will review some basic concepts about preference relation and information
entropy, which have been addressed in [24–31].

2.1. Information Entropy

In 1948, Claude Shannon introduced the entropy term, nowadays named Shannon entropy.
Shannon entropy is a simple quantitative measure of uncertainty. The following concepts are taken
from Shannon’s original paper [30]. Let X be a random variable, taking a finite number of possible
values x1, x2, x3, . . . , xn with respective probabilities pi ě 0 for i = 1, 2, . . . , n and

řn
i“1 pi “ 1.

The Shannon entropy H(X) is defined as:

H pXq “ ´
ÿ

n
i“1 pilogpi (1)

Suppose there are two events, X and Y, in question with m possibilities for the first and n for
the second. Let p(i, j) be the probability of the joint occurrence of i for the first and j for the second.
The entropy of the joint event is:

H pX, Yq “ ´
ÿ

i,j p pi, jq logp pi, jq (2)

For any particular value i for X, we can assume there is a conditional probability p pj|iqwhere Y
has the value i. The conditional entropy of Y, H pY|Xq, is defined as the average of entropy of Y for
each value of X weighted according to the probability of getting that particular X. That is:

H pY|Xq “ ´
ř

i,j p pi, jq logp pj|iq
“ ´

ř

i,j p pi, jq logp pi, jq `
ř

i,j p pi, jq log
ř

j
p pi, jq

“ H pX, Yq ´ H pXq

(3)

The conditional entropy of Y when X is known is the joint event X, Y minus the entropy
of X. We will use this property to calculate the relative attribute significance for our feature
selection algorithm.

2.2. Preference Relation

A decision system is a tuple DS “ ă U, AYD, f ą, where U is a nonempty finite set of objects,
A “ ta1, a2, . . . , amu is a set of conditional attributes to characterize the objects, D “ td1, d2, . . . , dnu

is the decision, fa : U Ñ Va is a mapping for any a P A, where Va is called the value set of attribute
a. The decision system DS is referred to as ordinal decision system, if d1 ď d2 ď . . . ď dn, and
ai1 ď ai2 ď . . . ď aik holds for any ai P A, where tai1, ai2, . . . , aiku is the value set of conditional
attribute ai p1 ď i ď mq.

Let DS “ ă U, AYD, f ą is an ordinal decision system. For preference analysis, the following
relations are defined. @C Ď A, x, y P U:

RěC “ tpx, yq P U ˆU : f px, aq ě f py, aq , @a P Cu (4)

RďC “ tpx, yq P U ˆU : f px, aq ď f py, aq , @a P Cu (5)

RěD “ tpx, yq P U ˆU : f px, Dq ě f py, Dqu (6)

RďD “ tpx, yq P U ˆU : f px, Dq ď f py, Dqu (7)
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where f px, aq is attribute value of object x with respect to attribute a, and f px, Dq is the decision of
object x.

RěC and RďC are referred to as conditional domination relation. RěD and RďD are referred to as
decision domination relation.

If px, yq P RěC , we say that object x is greater than or equal to object y with respect to C. In other
word, object x is not less than object y with respect to C.

If px, yq P RďC , we say that object x is less than or equal to object y with respect to C. In other word,
object x is not greater than object y with respect to C.

If px, yq P RěD , we say that the decision object x is better than or equal to object y. In other word,
the decision of object x is not worse than that of y.

If px, yq P RďD , we say that the decision object x is worse than or equal to object y. In other word,
the decision of object x is not better than that of y.

In preference analysis, x’s decision should not be worse than y’s if x is better than y in terms of
criterion a; otherwise, the decision is inconsistent [14]. Similarly, x’s decision should not be better than
y’s if x is less than y in terms of criterion a; otherwise, the decision is inconsistent. Rě and Rď stands
only for relation of not less than and not greater than, respectively, but cannot represent relations strictly
greater than and strictly less than. We extend the domination relation to strict preference relation:

RąC “ tpx, yq P U ˆU : f px, aq ą f py, aq , @a P Cu (8)

RăC “ tpx, yq P U ˆU : f px, aq ă f py, aq , @a P Cu (9)

RąD “ tpx, yq P U ˆU : f px, Dq ą f py, Dqu (10)

RăD “ tpx, yq P U ˆU : f px, Dq ă f py, Dqu (11)

If px, yq P RąC , we say object x is better than object y with respect to C. If px, yq P RďC , we say object
x is less than object x with respect to C.

If px, yq P RąD , we say the decision of object x is better than that of y. If px, yq P RďD , we say the
decision of object x is less than that of y.

In this work, Rě and Rą are all named as upward domination relations, and Rď and Ră

are all named as downward domination relations. The preference information granulation can be
represented as:

rxsěC “
 

y P U : py, xq P RěC
(

(12)

rxsďC “
 

y P U : py, xq P RďC
(

(13)

rxsąC “
 

y P U : py, xq P RąC
(

(14)

rxsăC “
 

y P U : py, xq P RăC
(

(15)

Let PS “ ă U, CYD, f ą be an ordinal decision system, C is the set of conditional attributes and D
is the decision, D “ td1, d2, . . . , dNu , d1 ď d2 ď . . . ď dN . x P U, a P C, if @y P rxsąa , f py, Dq ě f px, Dq
holds, we say object x is upward preference consistent in terms of attribute a. Otherwise, x is upward
preference inconsistent in terms of a. Similarly, if @y P rxsăa , f py, Dq ď f px, Dq holds, we say object
x is downward preference consistent in terms of attribute a, whereas, x is downward preference
inconsistent in terms of a.

A lot of research has been done regarding preference consistent decision systems. In a real
environment, however, we often need to face preference inconsistent cases. Preference inconsistence
leads to preference analysis uncertainty. Those achievements for preference consistent system cannot be
used to analyze preference inconsistent cases. Shannon entropy is a very good measure of uncertainty.
Therefore, we will study the entropy based on preference inconsistence to deal with preference
inconsistent issues.
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3. Preference Inconsistence Based Entropy

In this section, two types of preference inconsistence entropy (PIE)—upward preference
inconsistence entropy (UPIE) and downward preference inconsistence entropy (DPIE)—are introduced
to measure the preference uncertainty. Some relative concepts and theorems will be discussed in detail.

Definition 1. Given a preference inconsistent ordinal decision system PS “ ă U, CYD, f ą.
@x P U, a P C, the preference inconsistent set (PIS) of x in terms of a can be denoted by:

‚ upward preference inconsistent set (UPIS):

uiconS px, aq “
!

y P U|y P rxsąa
ľ

f py, Dq ă f px, Dq
)

(16)

‚ downward preference inconsistent set (DPIS):

diconS px, aq “
!

y P U|y P rxsăa
ľ

f py, Dq ą f px, Dq
)

(17)

For a set of attributes B Ď C, we have:

uiconS px, Bq “
!

y P U|y P rxsąb
ľ

f py, Dq ă f px, Dq ,@b P B
)

(18)

diconS px, Bq “
!

y P U|y P rxsăb
ľ

f py, Dq ą f px, Dq , @b P B
)

(19)

For a set of attributes B Ď C, object x is upward preference consistent in terms of B if Db P B,
object x is upward preference consistent in terms of b, whereas, x is upward preference inconsistent in
terms of B unless x is upward preference inconsistent in terms of each attribute in B. As to downward
preference, a similar case occurs. If Db P B, object x is downward preference consistent in terms of b, x
is downward preference consistent in terms of B. Otherwise, x is downward preference inconsistent in
terms of B.

Theorem 1. Let PS “ ă U, CYD, f ą be a preference inconsistent ordinal decision system, U is nonempty
finite set of objects, C is the set of conditional attributes and D is the decision, D “ td1, d2, . . . , dNu , d1 ď d2 ď

. . . ď dN . Given two attributes a1, a2 P C, we have:

uiconSpx, aY bq “ uiconS px, aq X uiconS px, bq (20)

diconSpx, aY bq “ diconS px, aq X diconS px, bq (21)

Proof:
uiconSpx, aY bq “

 

y P U|y P rxsąa
Ź

y P rxsąb
Ź

f py, Dq ă f px, Dq
(

“
 

y P U|y P rxsąa
Ź

y f py, Dq ă f px, Dq
(

X
 

y P U|y P rxsąb
Ź

y f py, Dq ă f px, Dq
(

“ uiconS px, aq X uiconS px, bq

(22)

diconSpx, aY bq “
 

y P U|y P rxsăa
Ź

y P rxsăb
Ź

f py, Dq ą f px, Dq
(

“
 

y P U|y P rxsăa
Ź

y f py, Dq ą f px, Dq
(

X
 

y P U|y P rxsăb
Ź

y f py, Dq ą f px, Dq
(

“ diconS px, aq X diconS px, bq

(23)

2
We can easily expand this theorem to a multiple attributes case:

uiconS px,Yn
i“1ai q “ X

n
i“1uiconS px, aiq (24)

diconS px,Yn
i“1ai q “ X

n
i“1diconS px, aiq (25)
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Definition 2. Let PS “ ă U, CYD, f ą be a reference inconsistent ordinal decision system, C is the set
of conditional attributes and D is the decision, D “ td1, d2, . . . , dNu , d1 ď d2 ď . . . ď dN . Given A Ď C,
the preference inconsistent degree (PID) can be defined as:

‚ upward preference inconsistent degree (UPID):

upicd px, Aq “
|uiconS px, Aq|

|U|
(26)

‚ downward preference inconsistent degree (DPID):

dpicd px, Aq “
|diconS px, Aq|

|U|
(27)

where uiconS and diconS are the set of upward and downward preference inconsistent set, respectively.

Theorem 2. Let PS “ ă U, CYD, f ą be a preference inconsistent ordinal decision system, U is a nonempty
finite set of objects, C is the set of conditional attributes and D is the decision, D “ td1, d2, . . . , dNu ,
d1 ď d2 ď . . . ď dN . Given two attributes a1, a2 P C, we have:

upicd px, a1q ě uiconSpx, a1 Y a2q (28)

upicd px, a2q ě uiconSpx, a1 Y a2q (29)

dpicd px, a1q ě diconSpx, a1 Y a2q (30)

dpicd px, a2q ě diconSpx, a1 Y a2q (31)

Proof. It can be proven easily by Definitions 2–4 and Theorem 1. 2

The preference inconsistent information granule can be represented as follows:

rAsě “
upicd px1, Aq

x1
`

upicd px2, Aq
x2

`
upicd px3, Aq

x3
` . . .`

upicd px4, Aq
x4

(32)

rAsď “
dpicd px1, Aq

x1
`

dpicd px2, Aq
x2

`
dpicd px3, Aq

x3
` . . .`

dpicd px4, Aq
xn

(33)

Definition 3. Let PS “ ă U, CYD, f ą be a preference inconsistent ordinal decision system, C is
the set of conditional attributes and D is the decision, D “ td1, d2, . . . , dNu , d1 ď d2 ď . . . ď dN .
The preference inconsistent entropy(PIE) can be defined as:

‚ upward preference inconsistent entropy (UPIE):

UH pAq “ ´
1
|U|

ÿ

xiPU, upicdpxi ,Aq‰0

log2 p1´ upicd pxi, Aqq (34)

‚ downward preference inconsistent entropy (DPIE):

DH pAq “ ´
1
|U|

ÿ

xiPU,dpicdpxi ,Aq‰0

log2 p1´ dpicd pxi, Aqq (35)

where upicd and dpicd are the upward preference inconsistence degree and downward preference
inconsistence degree, respectively. As for preference consistent ordinal decision system, the
preference decisions are certain, and UH pAq and DH pAq are all equal to 0, which is consistent
with Shannon entropy.
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Definition 4. Let PS “ ă U, CYD, f ą be a preference inconsistent ordinal decision system, C is the
set of conditional attributes and D is the decision, D “ td1, d2, . . . , dNu , d1 ď d2 ď . . . ď dN . Given two
attributes A1, A2 P C, the preference inconsistent joint entropy (PIJE) is expressed as:

‚ upward preference inconsistent joint entropy (UPIJE):

UHpA1 Y A2q “ ´
1
|U|

ÿ

xiPU,upicdpxi ,A1YA2q‰0

log2 p1´ upicd pxi, A1 Y A2qq (36)

‚ downward preference inconsistent joint entropy (DPIJE):

DHpA1 Y A2q “ ´
1
|U|

ÿ

xiPU,upicdpxi ,A1YA2q‰0

log2 p1´ dpicd pxi, A1 Y A2qq (37)

Theorem 3. Let PS “ ă U, CYD, f ą be a preference inconsistent ordinal decision system, U is a nonempty
finite set of objects, C is the set of conditional attributes and D is the decision, D “ td1, d2, . . . , dNu ,
d1 ď d2 ď . . . ď dN . Given two attributes A1, A2 P C, we have:

UH pA1q ě UHpA1 Y A2q (38)

UH pA2q ě UHpA1 Y A2q (39)

DH pA1q ě DHpA1 Y A2q (40)

DH pA2q ě DHpA1 Y A2q (41)

Proof. It can be proven by Definition 2–4 and Theorem 2. 2

Theorems 1–3 show that in a preference inconsistence set with less elements, smaller preference
inconsistence degree and smaller preference inconsistence entropy can be obtain by adding conditional
attributes. Obviously, a conditional attribute is redundant if it cannot decrease the preference
inconsistence entropy.

Definition 5. Let PS “ ă U, CYD, f ą be a preference inconsistent ordinal decision system, C is the
set of conditional attributes and D is the decision, D “ td1, d2, . . . , dNu , d1 ď d2 ď . . . ď dN . Given two
attributes A1, A2 P C, the preference inconsistent conditional entropy of A1toA2 is expressed as:

‚ upward preference inconsistent conditional entropy:

UH pA1|A2q “ UH pA1 Y A2q ´UH pA2q (42)

‚ downward preference inconsistent conditional entropy:

DH pA1|A2q “ DH pA1 Y A2q ´DH pA2q (43)

The conditional entropy reflects the uncertainty of A1 if A2 is given. Here, we give an instance to
illustrate the information entropy model about preference inconsistence ordinal decision system.

Example 1. Assume that we have 10 candidates x1, x2, . . . , x10 with two conditional attributes A1, A2,
as shown in Table 1. D = {1, 2, 3} is the rank set of candidates.
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Table 1. Ordinal decision system DS1.

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

A1 0.28 0.25 0.60 0.48 0.42 0.55 0.78 0.75 0.83 0.85
A2 0.28 0.31 0.42 0.47 0.51 0.66 0.55 0.65 0.80 0.91
D 1 1 1 2 2 2 2 3 3 3

We can take the preference inconsistent information granules and preference inconsistence entropy
as follows:

‚ upward preference inconsistent information granules:

rA1s
ě
“

0
x1
`

0
x2
`

0
x3
`

0.1
x4

`
0.1
x5

`
0.1
x6

`
0
x7
`

0.1
x8

`
0
x9
`

0
x10

(44)

rA2s
ě
“

0
x1
`

0
x2
`

0
x3
`

0.1
x4

`
0
x5
`

0
x6
`

0
x7
`

0.1
x8

`
0
x9
`

0
x10

(45)

rA1 Y A2s
ě
“

0
x1
`

0
x2
`

0
x3
`

0
x4
`

0
x5
`

0
x6
`

0
x7
`

0
x8
`

0
x9
`

0
x10

(46)

‚ downward preference inconsistent information granules:

rA1s
ď
“

0
x1
`

0
x2
`

0.3
x3

`
0
x4
`

0
x5
`

0
x6
`

0.1
x7

`
0
x8
`

0
x9
`

0
x10

(47)

rA2s
ď
“

0
x1
`

0.1
x2

`
0
x3
`

0
x4
`

0
x5
`

0.1
x6

`
0
x7
`

0
x8
`

0
x9
`

0
x10

(48)

rA1 Y A2s
ď
“

0
x1
`

0
x2
`

0
x3
`

0
x4
`

0
x5
`

0
x6
`

0
x7
`

0
x8
`

0
x9
`

0
x10

(49)

‚ upward reference inconsistent information entropy:

UH pA1q “ ´
1

10
ˆ
`

log20.1` log20.1` log20.1` log20.1
˘

“ 1.3288 (50)

UH pA2q “ ´
1
10
ˆ
`

log20.1` log20.1
˘

“ 0.6644 (51)

UH pA1 Y A2q “ 0 (52)

‚ downward preference inconsistent information entropy:

DH pA1q “ ´
1

10
ˆ
`

log20.3` log20.1
˘

“ 0.5059 (53)

DH pA2q “ ´
1

10
ˆ
`

log20.1` log20.1
˘

“ 0.6644 (54)

DH pA1 Y A2q “ 0 (55)

‚ upward reference inconsistent conditional entropy:

UH pA1|A2q “ UH pA1 Y A2q ´UH pA2q “ ´0.6644 (56)

UH pA2|A1q “ UH pA1 Y A2q ´UH pA1q “ ´1.3288 (57)

‚ downward reference inconsistent conditional entropy:

DH pA1|A2q “ DH pA1 Y A2q ´DH pA2q “ ´0.6644 (58)
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DH pA2|A1q “ DH pA1 Y A2q ´DH pA1q “ ´0.5059 (59)

As is shown in the example above, upward reference inconsistence information entropy and
downward preference inconsistence information entropy are all greater than or equal to 0, which is
consistent with Theorem 2. As for preference inconsistence conditional entropy, however, it is less than
or equal to 0. This can be explained easily by Theorem 3 and Definition 5. If the conditional entropy is
equal to 0, attribute A1 can be eliminated while not increasing the preference inconsistency degree.
In next section, we will illustrate the usefulness of preference inconsistence entropy through selecting
features and condensing samples.

4. The Application of PIE

4.1. Feature Selection

One of the most important applications of preference analysis is to calculate the reduction of
attributes. We are usually required to analyze the relevance between criteria and decisions, and then
select those features which are most significant for decision-making and eliminate those redundant or
irrelevant features. Plenty of perfect models and algorithms are proposed. However, almost all current
work which focuses on the preference consistent cases cannot be used in inconsistent preference cases.
Here, we show a feature selection technique based on preference inconsistence entropy while not
decreasing the preference consistent degree.

Definition 7. Let PS “ ă U, CYD, f ą be a preference inconsistent ordinal decision system, C is the
set of conditional attributes and D is the decision, D “ td1, d2, . . . , dNu , d1 ď d2 ď . . . ď dN . Given two
attributes A1, A2 Ď C, the relative significance of attribute subset A1 to A2 can be defined as:

‚ upward relative significance:

uSig pA1, A2q “ ´UH pA1|A2q “ UH pA2q ´UH pA1 Y A2q (60)

‚ downward relative significance:

dSig pA1, A2q “ ´DH pA1|A2q “ DH pA2q ´DH pA1 Y A2q (61)

The greater the inconsistence entropy is, the smaller is the relevance of the decision to an attribute,
that is, the attribute with greater inconsistence entropy has less significance. uSig pA1, A2q is used to
evaluate the relative significance of attribute subset A1 to attribute subset A2 for upward preference.
Similar to uSig pA1, A2q, dSig pA1, A2q is the evaluation measure of attribute significance for downward
preference. Equations (60) and (61) can be used to find those important features which are indispensable
to hold the preference consistence of conditional attributes to a decision. As a matter of fact, it is
impractical to get the optimal feature subset from 2n ´ 1 candidates through exhaustive search, where
n is the number of features. The greedy search guided by some heuristics is usually more efficient than
the plain brute-force exhaustive search [25]. A forward search algorithm (Algorithm 1) and a backward
algorithm (Algorithm 2) for feature selection are expressed as follows, respectively. Here, UPIE and
DPIE are denoted as PIE uniformly, UH and DH are denoted as H uniformly, and uSig and dSig are
denoted as Sig uniformly.
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Algorithm 1 Forward feature selection (FFS) based on PIE

Input: the preference inconsistent ordinal decision system PS “ ă U, CYD ą;
Output: selected feature subset s f .
1. foreach a P C
2. if f px, aq ” A
3. C “ C´ tau
4. end if
5. end for
6. foreach a P C
7. compute H paq
8. end for
9. find the minimal H paq and the corresponding attribute a
10. s f Ð a
11. while s f ‰ C
12. for each a P C´ s f
13. compute siga “ uSigpa, s f )
14. end for
16. find the maximal siga and the corresponding attribute a
17. if siga ą 0
18. s f Ð s f Y a
19. else
20. exit while
21. end if
22. end while
23. return s f

Algorithm 2 Backward feature selection (BFS) based on PIE

Input: the preference inconsistent ordinal decision system PS “ ă U, CYD ą;
Output: selected feature subset s f .
1. foreach a P C
2. if f px, aq ” A
3. C “ C´ tau
4. end if
5. end for
6. s f Ð C
7. for each a P s f
8. compute siga “ Sigpa, s f ´ tau)
9. if siga “ 0
10. s f Ð s f ´ tau
11. end if
12. end for
13. return s f

The time complexities of algorithm FFS and BFS are O
`

m2nlogn
˘

and O pmnq, respectively, where
m is the number of features and n is the number of samples, respectively. Replacing PIE with UPIE,
we can get the algorithms for upward preference. Replacing PIE with DPIE, we can get the algorithms
for downward preference.

If @x P U, f px, aq ” A, we can get UH paq “ 0, DH paq “ 0 anduSig paq Ñ 8, dSig paq Ñ 8 .
Obviously, however, feature a has minimal inconsistence entropy and maximal significance but has no
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effect on the decision. For the forward algorithm, if features like a exist, the selected feature subset
contains only one element like a. For the backward algorithm, we could get a similar result, so before
starting the algorithms, we should eliminate all the features like a.

4.2. Sample Condensation

If an ordinal decision system is upward preference inconsistent, there exist some objects with
greater attribute values and worse decision. Similarly, if an ordinal decision is downward preference
inconsistent, there exist some samples with less attribute values and better decision. These samples are
named as exceptional samples. Obviously, in this view, the inconsistent decision system would become
preference consistent once the exceptional samples are all eliminated. A backward search algorithm
(Algorithm 3) is written as follows: like feature selection algorithms, UPIE and DPIE are denoted
as PIE uniformly, upicd and dpicd are denoted as picd, and UH and DH are denoted as H uniformly.
The time complexity of this algorithm is O(mn), where m is the number of features and n is the number
of samples.

Algorithm 3 Sample Condensation based on PIE (BFS)

Input: the preference inconsistent ordinal decision system PS “ ă U, CYD ą;
Output: the preference consistent sample subset.
1. for each a P C
2. sa paq Ð U
3. compute the preference inconsistence entropy H psa paq , aq
4. while H psa paq , aq ą 0
5. for each x P sa paq
6. Compute picdx “ picd px, aq
7. end for
8. find the maximum picdx and the corresponding sample x
9. sa paq Ð sa paq ´ txu
10. compute the preference inconsistence entropy H psa paq , aq
11. end while
12. end for
13. sas “ ∅;
14. for each a P C
15. sas Ð sa paq Y sas ;
16. end for
17. return sas

5. Experimental Analysis

In this section, we present experimental results obtained by using two real data sets named Pasture
Production and Squash Harvest downloaded from WEKA (http://www.cs.waikato.ac.nz/ml/weka/).
Three experiments are done for every data set. In the first experiment, preference inconsistence entropy
and significance of single attribute are computed. In the second experiment, some features are selected
based on the algorithms proposed in this work. Then we condense the data set and eliminate some
samples causing inconsistence in the last experiment.

The Pasture Production data set was collected by Dave Barker from areas of grazed North
Island hill country with recorded different management history during the period from 1793 to 1994.
The objective was to analyze the influence of biophysical factors on pasture production. The Production
of Pasture data set is composed of 36 tuples associated with 36 paddocks. Each tuple has 22 attributes,
of which 19 are vegetation, and the others are soil chemical, physical and biological, and soil water
variables, respectively. All the samples are partitioned into three classes, LO, MED and HI, representing
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low, medium and high production, respectively. Table 2 is the description of the features. For use
in this work, we replaced these symbol values by integer 1, 2 and 3, respectively. Accordingly, the
enumerated value (LL, LN, HN and HH) of attribute fertilizer are replaced by 1, 2, 3 and 4. Figure 1
shows the result of Experiment 1, Table 3 presents the selected features in the experiment, and the
sample condensation result of Experiment 3 is listed in Table 4.

Table 2. Features of Pasture Production.

Sequence Attribute Description

1 fertiliser {LL, LN, HN, HH} enumerated
2 slope Slope of the paddock numeric
3 aspect-dev-NW The deviation from the north-west numeric
4 olsenP numeric
5 minN numeric
6 TS numeric
7 Ca-Mg Calcium magnesium ration numeric
8 LOM Soil lom (g/100g) numeric
9 NFIX-mean A mean calculation numeric
10 Eworms-main-3 Main 3 spp earth worms per g/m2 numeric
11 Eworms-No-species Number of spp numeric
12 KUnSat mm/h numeric
13 OM numeric
14 Air-Perm numeric
15 Porosity numeric
16 HFRG-pct-mean Mean percent numeric
17 legume-yield kgDM/ha numeric
18 OSPP-pct-mean Mean percent numeric
19 Jan-Mar-mean-TDR numeric
20 Annual-Mean-Runoff In mm numeric
21 root-surface-area M2/m3 numeric
22 Leaf-P Ppm numeric

Class Pasture prod-class {Low, Median, High} enumerated

Figure 1a shows the inconsistence entropy comparison of single features based on upward and
downward preference. Figure 1b shows the comparison of signification of single features based on
upward and downward preference. The relation of inconsistence entropy and attribute significance is
presented in Figure 1c.

The inconsistence entropy of every feature of the decision is different, which shows that those
features are not of the same importance in predicting pasture production. The inconsistence entropy
monotonically decreases with increasing feature significance. The greater the inconsistence entropy is,
the less the feature helps predict the pasture production, but in some cases, exceptions also exist.

We arrange these features in descending order by upward significance {4, 16, 22, 10, 9, 5, 7, 17,
1, 6, 11, 13, 3, 20, 8, 15, 2, 19, 21, 12, 18, 14}, and arrange the features in ascending order by upward
inconsistence entropy {14, 4, 16, 22, 10, 9, 5, 7, 17, 1, 6, 11, 13, 3, 20, 8, 15, 2, 19, 21, 12, 18}. Except
for feature 14, those attributes at the head of the first series have smaller inconsistence entropy and
greater significance in predicting pasture production, such as 4, 16, 22, and so on. Feature 14 is an
exception. The inconsistence entropy of feature 14 is the smallest value 0, but its significance also
has the smallest value of 0. We can find that all distances have the same value 0 in feature 14, so
its inconsistence entropy is 0. But at the same time, feature 14 is not different for all samples and
cannot reflect any preference, so the significance should be 0. This is consistent with our common
knowledge. The forward feature selection algorithm output the same features for upward preference
and downward preference. As for the backward method, a similar case occurs.

In addition, from Figure 1, we can see that there is little difference between upward inconsistence
entropy and downward inconsistence entropy. A similar case occurs for the significance of a single
feature. In order to test how much the order of features impacts the output, we generated four different
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data sets by arranging the features in different order and executing the feature selection algorithms
in all the data sets. All the features are labeled as 1, 2, ..., 22. The original data set is the first one.
By arranging those features in a descending label order, we get the second data set. We compute the
significance of every feature and get the third and the fourth data sets by arranging the features in
the order of ascending and descending attribute significance, respectively. The forward algorithm is
performed on data sets 1, 2 and 4, and the backward algorithm is executed on data sets 1, 2 and 3.
Table 3 shows the experiment results.
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Figure 1. Preference inconsistence entropy and attribute significance of single features (Pasture
production). (a) Inconsistent entropy of single features; (b) Significance of single features; (c) Relation
of inconsistence entropy and attribute significance.

For the forward algorithm, features 4, 11 and 1 are selected from data set 1, features 4, 11 and 1
are selected from data set 2, and features 4, 11 and 22 are selected from data set 4. Features 4 and 11 are
included in all feature subset. The top two of three selected features are the same and only the last
is different for all data sets. As for the backward algorithm, however, we have an entirely different
situation. Features 17, 18, 20 and 22 are selected from data set 1, features 1, 3, 4 and 5 are selected from
data set 2, and features 4, 10 and 16 are selected from data set 3. The selected feature subsets are totally
different. Obviously, we can conclude that the forward algorithm is more stable and the backward
algorithm is affected more by the order of features.
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In the forward feature selection algorithm, the relative significance is computed in turn in the
order of increasing feature label. As for the backward method, we compute the relative significance of
features in the same turn. However, there exists an essential difference between the algorithms. For
the forward algorithm, after the significances of all features are computed, the feature with maximal
relative significance is selected, but for the backward method, if the relative significance is 0, the feature
is immediately deleted from the features set. From Table 3, we can find that we can get similar feature
subsets if we sort the data set by attribute significance. The backward algorithm selects features 4, 16
and 10 from data set 3 and the forward algorithm selects features 4, 16 and 11. We can see that features
4 and 16 appear in both the subsets. This shows that these features are important in term of different
selection methods.

Table 3. Selected features for Pasture Production (original data set).

Data Set Algorithm Preference Selected
Features Subset

Significance of
Feature Subset

Inconsistence
Entropy of

Feature Subset

Data set 1

Forward Feature
Selection

upward 4, 11, 1 0.97, 0.25, 0.29 0
downward 4, 11, 1 0.97, 0.24, 0.31 0

Backward
Feature Selection

upward 17, 18, 20, 22 0.4, 0.10, 0.19, 0.97 0
downward 17, 18, 20, 22 0.48, 0.10, 0.17, 0.97 0

Data set 2

Forward Feature
Selection

upward 4, 11, 22 0.36, 0.27, 0.97 0
downward 4, 11, 22 0.32, 0.26, 0.97 0

Backward
Feature Selection

upward 5, 4, 3, 1 0.10, 0.15, 0.19, 0.97 0
downward 5, 4, 3, 1 0.10, 0.13, 0.17, 0.97 0

Data set 3 Backward
Feature Selection

upward 10, 16, 4 0.55, 0.92, 0.97 0

downward 10, 16, 4 0.52, 0.92, 0.97 0

Data set 4 Forward Feature
Selection

upward 4, 11, 16 0.97, 0.25, 0.92 0

downward 4, 11, 16 0.97, 0.24, 0.92 0

Table 4 shows the sample condensation results based on selected feature subsets in previous
experiments. Figure 2 illustrates the distribution, histogram and pie of selected samples for
upward preference. Figure 3 illustrates the distribution, histogram and pie of selected samples
for downward preference.

Table 4. Selected samples (Pasture Production).

Features Subset Upward Preference Downward Preference

All features 2,4,7,8,9,10,11,12,13,14,15,16,
18,19,20,21,22,26,27,28,33,35

1,2,3,4,5,6,7,8,12,17,22,23,
24,25,28,29,30,31,32,34,35,36

4,11,1 2,9,10,11,12,13,14,15,16,18,19,20,
21,22,26,27,28,29,30,31,32,33,34,35,36

1,2,3,4,5,6,7,8,23,24,25,
28,29,30,31,32,34,35,36

4,11,22 2,4,7,8,9,10,11,12,13,14,15,16,
18,19,20,21,22,26,27,28,33,35

1,2,3,4,5,6,7,8,12,17,22,23,
24,25,28,29,30,31,32,34,35,36

17,18,20,22 1,2,4,7,8,9,10,11,12,13,14,15,
16,18,19,20,21,22,26,27,28,33,35

1,2,3,4,5,6,7,8,12,17,22,23,
24,25,28,29,30,31,32,34,35,36

1,3,4,5 5,9,10,11,12,13,14,15,16,18,
20,21,24,25,26,31,32,33,34,35,36

1,2,4,6,11,12,19,20,21,22,23,
24,25,28,29,30,31,32,34,35,36

10,16,4 2,3,4,8,9,10,11,12,13,14,15,16,
18,20,21,26,27,29,31,32,33,34,35,36

1,3,5,6,7,17,18,19,22,23,24,
25,28,29,30,31,32,34,35,36

4,11,16 2,5,6,7,9,10,11,12,13,14,15,16,18,20,
21,22,23,24,25,26,28,29,30,31,32,34,35,36

1,2,3,4,5,6,7,8,10,14,17,19,22,23,
24,25,27,28,29,30,31,32,33,34,35,36
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The Squash Harvest data set, collected by Winna Harvey Crop & Food Research (Christchurch,
New Zealand), aims to determine which pre-harvest variables are important to good tasting squash
after different periods of storage time so as to pinpoint the best time to give the best quality at the
marketplace. This is determined by whether a measure of acceptability found by classifying each
squash as either unacceptable, acceptable or excellent. The name and the corresponding descriptions
of those features are described in Table 5. There are 52 instances with 24 attributes. For use in this
work, we replaced these class symbol values with integer 1, 2 and 3, respectively. We do the same tests
on this data set.
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Table 5. Features of Squash Harvest.

Sequence Attribute Description

1 site where fruit is located enumerated
2 daf number of days after flowering enumerated
3 fruit individual number of the fruit enumerated
4 weight weight of whole fruit in grams numeric
5 storewt weight of fruit after storage numeric
6 pene penetrometer indicates maturity of fruit at harvest numeric
7 solids_% a test for dry matter numeric

8 brix a refactometer measurement used to indicate
sweetness or ripeness of the fruit numeric

9 a* the a* coordinate of the HunterLab L*, a*, b*
notation of color measurement numeric

10 egdd the heat accumulation above a base of 8c from
emergence of the plant to harvest of the fruit numeric

11 fgdd the heat accumulation above a base of 8c from
flowering to harvesting numeric

12 ground spot the number indicating color of skin where the fruit
rested on the ground numeric

13 glucose measured in mg/100g of fresh weight numeric
14 fructose measured in mg/100g of fresh weight numeric
15 sucrose measured in mg/100g of fresh weight numeric
16 total measured in mg/100g of fresh weight numeric
17 Glucose + fructos measured in mg/100g of fresh weight numeric
18 starch measured in mg/100g of fresh weight numeric
19 sweetness the mean of eight taste panel scores numeric
20 flavour the mean of eight taste panel scores numeric
21 dry/moist the mean of eight taste panel scores numeric
22 fibre the mean of eight taste panel scores numeric
23 heat_input_emerg the amount of heat emergence after harvest numeric
24 heat_input_flower the amount of heat input before flowering numeric
25 acceptability the acceptability of the fruit enumarated

We compute the inconsistence entropy and attribute significance of single features for upward
preference and downward preference, as shown in Figure 4. Features 1, 2, 6, 11, 16 and 24 have greater
single attribute significance, indicating that, as far as single features are concerned, site, number of
days after flowering, maturity of fruit at harvest, the heat accumulation from flowering to harvesting,
total number of glucose, fructose and sucrose and the amount of heat input before flowering are very
important for good taste.

We also extract the preference consistence feature subset. Similar to Pasture Production, we
generate four data sets from Squash Harvest. All the features are labeled as 1, 2, ..., 24. The original
data set is the first. By arranging those features in the order of descending label, we get the second
data set.

We compute the significance of every feature and get the third and the fourth data sets by
arranging the features in the order of ascending and descending attribute significance, respectively.
The forward algorithm is performed on data sets 1, 2 and 4, and the backward algorithm is executed
on data sets 1, 2 and 3. Table 6 shows the experiment results. Finally, we condense the samples
with selected features. The results are shown in Table 7. Figures 5 and 6 show the distribution and
histograms of selected samples.
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Table 6. Selected features for Squash Harvest (original data set).

Data Set Algorithm Preference Selected
Features Subset

Significance of Feature
Subset

Inconsistent
Entropy of

Feature Subset

Original data

Forward Feature
Selection

upward 1, 2, 14 0.98, 0.63, 0.26 0
downward 1, 2, 14 0.98, 0.55, 0.22 0

Backward
Feature Selection

upward 15, 17, 18, 22, 24 0.66, 0.38, 0.35, 0.33, 0.98 0
downward 15, 17, 18, 22, 24 0.66, 0.38, 0.35, 0.33, 0.98 0

Sorted by feature label
descending

Forward Feature
Selection

upward 1, 2, 14 0.98, 0.63, 0.26 0
downward 1, 2, 14 0.98, 0.55, 0.22 0

Backward
Feature Selection

upward 9, 3, 2, 1 0.98, 0.32, 0.72, 0.94 0
downward 9, 3, 2, 1 0.82, 0.30, 0.75, 0.98 0

Sorted by significance
descending

Forward Feature
Selection

upward 1, 2, 14 0.98, 0.63, 0.26 0
downward 1, 2, 14 0.98, 0.55, 0.22 0

Sorted by significance
ascending

Backward
Feature Selection

upward 8, 12, 2, 16, 1 0.49, 0.62, 0.63, 0.71, 0.98 0
downward 8, 12, 2, 16, 1 0.37, 0.53, 0.55, 0.57, 0.98 0
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Table 7. Selected samples (Squash Harvest).

Features subset Upward Preference Downward Preference

All features 1,5,8,10,11,12,13,14,15,16,21,23,
25,32,33,34,35,36,42,44,45,46,47,48

1,2,6,7,9,12,13,14,15,16,22,24,26,27,28,29,
30,31,33,34,35,36,37,38,39,40,49,50,51,52

1,2,14 1,3,4,15,33,34,35,36,42,44,46,48,52 1,2,6,7,9,12,13,14,15,16,22,24,
26,27,28,29,30,31,40,49,50,51,52

15,17,18,22,24 5,8,10,11,12,13,14,15,16,21,23,
25,32,33,34,35,36,42,44,45,46,47,48

1,2,6,7,9,12,13,14,15,16,22,24,26,27,28,
29,30,31,33,34,35,36,37,38,39,40,49,50,51,52

9,3,2,1
1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,
17,18,19,20,21,23,25,32,33,34,35,36,
37,38,39,41,42,43,44,45,46,47,48,51

1,2,6,7,9,12,13,14,15,16,22,24,26,27,
28,29,30,31,33,34,35,36,37,38,39,40,
41,42,43,44,45,46,47,48,49,50,51,52

8,12,2,16,1
1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,
17,18,19,20,21,23,25,29,32,33,34,35,
36,37,38,39,41,42,43,44,45,46,47,48

1,2,6,7,9,12,13,14,15,16,22,24,26,27,
28,29,30,31,33,34,35,36,37,38,39,40,
41,42,43,44,45,46,47,48,49,50,51,52
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Table 6. Selected features for Squash Harvest (original data set). 

Data Set Algorithm Preference 
Selected Features 

Subset 
Significance of 
Feature Subset 

Inconsistent 
Entropy of 

Feature Subset 

Original data 

Forward 
Feature 

Selection 

upward 1, 2, 14 0.98, 0.63, 0.26 0 

downward 1, 2, 14 0.98, 0.55, 0.22 0 

Backward 
Feature 

Selection 

upward 15, 17, 18, 22, 24 
0.66, 0.38,  

0.35, 0.33, 0.98 
0 

downward 15, 17, 18, 22, 24 
0.66, 0.38,  

0.35, 0.33, 0.98 
0 

Sorted by 
feature label 
descending 

Forward 
Feature 

Selection 

upward 1, 2, 14 0.98, 0.63, 0.26 0 

downward 1, 2, 14 0.98, 0.55, 0.22 0 

Backward 
Feature 

Selection 

upward 9, 3, 2, 1 0.98, 0.32, 0.72, 0.94 0 

downward 9, 3, 2, 1 0.82, 0.30, 0.75, 0.98 0 

Sorted by 
significance 
descending 

Forward 
Feature 

Selection 

upward 1, 2, 14 0.98, 0.63, 0.26 0 

downward 1, 2, 14 0.98, 0.55, 0.22 0 

Sorted by 
significance 
ascending 

Backward 
Feature 

Selection 

upward 8, 12, 2, 16, 1 
0.49, 0.62,  

0.63, 0.71, 0.98 
0 

downward 8, 12, 2, 16, 1 
0.37, 0.53,  

0.55, 0.57, 0.98 
0 

Table 7. Selected samples (Squash Harvest). 

Features subset Upward Preference Downward Preference 

All features 
1,5,8,10,11,12,13,14,15,16,21,23, 

25,32,33,34,35,36,42,44,45,46,47,48 
1,2,6,7,9,12,13,14,15,16,22,24,26,27,28,29, 
30,31,33,34,35,36,37,38,39,40,49,50,51,52 

1,2,14 1,3,4,15,33,34,35,36,42,44,46,48,52 
1,2,6,7,9,12,13,14,15,16,22,24, 

26,27,28,29,30,31,40,49,50,51,52 

15,17,18,22,24 
5,8,10,11,12,13,14,15,16,21,23, 

25,32,33,34,35,36,42,44,45,46,47,48 
1,2,6,7,9,12,13,14,15,16,22,24,26,27,28, 

29,30,31,33,34,35,36,37,38,39,40,49,50,51,52 

9,3,2,1 
1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16, 
17,18,19,20,21,23,25,32,33,34,35,36, 
37,38,39,41,42,43,44,45,46,47,48,51 

1,2,6,7,9,12,13,14,15,16,22,24,26,27, 
28,29,30,31,33,34,35,36,37,38,39,40, 
41,42,43,44,45,46,47,48,49,50,51,52 

8,12,2,16,1 
1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16, 
17,18,19,20,21,23,25,29,32,33,34,35, 
36,37,38,39,41,42,43,44,45,46,47,48 

1,2,6,7,9,12,13,14,15,16,22,24,26,27, 
28,29,30,31,33,34,35,36,37,38,39,40, 
41,42,43,44,45,46,47,48,49,50,51,52 
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For the forward algorithm, we get the same feature subset 1, 2 and 14. The attribute significance 
of features 1 is 0.98. Feature 2 has an attribute significance of 0.63 and 0.55 for upward preference 
and downward preference, respectively. Features 1 and 2 are important for good taste, but the 
significance of feature 14 is as low at 0.26 and 0.22 for upward preference and downward preference, 
respectively. This indicates that, more glucose can give better taste at harvest if the plant site is 
suitable and the number of days after flowering is enough. 
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In multiple attribute ordinal decision, the derived decisions may be inconsistent and uncertain 
since the available information is usually obtained from different evaluation criteria or experts. 
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Figure 6. Distribution and histogram of selected samples for downward preference (Squash Harvest).
(a) Distribution of selected samples; (b) Histogram of selected samples.

For the forward algorithm, we get the same feature subset 1, 2 and 14. The attribute significance
of features 1 is 0.98. Feature 2 has an attribute significance of 0.63 and 0.55 for upward preference and
downward preference, respectively. Features 1 and 2 are important for good taste, but the significance
of feature 14 is as low at 0.26 and 0.22 for upward preference and downward preference, respectively.
This indicates that, more glucose can give better taste at harvest if the plant site is suitable and the
number of days after flowering is enough.

6. Conclusions

In multiple attribute ordinal decision, the derived decisions may be inconsistent and uncertain
since the available information is usually obtained from different evaluation criteria or experts.
Shannon entropy is a suitable measurement of uncertainty. In this research, Shannon entropy is
extended to preference inconsistence entropy for preference inconsistent ordinal decision systems.
Two applications of preference inconsistence entropy, feature selection and sample condensation,
are addressed and some algorithms are developed. The experimental result shows that preference
inconsistence entropy is a suitable measurement of uncertainty of preference decision, and the proposed
algorithms are effective solutions for preference analysis. Classification is another interesting issue
for preference analysis, and further investigations on classification methods and algorithms based on
preference inconsistence entropy are worthwhile.
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